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ABSTRACT
Background: Myo-inositol (cis-1,2,3,5-trans-4,6-cyclohexanehexol; MI) is the most prominent of nine inositol stereoisomers. MI,

its phosphate derivatives, and associated lipids are widely found in vegetables and animal tissues and are known to participate in

numerous biological processes.

Objectives: To perform a review analysis on MI presence, functions, and impact in male fertility.

Materials and Methods: A thorough search of listed publications in PubMed on MI and its derivatives was done.

Results: Published information was found and compiled on MI identification, natural dietary sources and absorption, biosynthesis,

concentrations, as well as MI as its derivatives (PI, PIP, GPI, IPG) roles in several human tissues and body fluids in health and disease.

A section was focused on MI presence, biosynthesis, and functions in the mammalian male genital tract and in spermatozoa, and

summarized reports describing the impact of in vivo and in vitro MI supplementation on human semen quality and fertility. Studies

reported a discrete improvement in sperm motility in fresh and frozen-thawed semen, and a better sperm performance in natural

and assisted fertility.

Discussion and Conclusion: MI was reported as an effective supplement for sperm quality. In any case, several study designs lack

appropriate controls or data analysis to confirm the relevance of the findings. While promising, larger prospective randomized con-

trolled studies will be required to confirm the positive effect of MI supplementation in male infertility management. Moreover, fur-

ther investigations are encouraged to unravel MI roles in sperm physiology and the underlying molecular mechanisms.

INOSITOL SOURCES, BIOSYNTHESIS, AND ABSORPTION
Inositol is a sixfold alcohol (polyol) of cyclohexane, also called

cyclohexane-1,2,3,4,5,6-hexol, with five equatorial and one axial

hydroxyl (OH) groups. Its formula is C6H12O6 or (-CHOH-)6
(Fig. 1). Inositol exists in nine stereoisomers, resulting from

epimerization of the six OH- groups (cis-, epi-, allo-, myo-, neo-,

scyllo-, L-chiro-, D-chiro-, and muco-inositol; Murthy, 2006;

Thomas et al., 2016). The most prominent form widely occurring

in nature is cis-1,2,3,5-trans-4,6-cyclohexanehexol, or myo-inos-

itol (MI1) (former name ‘meso-inositol’), followed by D-chiro-

inositol (DCI) (Posternak, 1942; Fig. 1).

MI was first isolated in 1850 from Liebig’s meat extracts by J.J.

Scherer, who also determined its empirical formula (Scherer,

1850). Scherer named MI from the ancient Greek stem of �ıς (is,
in-, ‘sinew, fiber’), -ose (indicating ‘a carbohydrate’), -ite

(‘ester’), and -ol (‘an alcohol’). In the following years, other

investigators further evaluated MI presence in animals and

plants, reported several methods to extract it, and evaluated its

importance in nature (Clo€etta, 1856; M€uller, 1857; Copper-Lane,

1861; Marm�e, 1864). Based on its empirical formula, these

reports related MI to sugars; in fact, it was named the ‘muscle-

sugar’, since muscle was one of its main sources. However,

Maquenne showed in 1887 that MI is not a sugar but a cyclic

hexamethylene compound, or hexahydroxyhydrobenzene; it also

established its cyclohexanol structure, and reported its purifica-

tion from leaves (Maquenne, 1887a,b,c). Around 30 years later,
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Needham described a procedure to quantify MI in animal tissues

and determined its levels in a set of rabbit tissues; moreover, it

showed identical characteristics between muscle MI and phytin

(Needham, 1923).

It has been established that MI, its phosphate derivatives, and

associated lipids are present in different food types (corns,

beans, fruits, nuts) and are widely distributed in several animal

tissues (Clements & Darnell, 1980; Schlemmer et al., 2009; Dini-

cola et al., 2017). MI is mainly present in animals in its free form

or as phosphatidylinositol (PI); in breast milk, is found in its free

form and as 6-b-galactinol (Naccarato & Wells, 1974). In vegeta-

bles, MI is found as phytic acid (inositol hexakisphosphate, inos-

itol-P6), which contains six phosphate groups partially ionized

at physiological pH (Holub, 1986). Phytic acid is the phosphorus

main form stored in many plant tissues, especially bran, seeds,

legumes, and oil, and has several functions with significant

nutritional roles (Dinicola et al., 2017). Western diets contain less

phytate because of massive refinement of grains and rice; for this

reason, MI diet contribution is approximately 1 g/day (Good-

hart, 1973). Despite the presence of plant food phytases, dietary

phytic acid is converted, after oral ingestion, to free MI,

orthophosphate, and intermediate forms (mono-, di-, tri-, tetra-,

and penta-phosphate esters of inositol) by bacterial phytases

and phosphatases during food processing in the large intestine.

These enzymes are homologous to mammalian inositol-P6

phosphatase (MINPP) and are responsible for dietary inositol-P6

digestion (Sandberg & Anderson, 1988; Schlemmer et al., 2001;

Schlemmer et al., 2009; Stentz et al., 2014). MI is absorbed by the

apical membrane of intestinal epithelial cells and reabsorbed in

the renal proximal tubes (Bissonnette et al., 2004). Several mole-

cules, such as glucose, modulate MI uptake (Haneda et al., 1990;

Cammarata et al., 1992); moreover, in vitro and in vivo results

support an increased MI intestinal absorption when combined

with alpha-lactalbumin administration (Monastra et al., 2018).

In addition to dietary ingestion, MI is synthesized by mam-

malian tissues, including brain, liver, kidney, mammary gland,

and testis. The ability of mammals to convert D-glucose to MI

was first reported in studies done in inositol-dependent (human:

KB and HeLa) and inositol-independent (mouse L-929) cell cul-

tures (Eagle et al., 1960). Later, it was found that brain, liver, and

kidney slices could convert glucose to MI (Hauser & Finelli,

1963). MI biosynthesis starts with glucose 6-phosphate, the first

glycolysis product, and comprises an isomerization reaction to

inositol-3-phosphate (Ins3P) by the inositol-3-phosphate syn-

thase (EC:5.5.1.4; IPS2). IPS requires NAD+ and involves a two-

step reaction of oxidation and reduction. Presently, the genomes

of over one hundred organisms, including humans, contain

annotated orthologs that encode IPS. Ins3P is then dephospho-

rylated into inositol by the inositol monophosphatase 1

(EC:3.1.3.25; IMP 1 or IMPase 1; Fig. 2). IPS is encoded by the

ISYNA1 gene and IMP 1 by the IMPA1 gene; their transcripts are

expressed in numerous tissues, as reported in a panel of the

Human Protein Atlas (Fig. 3A, 3B). In addition to IMPA1, another

IMPA transcript was first identified in humans, named IMPA2,

showing 54% amino acid identity to human IMPA1, and homol-

ogy to IMPAs of other organisms; it is located on chromosome

18p11.2, a region related to susceptibility for bipolar disorders

by linkage analysis (Yoshikawa et al., 1997). MI may be also

obtained by recycling inositol phosphates (Benjamin et al.,

2014).

Free MI plasma concentration in adult humans is 24.5 lM;
in contrast, millimolar levels are detected in other mammalian

tissues (Dawson & Freinkel, 1961; Hinton et al., 1980; Holub,

1986; Michaelis et al., 1993). MI is transported from the extra-

cellular fluid to the cell in a temperature-, pH-, and energy-

sensitive process (Schneider, 2015). There are three different

active cotransporters that use Na+ or H+ as co-solutes: SMIT1

(solute carrier family 5 member, third member of the solute

Figure 1 Inositol stereoisomers. Chair conformation of the nine stereoisomers of inositol: myo-, scyllo-, muco-, epi-, neo-, allo-, D-chiro-, L-chiro-, and cis-

inositol.
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carrier family3) is a high-affinity, Na+-dependent cotransporter

(Kwon et al., 1992; Matskevitch et al., 1998), SMIT2 is kineti-

cally similar but pharmacologically different (Coady et al.,

2002), and HMIT/SLC2A13 is the lower-affinity H+-dependent

transporter (Uldry et al., 2001). SMIT1 is an integral mem-

brane protein that transports 1 inositol with 2 Na+; it was the

first inositol transport system identified (Hager et al., 1995),

and it is encoded by the SLC5A3 gene (Kwon et al., 1992;

Fig. 3C). It structurally resembles glucose transporters, charac-

terized by inverted-repeat domains with many transmembrane

segments (Gamba, 2001; Abramson & Wright, 2009). In mam-

mals, both SMIT1 and SMIT2 react to osmotic imbalances

(Isaacks et al., 1994; Bissonnette et al., 2008; Klaus et al.,

2008), but no osmoregulatory functions have been found in

HMIT/SLC2A13. Mice deficient in SLC5A3 (SLC5A3�/�) have an

inositol uptake reduction of 96%, embryo developmental

abnormalities, and perinatal mortality, unless animals are fed

with MI from birth (Buccafusca et al., 2008). In line with these

findings, increased MI levels, reported in different tissues

under extracellular hypertonic conditions (Thurston et al.,

1989; Strange et al., 1991; Trachtman et al., 1991; Handler &

Kwon, 1996), have been attributed to increased Na+-dependent

transport activity (Strange et al., 1991; Handler & Kwon, 1996;

Matsuoka et al., 1999). Osmoregulatory elements have been

reported to control SLC5A3 gene transcriptional activity

(Trachtman et al., 1991; Handler & Kwon, 1996; Neuhofer

et al., 2002); specifically, expression of TonEBP (tonicity-re-

sponsive enhancer binding protein) transcription factor is

upregulated under hypertonic conditions, and it is translo-

cated to the cell nucleus.

MI biosynthesis may be subjected to positive and negative

modulators; among them, the glycogen synthase kinase 3 (GSK3)

is a positive regulator for optimal IPS activity, finding an inositol

decrease when GSK3 activity is lost (Azab et al., 2007). On the

other hand, gender and epigenetic modulation by tissue-specific

methylation (Seelan et al., 2011) may act as negative modulators,

as well as ISYNA1 alternative splicing, which leads to the expres-

sion of an isoform that impairs its activity (Seelan et al., 2009).

The amount of MI biosynthesized has been estimated in 4 g

(22 nmol)/day in the adult kidney (Clements & Diethelm, 1979),

far higher than dietary intake. It is found in large concentrations

in thyroid, testis, liver, brain, spleen, pituitary gland, and kidney.

Its excess is catabolically broken down in the kidney to yield O-

glucuronic acid and oxylulose-5-phosphate that enter the pen-

tose phosphate cycle, to finally be eliminated in the urine. In this

regard, renal failure has been associated with abnormalities in

MI metabolism and increased plasma levels (Pitk€anen, 1976). An

adequate MI supply is expected from biosynthesis and dietary

intake, but MI may be altered due to food processing,

biosynthesis impairment, absorption reduction, and excretion

increase, as summarized by Dr. Dinicola and collaborators

(Dinicola et al., 2017).

INOSITOL DERIVATIVES
MI is the precursor of biosynthesis of phospholipids (phos-

phatidylinositol, PI) and phosphatidylinositides (phosphatidyli-

nositol-phosphates, PIPs). In addition, it is involved in the

synthesis of water-soluble inositol phosphates (IPs) (Fig. 4).

Some PI is incorporated to PI glycan structures in the endoplas-

mic reticulum to form glycosylphosphatidylinositol (GPI)

anchors, tethering many proteins to the plasma membrane,

together with many other derivatives as inositol phosphoglycans

(IPG) and inositol ethers and esters (Livermore et al., 2016;

Fig. 4).

PI is biosynthesized de novo by an enzymatic reaction medi-

ated by the inositol phosphatidyl-transferase (PI synthetase, PIS)

(Michell, 2008); then, PI may be phosphorylated to form phos-

phatidylinositol-4-phosphate (PIP), phosphatidylinositol-

biphosphate (PIP2), and phosphatidylinositol-trisphosphate

(PIP3). These phosphorylated PI-based lipids, collectively known

as inositides or PIPs, are produced by a set of specific phospho-

inositide kinases (PIKs), including phosphatidylinositol-5-phos-

phate 4-kinase (PIP4K), phosphatidylinositol-4-phosphate 5-

kinase (PIPK1), and phosphatidylinositol-3-kinase (PI3K)

(Schoepp, 1985). Since steric hindrance has been considered to

hamper hydroxyl groups 2 and 6 to be phosphorylated, PIPs may

be found in seven different combinations resulting from phos-

phorylation of 3, 4, and 5 hydroxyl groups in the MI ring. How-

ever, there are reports suggesting the presence of a larger

molecular species array that differ by the acyl chain type

attached to the glycerol backbone (Leevers et al., 1999). Then, PI

(3,4,5)P3 acts as second messenger, by recruiting Akt serine–

threonine kinase (AKT) and PI-dependent kinase 1 (PDK1) to the

plasma membrane. AKT is activated to pAKT by mTORC2 phos-

phorylation (Traynor-Kaplan et al., 2017); the active form partici-

pates in a large and highly relevant number of cellular events.

Regarding inositol phosphate production, plants are able to

phosphorylate inositol by means of an inositol kinase that yields

IP3 (Ins-(3,4,5)-P3) (Sarbassov et al., 2005). In humans, inositol

phosphates are generated from phosphorylated forms by speci-

fic phosphatases, as well as from phosphoinositide hydrolysis

(Dietz & Albersheim, 1965). Phospholipase C (PLC) metabolizes

PIP2 (specifically PI-(4,5)-P2) into the intracellular second mes-

sengers 1,2-inositol 1,4,5-trisphosphate (IP3) and diacylglycerol

(DAG) (Thomas & Potter, 2014). In particular, binding of IP3

ligands to specific receptors (IP3R, type I-III isoforms) induces

Ca2+ release from the endoplasmic reticulum to the cytoplasm

(Nishizuka, 1986; Irvine, 1990). Then, Ins(1,4,5)P3 is rapidly

Figure 2 Inositol biosynthesis from D-glucose 6-phosphate. MI biosynthesis starts with isomerization of D-glucose 6-phosphate to 1D-myo-inositol 3-phos-

phate (Ins3P) by the inositol-3-phosphate synthase (IPS), which requires NAD + and involves a two-step oxidation/reduction reaction. The Ins3P is dephos-

phorylated by inositol monophosphatase (IMP 1) into myo-inositol (MI).

© 2019 American Society of Andrology and European Academy of Andrology Andrology, 1–22 3

MYO-INOSITOL: OVERVIEW & IMPACT ONMALE FERTILITY ANDROLOGY



Figure 3 IMPA1, ISYNA1, and SLC5A3 expression in human tissues. RNA expression analysis of IMPA1 (top), ISYNA1 (middle), and SLC5A3 (bottom) in a

large panel of human tissues (Data retrieved from Human Protein Atlas v18.1, https://www.proteinatlas.org/).
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metabolized to Ins(1,4)P2 and sequentially dephosphorylated to

render free MI. The number of inositol phosphates has grown

since the identification of the IP3/Ca2+ signaling mechanism

(Nishizuka, 1986).

Regarding GPI anchors, they were initially postulated in the

mid-1970s, while complete GPI structures were first described in

1988. GPI anchors associate with membrane lipid rafts, make

clusters, and transduce signals. Currently, numerous GPI-an-

chored proteins have been identified in eukaryotes, from proto-

zoa to humans, with diverse functions, such as coating proteins,

receptors, prions, adhesion molecules, and hydrolytic enzymes.

In mammals, GPI-anchored proteins can arise from alternative

splicing and have different functions (Albarran et al., 2016). Dif-

ferences in the GPI pathway of mammals and other eukaryotes

are the current focus in drug development against specific

pathogenic targets (Ferguson et al., 2017).

PATHOPHYSIOLOGY OF INOSITOL AND ITS
DERIVATIVES
In its free form, MI plays a highly relevant role as a cellular

osmolyte, protecting cells from environmental stress, by osmotic

compensation and consequent cell fluid and volume balance.

With other osmolytes, all called ‘chemical chaperones’, MI also

stabilizes and rescues misfolded proteins (Thurson et al., 1989;

Garcia-Perez & Burg, 1991; Gullans & Verbalis, 1993; Welch &

Brown, 1996; Yancey, 2005). In addition to these functions, MI

and its derivatives are involved in numerous biological pro-

cesses, including protein tethering to the cell surface, cell signal-

ing and vesicle trafficking, membrane excitability, regulation of

ion channel opening, intracellular calcium signaling, cytoskele-

ton and chromatin dynamics and remodeling, gene expression,

and epigenome regulation (Hammond et al., 2004; Roest et al.,

2017; Bevilacqua & Bizzarri, 2018; Uli�cn�a et al., 2018; Bilanges

et al., 2019). Consequently, alterations in MI transport and meta-

bolism have been found associated with numerous pathological

conditions, including metabolic syndrome, type 2 diabetes and

gestational diabetes, thyroid dysfunctions, polycystic ovarian

syndrome and other gynecological disorders, abnormalities in

gamete production, fertilization and embryonic development,

Down’s syndrome, psychiatric disorders (i.e., depression, panic

disorders, obsessive compulsive disorder), Alzheimer’s disease,

preterm broncho-pulmonary diseases (including respiratory dis-

tress syndrome and retinopathy of prematurity), liver and

intestinal steatosis, and cancer. Several systematic analyses and

meta-analyses have extensively reviewed the impact of MI and

derivatives in health and disease (Berridge, 2016; Bizzarri et al.,

2016b; Chakraborty, 2018; Ramos et al., 2019).

Considering MI and its derivatives participation in numerous

biological processes and the association between abnormal

levels of these molecules and numerous pathologies, it has

already been established that an extra intake of MI as a dietary

supplement may be beneficial for several clinical conditions. MI

and inositol-P6 have been found to exert positive effects toward

several conditions, such as polycystic ovarian syndrome, gesta-

tional and type 2 diabetes mellitus, metabolic syndrome and

non-alcoholic fatty liver disease, pathologies related to excess

adiposity and hyperglycemia, insulin resistance, infant respira-

tory diseases, and cancer-related events (Vucenik & Shamsud-

din, 2006; Howlett et al., 2015; Bizzarri et al., 2016a; Lagan�a et al.,

2018; MacFarlane & Di Fiore, 2018; Michell, 2018; Owczarczyk-

Saczonek et al., 2018; Showell et al., 2018; Tabrizi et al., 2018;

Facchinetti et al., 2019; Vitagliano et al., 2019). Specifically

Figure 4 Inositol metabolism. Inositol is acquired by dietary ingestion of phytic acid, also known as inositol hexaphosphate (IP6). IP6 is metabolized into MI

by the multiple inositol-polyphosphate phosphatase 1 (MINPP1) and then transported into the cytosol through the sodium–myo-inositol cotransporter

(SMIT). Cytosolic glucose can also be used to synthesize MI through myo-inositol-phosphate synthase (MIPS). In the cytosol, MI can be metabolized into

phosphatidylinositol (PI) by phosphatidylinositol synthetase (PIS). PI and its derivates are concentrated in membrane pools. PI can be further phosphorylated

into phosphatidylinositol-(4)-monophosphate (PIP) by phosphatidylinositol-4-kinase (PIP4K), then into phosphatidylinositol (4,5)-biphosphate (PIP2) by

phosphatidylinositol 4-phosphate 5-kinase 1 (PIPK1), and finally into phosphatidylinositol (3,4,5)-triphosphate (PIP3) by phosphoinositide 3-kinase (PI3K).

Phospholipase C (PLC) metabolizes PIP2 into 1,2-diacylglycerol (DAG) and inositol (1,4,5)-triphosphate (IP3). In turn, DAG activates protein kinase C (PKC),

recruiting it to the plasma membrane. Similarly, PIP3 recruits and activates Protein kinase B (Akt). On the other hand, IP3 is phosphorylated by inositol

kinases (IPK) into inositol tetrakisphosphate (IP4), inositol pentakisphosphate (IP5), and inositol hexaphosphate (IP6) and dephosphorylated by inositol

phosphatases into inositol biphosphate (IP2) and inositol monophosphate (IP). Furthermore, IP3 activates IP3 receptor (IP3R), inducing calcium release from

the endoplasmic reticulum reservoir. IP can be used to synthesize glycosylphosphatidylinositol (GPI) anchors in the ER and transferred to the Golgi apparatus

(GA) to end up fusing to the plasma membrane.

© 2019 American Society of Andrology and European Academy of Andrology Andrology, 1–22 5
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regarding polycystic ovarian syndrome, accumulating evidence

suggests that one of the most important mechanisms of its

pathogenesis is the insulin resistance; for this reason, the use of

insulin sensitizers, such as inositol isoforms, gained increasing

attention due to their effectiveness and safety profile (Monastra

et al., 2017; Lagan�a et al., 2017; Reyes-Mu~noz et al., 2018).

MI supplementation can be considered totally safe for humans

and, in particular, if 4 g dose/day is not exceeded. In this regard,

the effects of a MI overdose (4–30 g dose/day) have been evalu-

ated from 1 to 12 months in several trials, and only some mild

side effects in a small percentage of patients were reported (Biz-

zarri et al., 2016b). For all these reasons, several food supple-

ments containing MI in combination with several compounds,

including folic acid, melatonin, alpha-lactalbumin, glucoman-

nan, sorbitol, sucrose, maltodextrin, and vitamin D, were devel-

oped. However, it is important to pay attention to the possible

presence of mono-, di-, or polysaccharide excipients (i.e., mal-

todextrin, sucrose, and galactose) in these products, because

they may affect MI absorption due to competition for the same

transporters (Unfer, 2018). Other important aspects to consider

in a food supplement ‘therapy’ are the pharmaceutical form (i.e.,

powder, tablets, soft gels), the chemical characteristics of the

molecules used (i.e., pro-drug, salt form), the number and time

of administration, and the interference of other substances on

supplements absorption (i.e., caffeine, drugs). In this context, a

recent review work has gathered and analyzed information from

several scientific publications search engines (PubMed, Google

Scholar, and ResearchGate) on MI bioavailability, identifying

two studies that investigated the pharmacokinetic profile of MI

administration. This analysis revealed an advantageous protocol

of splitting a therapeutic dosage of 4 g MI into 2 g administra-

tions, twice a day, to be the best approach for one day coverage

(Orr�u et al., 2017).

MYO-INOSITOL AND DERIVATES IN THE MALE
REPRODUCTIVE TRACT
The detection of MI in male reproductive tract secretions was

first reported in the 1950s (Mann, 1951; Mann, 1954; Hartree,

1957). Specifically, Mann identified the boar seminal vesicles as

an exceptionally rich source of MI, with amounts around 2.4 g/

100 g fresh weight, much higher than those reported for most

plant and animal tissues (10–100 mg/100 g) (Mann, 1954). Using

a microbiological assay, Hartree determined MI levels in human

semen from 2 pools of at least 10 samples each, finding 50–

57.3 mg/100 g free MI and 53.6–62.8 mg/100 g total MI (Har-

tree, 1957). Results from Hartree’s study also highlighted the dif-

ference between MI concentrations in human seminal plasma

and blood, being ~100 times higher in the former (seminal

plasma free MI: 50 mg/100 mL; serum-free MI: 0.6 mg/100 mL).

In addition to free and total MI quantification in human seminal

plasma, Hartree’s study reported MI concentration in boar, bull,

rabbit, ram, and stallion seminal plasma, showing highest values

in boar [free MI (n = 3): 382-607 mg/100 g, total MI: (n = 2):

602, 725] and lowest in ram [free MI (4 pools of at least 10 sam-

ples each): 9.7–16.1, total MI (4 pools of 10 or more samples

each): 37.3–45.4] (Hartree, 1957). Later, other studies identified

free MI as a component of bull, guinea pig, monkey, rabbit, and

ram seminal fluid (Mann, 1964). Moreover, Nixon reported MI in

human semen from 20 patients classified as fertile, borderline,

and subfertile, finding an average of 64 mg/mL free MI in the

whole group (Nixon, 1964). In this report, no differences were

found between MI levels and patient fertility status [subfertile

(n = 4): 50–78 mg/100 mL; borderline (n = 4): 26–150; fertile

(n = 12): 32–104], although a small number of individuals were

evaluated in each group (Nixon, 1964).

In 1964, Eisenberg and Bolden described MI levels in rat testis

(range: 39–66 mg/100mg; n = 3), epididymis (206–222), seminal

vesicles (611–666), and seminal fluid (943, 1060; n = 2; Eisenberg

& Bolden, 1964). The seminal vesicles were pointed as the princi-

pal MI storage site in the male tract. The authors suggested a

possible role of MI in sperm maturation, based on the increased

levels found from testis to the epididymis, although no experi-

ments were reported to address the proposed role.

Other studies described high levels of MI in the male repro-

ductive tract (Hartree, 1957; Lewin & Beer, 1973; Voglmayr &

Amann, 1973; Ghafoorunissa, 1976; Pruneda et al., 2007). Lewin

& Beer’s study (Lewin & Beer, 1973) identified prostate secre-

tions as a major source of MI in human seminal fluid; in their

report, high MI levels were found in the early portion of split

ejaculates with elevated prostatic secretions, as judged by paral-

lel measurement of acid phosphatase (prostate biomarker) and

fructose (seminal vesicles biomarker). An extensive study by

Hinton and collaborators later described free MI concentration

in luminal fluid from rat, hamster, rabbit, rhesus monkey,

baboon, ram, and boar testis (seminiferous tubules and rete tes-

tis), epididymis (fractioned in proximal and distal caput and

cauda, mid, and distal corpus), and deferens duct (Hinton et al.,

1980). These authors reported the hamster as the species depict-

ing the highest MI concentration (distal cauda epididymis:

90 mM), followed by rat (deferens duct: 49.17 mM) and rhesus

monkey (proximal cauda: 17.40 mM). Taking into account the

fluid absorption process reported in the epididymis, mainly in

the testis proximal regions, the authors also estimated MI con-

centration in rat epididymis in the absence of absorption, show-

ing values up to 10 times higher when compared with observed

values (i.e., mid-corpus observed: 5.58 mM � 0.46 versus esti-

mated: 40.31 mM). The authors proposed a possible role of MI in

sperm maturation, specifically on changes in the sperm mem-

brane and development of progressive motility and gamete stor-

age in the cauda epididymis. In line with these potential roles, a

low concentration of MI in the epididymis has been associated

with reduced fertility in a transgenic mouse model (Yeung et al.,

2004).

The presence of MI in the male gonad and other reproductive

organs could result from its uptake from blood. There are reports

showing a lower MI uptake by the testis or the epididymis, most

likely as result of the blood–testis and blood–epididymal barriers

blockage, suggesting active MI biosynthesis in the male gonad

and accessory organs (Middleton & Setchell, 1972; Lewin et al.,

1976; Waites & Gladwell, 1982). In particular, the report by Lewin

and collaborators described a study in which rats injected with

radiolabeled MI showed lower radioactivity incorporated to the

male reproductive tract organs than liver (% administered dose

testis: 0.47% � 0.07; epididymis: 1.66% � 0.23; vas deferens:

0.26% � 0.02; seminal vesicle: 2.04% � 0.48; prostate:

0.65% � 0.38; liver: 14.90% � 2.06; mean � SD), suggesting MI

production in the male gonad (Lewin et al., 1976). This report

also described a 12-fold blood serum concentration of MI in the

epididymis. MI transport in male reproductive tissues was later

confirmed by Hinton & Howards (Hinton & Howards, 1982),
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who described the highest transporting activity in the initial seg-

ment and early proximal caput rat epididymis and the lowest in

the testis and cauda epididymis. A low cauda transport activity

was also reported by Cooper (Cooper, 1982).

In addition to MI uptake, Eisenberg described an active sys-

tem to produce MI from glucose in rat testis, and identified the

seminiferous tubules as the most active component for MI

biosynthesis in the male gonad (Eisenberg, 1967). Later studies

showed ram testicular MI synthesized from blood glucose

(Voglmayr & White, 1971; Middleton & Setchell, 1972). In addi-

tion, other authors further characterized the presence and enzy-

matic activity of testis IPS and IMPA1 in rat (Robinson & Fritz,

1979) and bovine (Mauck et al., 1980) models. These enzymes

are subjected to a differential hormonal control, as revealed in

a study in which IPS activity decreased in the reproductive

organs and liver after hypophysectomy; on the other hand, ani-

mal thyroidectomy caused a similar decrease in the liver but

not in the reproductive organs (Hasegawa & Eisenberg, 1981).

While FSH and LH restored the activity to normal levels in the

testis, prostate, and seminal vesicles, it did not in the liver of

these animals.

Chauvin & Griswold (2004) were the first reporting transcript

expression of both enzymes involved in MI biosynthesis in

mouse testis. In addition, they evaluated the expression of

SLC5A3 cellular transporter. Expression of the three enzymes

was found in several tissues, including testis and epididymis.

Moreover, mRNA expression of the three enzymes was also

detected in Sertoli cells, while ISYNA1 and IMPA1 expression

was confirmed in round spermatids, and ISYNA1 mRNA in

pachytene spermatocytes. In addition, Sertoli cells subjected to

hypertonic conditions showed a significant increase in SLC5A3

and ISYNA1 mRNA levels, and an increased MI uptake. The

authors also confirmed previous observations from Robinson &

Fritz on the increase of MI production in Sertoli cells treated

with dibutyryl cAMP, revealing a regulation of SLC5A3 expres-

sion by FSH and dibutyryl cAMP (Robinson & Fritz, 1979). Con-

sidering MI osmoregulatory role in the kidney, and presence of

high MI levels in luminal fluid, the authors hypothesized on the

high production and secretion of the polyol by Sertoli cells,

pachytene spermatocytes, and round spermatids that are in con-

tact with the lumen. These cells also depict high expression of

ISYNA1 and IMPA1 genes; in this regard, the induction of their

expression under hypertonic conditions increased MI produc-

tion, as response to osmolarity changes. Also, SLC5A3 expression

in Sertoli cells and MI increased expression and uptake in hyper-

tonic conditions suggests MI as a key regulator of osmolarity in

the male gonad. Recent studies described regulation of ISYNA1

expression by p53 (Koguchi et al., 2016); furthermore, p53 was

reported to have a role in regulating mammalian spermatogene-

sis necrosis (Napoletano et al., 2017). The impact of these find-

ings on MI roles in spermatogenesis and sperm physiology has

yet not been described. Testis expression of the three enzymes

has been described in the Human Protein Atlas registries (HPA;

https://www.proteinatlas.org; large-scale analysis of the human

transcriptome; HG-U133A); the testis was the tissue with highest

expression (Fig. 5). Prostate and seminal vesicles’ mRNA expres-

sion of these enzymes was also reported in the HPA. These

records confirmed findings previously described in animals.

MI and its derivatives may be involved in endoplasmic reticu-

lum stress control in the testis (Gunes et al., 2015) and other

Figure 5 IMPA1, ISYNA1, and SLC5A3 expression in human testis RNA

expression analysis of IMPA1 (top), ISYNA1 (middle), and SLC5A3 (bottom

panel) in human testis, brain and kidney (Data retrieved from Human Pro-

tein Atlas v18.1, https://www.proteinatlas.org/).
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male reproductive tissues, that is, epididymis and prostate, as

reported in other tissues (Michell, 2008). In this regard, sper-

matogenesis is a highly complex proliferation and differentiation

process leading to sperm morphogenesis that involves extensive

protein synthesis, posttranslational processing, folding, and traf-

ficking to an appropriate cellular localization (Fawcett, 1975;

Neto et al., 2016). Moreover, it requires the identification and

destruction of both unfolded and misfolded proteins, by activat-

ing endoplasmic reticulum-associated proteasome-mediated

degradation, in which MI and derivatives play a key role (Guzel

et al., 2017). Several studies have focused on Sertoli cells, since

they have a key role in spermatogenesis by their close interaction

with germ cells and the active protein synthesis (Cris�ostomo

et al., 2018). Sertoli cells’ endoplasmic reticulum has been exten-

sively evaluated; a review work recently published by Vogl et al.

(2018) extensively describes the distribution of the endoplasmic

reticulum in testicular cells, the communication with the plasma

membrane and mitochondria, and its function. Once spermato-

zoa are released from the testis, they undergo maturation while

they transit the epididymis, acquiring progressive motility and

ability to recognize the oocyte (Sullivan & Mieusset, 2016). Fig-

ure 6 summarizes the MI site of production in the testis and epi-

didymis, as well as the sperm regions where MI and its

derivatives may act, impacting male gamete function(s).

At ejaculation, spermatozoa stored in the distal portion of the

epididymis mix with the accessory glands secretions and are

deposited in the female tract, where they undergo a set of com-

plex and coordinated changes to accomplish fertilization

(Satouh & Ikawa, 2018). Spermatozoa undergo capacitation, a

process by which they develop full fertilizing potential, as evi-

denced by their ability to undergo acrosome reaction and to

interact with the oocyte vestments (De Jonge, 2017; Puga Molina

et al., 2018). Several studies have identified MI phosphoderiva-

tives in sperm mechanisms related to these processes, including

progressive and hyperactive motility, sperm guidance, sperm

capacitation, acrosome reaction, and sperm–oocyte interactions.

With regard to sperm motility, it is well established that in the

oviduct, spermatozoa change the low-amplitude symmetrical

progressive tail movement for a more active high-amplitude and

asymmetric one, defined as hyperactive motility, to detach from

the oviductal epithelium and to penetrate the oocyte vestments

(Suarez, 2008). While signaling pathways responsible for hyper-

active motility have not been fully elucidated, evidence has been

shown on the involvement of a signal pathway in which PIP2 is

converted to PIP3 (Freitas et al., 2017); moreover, the involve-

ment of the PI3K–AKT pathway in sperm hyperactivated motility

was previously reported (Sagare-Patil et al., 2013). With regard to

sperm guidance, a thermotaxis mechanism has been described,

by which temperature stimulation activates PLC causing hydrol-

ysis of PIP2 to IP3 and DAG, and a consequent binding of IP3 to

its receptor in an internal Ca2+ store, triggering Ca2+ release,

altering sperm swimming directions (Bahat & Eisenbach, 2010).

In addition, spermatozoa that undergo capacitation depict

changes such as plasma membrane lipid rafts redistribution,

and actin cytoskeleton reorganization (Watanabe et al., 2017;

Breitbart & Finkelstein, 2018), processes in which MI derivatives

exert a relevant role. Regarding the former, the release of GPI-

anchored proteins from the lipid rafts has been proposed as a

crucial step for sperm fertilizing ability development (Watanabe

et al., 2017). It has been shown that a decrease in PIP2 synthesis

inhibits actin polymerization and sperm motility, whereas

increasing PIP2 synthesis enhances both activities; moreover,

the increase in filamentous actin during capacitation has been

related to the inactivation of the actin severing protein gelsolin,

by its binding to PIP2 (Breitbart & Finkelstein, 2018). Once sper-

matozoa are capacitated, they are capable to undergo the acro-

some reaction; in this regard, it has been proposed that PIP2,

DAG, and PA modulate IP3 production, which is crucial for this

process (Lopez et al., 2012).

IN VIVO MYO-INOSITOL SUPPLEMENTATION AND
IMPACT ONMALE FERTILITY
Based on current knowledge of MI presence and functions in

the male reproductive tract, the effect of in vivo MI supplemen-

tation in patients with seminal abnormalities, idiopathic infertil-

ity and metabolic syndrome, and in normozoospermic (N) men

has been evaluated in several studies. A summary of the publica-

tions in this topic is presented in Table 1: information on the

study type and design and number of subjects in the study, diag-

nostics, type of treatment, evaluated variables, results and statis-

tical differences, and citation.

Among them, a report of Calogero and co-workers described

the impact of MI oral treatment in a placebo-controlled study

done in men diagnosed with idiopathic infertility (Calogero

et al., 2015). The authors stated that patients in both groups

depicted similar values for all parameters evaluated, although a

statistical analysis between groups is not shown. In the MI-trea-

ted patients, lower levels of follicle stimulating hormone (FSH)

and luteinizing hormone (LH) levels were found, while increased

Figure 6 MI in the male genital tract and the spermatozoon. MI is produced

from glucose in Sertoli cells inside the testis seminiferous tubules. Addition-

ally, MI is acquired through blood supply in low levels due to the blood–tes-
tis barrier. Sperm cells can also acquire MI during epididymal transit.
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serum inhibin B levels and no changes in Prolactin and Testos-

terone (T) levels were reported. Regarding semen parameters,

sperm concentration, count, and progressive motility showed a

significant increase, although discrete, in MI-treated patients.

Results suggested a positive impact of MI treatment on men suf-

fering infertility. In this regard, inositol and its phosphoderiva-

tives are known to modulate FSH signaling in women (Lagan�a

et al., 2017), and in Sertoli cells as well (Casarini & Crepieux,

2019). This may represent an additional MI mechanism of action

which, by sensitizing Sertoli cells to FSH, might potentially

improve sperm parameters. As part of the study, the authors

reported an increase in spontaneous acrosome reaction in MI-

treated patients; while the authors speculated about the lack of

functional relevance of this parameter, they did not discuss

these unexpected high scores found in all groups, and the unde-

sired increase found in the MI-treated patients. The values

reported in samples from both groups assessed prior to treat-

ment, as well as after treatment in placebo groups are similar

(34%, 35%, and 36%, respectively) and much higher than those

reported in the literature (i.e., Byrd & Wolf, 1986). Since the

method used to assess the acrosome status is a standard proce-

dure, it would not cause these high acrosome reaction values;

whether the significant increase in the acrosome reacted sper-

matozoa in the MI-treated patients is the result of changes in

phospholipids concentrations of the sperm membrane is not

evaluated or discussed. These findings should warrant further

investigations to assess the impact of MI on sperm membrane

stability.

In the same year, Gulino and collaborators published a study

designed to assess the effect of MI treatment in individuals dis-

tributed in three groups: one composed of healthy fertile (HF)

men, another composed of oligoasthenozoospermic (OA) men,

and a control group of healthy patients treated because of a

female factor (Gulino et al., 2016). This last group was not always

included in the analysis, leaving open the question of their inclu-

sion in the study design. The authors described the use of two

well-established procedures to select the motile sperm fraction,

swim-up and density–gradient centrifugation used in the IVF-

ICSI treatment procedures. The swim-up method was done from

the sperm pellet, a procedure that is widely discouraged because

of reactive oxygen species (ROS) release from dead and damaged

spermatozoa; however, results presented only referred to the

density-centrifugation method. One very important point in this

study is the lack of a placebo group, considering that MI formu-

lation provided to the patients also contains folic acid. Although

the authors described the results of each group, data are pre-

sented in a peculiar way for each reported parameter (semen

volume, sperm count before and after sperm selection, and pro-

gressive motility). The authors refer to count, while reporting

sperm concentration, as judged by the units (million/mL). An

increase in sperm concentration but not in sperm motility is

reported in both groups after treatment, and results are pre-

sented in a very confusing manner. Moreover, the authors report

an increase in sperm concentration after sperm selection in both

groups, although again data analysis is rather unconvincing.

In 2016, Montanino Oliva and co-workers studied a group of

asthenozoospermic (A) patients diagnosed with metabolic

syndrome, and evaluated sperm parameters before and after

treatment with a commercial supplement containing MI

(Montanino Oliva et al., 2016a). Several parameters established

by the National Cholesterol Education program were used to

assess whether patients were affected with metabolic syndrome.

Although no changes were found in body mass index (BMI),

waist circumference (WC) and levels of Triglycerides, the home-

ostatic model assessment for insulin resistance (HOMA) index

was decreased after MI supplementation. These changes were

accompanied by a decrease in Estradiol (E2) and sex hormone-

binding globulin (SHBG) levels; moreover, LH and free/total T

levels were found increased in MI-treated men (Michalakis et al.,

2013). After treatment, sperm concentration, motility and mor-

phology depicted a significant discrete increase, estimated in

approximately 20%. No information was shown on the propor-

tion of samples that reached normal values, or any sperm func-

tional tests in treated men. While results appeared promising,

they may not be totally attributed to the MI, since the commer-

cial formulation also contains L-carnitine, L-arginine, vitamin E,

selenium, and folic acid, and a placebo control group was not

included in the study design, essential to confirm the relevance

of the reported findings.

One year later, Dinkova and collaborators described the

impact of MI treatment on semen parameters in a prospective

longitudinal study done on A patients (Dinkova et al., 2017). The

authors indicated that semen parameters were evaluated in all

patients prior and after treatment, but results of average sperm

motility were only presented, and no indication of whether it

was total or progressive motility was given. In response to MI

treatment, the authors reported a significant increase in the per-

centage of motile spermatozoa, reaching normozoospermia in

34.9% of the cases, and no response in 12.8% of the cases. How-

ever, no information was provided on the total motile count, to

determine the impact of MI treatment on sperm production and

quality, information that was available since the authors indicate

they evaluated all semen parameters. In the conclusion, the

authors highlighted the safety of MI, and propose its use to man-

age idiopathic infertility, but the study does not address the

impact of this compound in patients with unexplained infertility,

but in men with alterations in sperm motility.

In the same year, a report by Capece and collaborators

described a study done to assess the impact of MI patient treat-

ment on routine semen parameters and DNA fragmentation

(Capece et al., 2017). MI was administered as a complex with

other components to a group of patients with semen abnormali-

ties. Although patient group was defined as oligoasthenoterato-

zoospermic (OAT), they were A, oligoteratozoospermic (OT),

asthenoteratozoospermic (AT), and OAT. In addition to a hor-

mone panel, semen analysis (WHO manual 2010) and DNA frag-

mentation (TUNEL) were evaluated (no cut off values of

normality for TUNEL were indicated); after randomization both

groups had comparable baseline values for all parameters.

Results were presented as the difference between baseline and

follow-up, displaying data in a complex way, making difficult the

assessment of changes caused by the treatment. The authors

claimed a significant overall increase in sperm concentration and

progressive motility, and a decrease in DNA fragmentation, while

no changes were reported in sperm vitality, total motility, normal

morphology, as well as LH, FSH and T levels between treated and

control patients. No other data was presented; in particular,

results on A men (largest subgroup) in whom the impact of MI

treatment on all parameters studies would have been important

to report if contrasted with a specific placebo group.
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Table 1 In vivo supplementation with MI and impact on male fertility

Type N Diagnostics Treatment Results Refs

Double-blind,

randomized, placebo-

controlled study

194 Men with Idiopathic

infertility.

No pregnancy after

2 years

Group 1:

2 g MI + 200 µg folic

acid (n = 98)

Group 2 (placebo):

200 µg folic acid

(n = 96)

Twice a day for

3 months

(mean � SD; p < 0.05)

(Comparison post-MI vs post-placebo)

FSH (IU/L):

Post = 10.7 � 4.1, Pre = 16.7 � 4.1

LH (IU/L):

Post = 8.8 � 2.6, Pre = 12.1 � 2.6

Serum inhibin B (ng/L):

Post = 105.0 � 28.0,

Pre = 86.0 � 24.0

Sperm concentration (million/mL):

Post = 26.4 � 4.4, Pre = 20.2 � 4.6

Sperm count (million):

Post = 57.6 � 14.4,

Pre = 46.6 � 12.6

Progressive motility (%):

Post = 27.6 � 1.8, Pre = 22.2 � 2.1

Acrosome reaction (%):

Post = 41 � 11, Pre = 34 � 8

Observations: No changes reported in

placebo group.

Calogero et al.

(2015)

Prospective study 62 13 OA

29 HF (healthy fertile)

(N)

20 Control (female

factor)

4 g MI + 400 µg folic

acid

Once a day for

2 months.

OA

Sperm concentration (million

spermatozoa/mL):

Post = 10.06, Pre = 6.38;

Change: +126.89% (p < 0.01).

HF (N)

Sperm concentration (million

spermatozoa/mL): Post = 54.84, Pre:

51.93;

Change: +10.50 (ns).

Density-gradient centrifugation sperm

selection

Selected fraction–sperm
concentration:

OA men:

Post = 4.15 million spermatozoa/mL,

Pre = 1.63; Change: +306.56
(p < 0.001)

HF:

Post = 44.31 million spermatozoa/mL,

Pre = 21.59, Change: +132.02
(p < 0.01)

Sperm motility not improved in either

group.

Observations:

-No placebo group was included for

the OA and HF patients.

-Data presented did not include

standard deviation of the mean

despite describing results of a patient

group.

Significant differences were not clear.

Gulino et al. (2016)

Prospective

longitudinal

45 A men with metabolic

syndrome

Andrositol (Lo.Li.

Pharma, SRL, Rome,

Italy)

1g MI + 30mg L-

carnitine, L-arginine,

vitamin E + 55 µg
selenium + 200 µg
folic acid

Twice a day for

3-months

(mean � SD)

BMI (kg/cm2)

Post = 27.0 � 3.1, Pre = 28.1 � 3.5

(NS)

WC (cm)

Post = 105.3 � 3.3,

Pre = 107.1 � 4.2 (NS)

Triglycerides (mg/dL)

Post = 173.2 � 13.4,

Pre = 175.4 � 12.5 (NS)

HOMA (index):

Post = 1.6 � 0.7, Pre = 2.8 � 1.2

(p < 0.001)

E2 (pg/mL):

Post = 20.9 � 3.3, Pre = 32.4 � 5.2

(p < 0.01)

SHBG (nmol/mL):

Montanino Oliva

et al. (2016b)

(continued)
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Table 1 (continued)

Type N Diagnostics Treatment Results Refs

Post = 35.8 � 3.5, Pre = 55.0 � 4.9

(p < 0.001)

LH (mIU/mL):

Post = 3.3 � 1.2, Pre = 2.5 � 1.3

(p < 0.01)

Free T (pg/mL)

Post = 47.2 � 13.0,

Pre = 33.0 � 11.1 (p < 0.001)

Total T (ng/mL):

Post = 3.7 � 1.4, Pre = 2.8 � 1.2

(p < 0.02)

Sperm concentration (million/mL):

Post = 20 � 4.2, Pre = 16.2 � 3.4

(p < 0.001)

Sperm motility (%):

Post = 51.4 � 7.2, Pre = 39.6 � 6.1

(p < 0.001)

Normal sperm morphology (%):

Post = 30.1 � 2.3, Pre = 24.9 � 2.0

(p < 0.001).

Observations:

Study design lacked a placebo control

group.

Prospective

longitudinal study

109 A Andrositol (MLD

Trading, Bulgaria)

1 g MI, 30 mg

of L-carnitine, L-

arginine, and vitamin

E, 55 lg
of selenium, and

200 lg of folic acid

Twice a day for

3-months

(mean � SD)

Sperm motility:

Post = 27.98% � 9.69,

Pre = 20.31 � 8.5 (p < 0.05)

Restauration to normozoospermia:

34.9% (38/109)

No changes: 12.8% (14/109)

Worsening: 1.84% (2/109)

Observations:

It is not indicated whether changes

correspond to total or progressive

motility.

Dinkova et al.

(2017)

Single-center,

randomized, single-

blind, placebo-

controlled study

60 (finally 56; 4

dropped out)

OAT

A: 34

OT: 15

AT: 2

OAT: 5

Tradafertil

(Tradapharma Sagl,

Switzerland)

1 g MI, 300 mg

Tribulus Terrestris,

200 mg Ecklonia

Bicyclis Alga and Bovis

Once a day for

3 months

Sperm concentration (million

spermatozoa/mL)

Average increase:

MI-treated = 3.82, placebo-

treated = 1.71 (p = 0.048)

Progressive sperm motility

Average increase:

MI-treated = 4.86% placebo-

treated = 1%

(p = 0.019)

DNA fragmentation

Average (baseline–follow-up, %):

MI-treated= �1.64, placebo-treated:

�0.39 (p = 0.001)

Observations:

Results were presented as a difference

between baseline and follow-up.

No actual values of variables in MI-

and placebo-treated patients were

shown.

Capece et al.

(2017)

Multicentric study 100 Men depicting one or

more altered semen

parameter

O: 16

A: 43

OA: 41

Sinopol� (Laborest,

S.R.L., Nerviano,

Milan, Italy)

1 g MI, 800 mg alpha-

lipoic acid, 400 mg

folic acid, 100 mg

betaine, 1.7 mg

vitamin B2, 1.9 mg

vitamin B6, 2.62 mg

vitamin B12.

Twice a day for

3 months

(mean � SD)

Sperm concentration:

Post = 24.4 million/mL � 23.4,

Pre = 16.6 � 13.1,

Change=+41.2% (p = 0.0009)

Sperm count:

Post = 69.1 million

spermatozoa � 59.0,

Pre = 46.5 � 38.7, change = +50%
(p = 0.0017)

Progressive motility:

Post = 24.8% � 16.5,

Pre = 19.5 � 15.6,

Change = +31.6% (p = 0.0047)

Total motile sperm count:

Canepa et al.

(2018)

(continued)
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Regarding the impact of MI on DNA fragmentation, phospho-

inositide lipids (PPI) are found 10 times more enriched in the

nucleus, where they regulate transcription, RNA splicing and

DNA damage response. Wang et al. (2017) found an increase in

intranuclear PPI levels within 1 sec of laser microirradiation.

Moreover, PPI presence is essential for Ataxia telangiectasia and

Rad3-related protein (ATR)-mediated DNA damage response.

This is highly relevant, since double-strand breaks damage

response is primarily led by ATR/ATM kinases (Larsen & Stucki,

2016), being this a ROS-mediated injury in sperm germ cells that

may lead to translocations and cell death (Gunes et al., 2015).

In a recent report, Canepa and co-workers described a treat-

ment with a commercial formulation containing MI, in individu-

als depicting one or more altered semen parameters (Canepa

et al., 2018). While patient treatment resulted in an increased

sperm concentration and count, progressive motility, total

motile sperm count, and normal sperm morphology, no placebo

group was included in the study design. This was highly relevant,

considering that treatment was done with a complex containing

MI, alanine, betaine, folic acid and vitamins B2, B6, and B12.

The authors also reported a reproductive follow-up of patients

from the study group, indicating that 40% pregnancies were

achieved, either spontaneously or after ART procedures up to

6 months after treatment; however, no control placebo group

was reported to compare this outcome and confirmed its associ-

ation with the treatment.

Another study that evaluated the reproductive outcome

after MI patient treatment comes from a report by Montanino

Oliva et al. (2016b) on sperm performance done in women

treated with MI vaginal suppositories. Briefly, this case–con-

trol open-label study used two-phase strategies and lasted

two menstrual cycles. Ovulation was monitored in both cycles

after which a post-coital test was done. In the second cycle,

patients used a MI vaginal suppository for three consecutive

days, starting when the leading follicle was over 16 mm. As

result, no differences were found when the semen samples

from the pre- and post-partner treatment were evaluated on

day 9 of the menstrual cycle. However, a significant improve-

ment was observed in the post-coital test semen parameters

from women treated with MI, finding an increase in total and

progressive sperm motility, and a concomitant decrease in

the percentage of immotile spermatozoa. Although promising,

no placebo control was included in the study design and no

other reports from this group or others replicated these

findings.

IN VITRO SEMEN SUPPLEMENTATION WITH MYO-
INOSITOL AND IMPACT ON SPERM FERTILIZING
POTENTIAL
In addition to the effect of in vivo supplementation, the

impact of MI was further evaluated in a set of in vitro studies

Table 1 (continued)

Type N Diagnostics Treatment Results Refs

Post = 22.3 million

spermatozoa � 30.8,

Pre = 9.8 � 11.5,

Change=+120% (p = 0.0010)

Normal sperm forms:

Post = 7.9 % � 4.1, Pre = 4.9 � 3.1,

Change=+60% (p < 0.0001)

Follow-up 6 months: 40%

pregnancies spontaneously (6%) or

after ART procedures (4 IUI, and 30

FIV-ET or ICSI).

Observations:

No placebo group was included.

Case–control open-
label study

50 Women MI vaginal

suppositories (2 mg

MI; Xyminal, Lo.Li

Pharma, SRL, Rome,

Italy)

A two-phase strategy,

lasting 2 menstrual

cycles.

Couples had

intercourse, after

which the post-coital

test was done.

In the second cycle,

patients received 1 MI

vaginal suppositories

for 3 consecutive

days, starting when

leading follicle

> 16 mm.

The post-coital test was

repeated after

treatment.

No differences found in semen

samples from Pre- and post-partner

treatment, evaluated on day 9 of the

menstrual cycle.

Improvement in post-coital test semen

parameters

(mean � SD)

Total sperm motility:

Post = 50.8 % � 11.1,

Pre = 40.8 � 20.4

(p < 0.05)

Progressive sperm motility:

Post = 29.0 % � 7.5,

Pre = 15.8 � 10.6

(p < 0.001)

% Immotile spermatozoa:

Post = 49.2 % � 10.5,

Pre = 59.2 � 20.4

(p < 0.05)

Observations:

No placebo group is included.

Montanino Oliva

et al. (2016b)

A, asthenozoospermic men; O, oligozoospermic men; OA, oligoasthenozoospermic men; OT, oligoteratozoospermic men; OAT, oligoasthenoteratozoospermic men;

N, healthy fertile men. Text in light blue highlights outcome for fertility treatment.
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using semen samples depicting normal and abnormal sperm

parameters. A summary of the reports is shown in Table 2, fol-

lowing a structure similar to that described for Table 1.

Firstly, a report by Calogero’s group described the impact of

in vitro MI supplementation on sperm mitochondrial membrane

potential in semen samples from N and OAT patients (Con-

dorelli et al., 2011). After liquefaction, semen samples were sup-

plemented with MI or placebo, resulting in increased

percentages of spermatozoa depicting high mitochondrial

potential, and reduced percentages of spermatozoa with low

mitochondrial membrane potential in OAT patient samples.

Contrasting with these findings, no significant changes in mito-

chondrial potential were found in N semen samples after MI

supplementation. Moreover, MI supplementation of semen

samples from N and OAT men resulted in higher, although not

significant, percentages of spermatozoa depicting Phosphatidyl

Serine (PS) externalization as a signal of apoptosis. Moreover, a

trend toward a decrease in abnormal chromatin compactness

was also observed in spermatozoa from semen samples incu-

bated with MI, although differences again did not reach statisti-

cal significance. Assessment of a larger number of subjects could

have helped confirming or disregarding these findings that may

impact in other sperm fertility-related functions. Following these

findings, one year later the same group reported the results of

semen supplementation with MI followed by swim-up sperm

selection in a cohort of N and OA patients (Condorelli et al.,

2012). In this study, the authors reported enhanced progressive

cell motility and mitochondrial membrane potential of sperma-

tozoa from OA men after MI treatment prior to the sperm swim-

up selection. Furthermore, post-swim-up sperm motility (total

and progressive) and sperm count were reported significantly

increased in both N and OA patient MI-treated samples. The

authors include in the report a figure with results on total and

motile sperm motility, although values differ from those listed in

the table. Moreover, authors report no significant changes in PS

externalization and chromatin compactness. In a review pub-

lished in 2017, Condorelli and collaborators proposed some bio-

logical MI roles, as potential prokinetic, antioxidant and

hormonal modulator. In addition, they summarized prior find-

ings from their group and others about the impact of MI on

sperm quality, and propose an algorithm to identify astheno-

zoospermic patients that may benefit from its supplementation,

which includes the assessment of MMP (Condorelli et al., 2017).

To further assess MI benefits, Scarselli et al. (2016) described

its effect on semen samples depicting hyper viscosity. Specifi-

cally, this study enrolled patients without testicular pathology

but abnormal high semen viscosity. As working protocol, semi-

nal plasma was removed by centrifugation, spermatozoa were

resuspended in a commercial MOPS-buffered medium (G-

MOPSTM PLUS) and separated in two aliquots, one of which was

supplemented with MI; this treatment resulted in increased

sperm motility when compared to the control, suggesting a posi-

tive effect of MI on sperm motility in sperm suspensions devoid

of seminal plasma proteins. When samples were classified

according to the response in High (≥60–100%)-, Medium (≥30–
<60%)-, Poor (≥1–<30%)-, and No (0%)-responders, hyperviscous

semen samples were found to respond in over 90% of the cases,

being 57.6% defined as High-responders and 24.2% as Medium-

responders. They also evaluated the effect of the same short

incubation with MI on samples from patients with grade II and

III varicocele. In these cases, although the overall percentage of

motile spermatozoa was similar in treated and control samples,

a response was found in over 60% of the samples following crite-

ria defined above.

In the same year, Palmieri et al. (2016) described the

impact of in vitro sperm treatment with MI on total and pro-

gressive motility in fresh semen samples from N, O, A and

OA subjects. Samples supplemented with MI and incubated

for a short time at 37 °C showed an improvement in total

and progressive sperm motility compared to controls. As indi-

cated by the authors, a higher progressive than total motility

was unexpected, since semen analysis was done following

2010 WHO guidelines. Semen samples were also subjected to

swim-up or discontinuous density-gradient sperm selection

procedures in the presence or absence of MI; in this section,

the authors presented these findings as a sperm capacitation

rather than a sperm selection procedure. A decrease in sperm

total motility after selection with MI was found; in addition,

similar values for sperm progressive motility were reported

regardless of treatment. A similar evaluation done using pen-

toxifylline also did not improve sperm motility. In the same

report, the authors evaluate the effect of MI supplementation

on frozen-thawed semen samples. In their study, incubation

with MI resulted in an overall significant although discrete

improvement in progressive sperm motility, depicting a large

variance among samples.

In 2017, Artini et al. (2017) reported results on MI in vitro sup-

plementation in a cohort of N and OAT patients using a com-

mercial product. A short treatment resulted in a discrete

increase in progressive motility of both N and OA patient’s

semen samples, compared to control samples incubated in stan-

dard medium. Furthermore, total sperm motility was also

improved in N patient samples treated with MI, an effect that

was not found in the Condorelli’s study.

The impact of in vitro semen supplementation with MI on

DNA fragmentation was addressed in a cross-sectional study

presented at the 2015 ESHRE meeting by Parmegiani et al.

(2015). Although a preliminary report, a significant overall

decrease in DNA fragmentation was determined in MI-treated

spermatozoa.

Another 2015 ESHRE meeting report by Paternostro and

collaborators evaluated MI impact on sperm cryopreservation

(Paternostro et al., 2015). Semen samples were assessed

according 2010 WHO criteria and cryopreserved using slow

freezing with medium supplemented with or without MI.

Comparing with the control aliquot, an improvement of

sperm motility was observed in 50% of the cases. An average

reduction in DNA fragmentation after thawing samples sup-

plemented with MI was found in a large proportion of the

samples. This was a promising study, considering the well-

known negative impact of sperm cryopreservation on sperm

motility and DNA damage. No details on the response to cry-

opreservation with MI in relation to the initial semen parame-

ters were presented.

In 2018, Saleh and collaborators reported a randomized con-

trolled cryopreservation trial in a group of infertile men, supple-

menting semen cryoprotectant with MI (Saleh et al., 2018). After

thawing, total and progressive motility and the progressive cryo-

survival rate (CSR = post-thaw progressive motility/pre-freeze

progressive motility x100) were higher in samples supplemented
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Table 2 In vitro supplementation with MI and impact in male fertility

Type N Diagnostics Treatment Outcome Refs

Prospective study 17 5 N

12 OAT

Semen supplemented with 2 mg/

mL MI and incubated for 2 h

MMP (flow cytometry following JC-1

staining)

Showed improvement in MMP only in OAT

patients (p < 0.05).

MI supplementation did not induce

changes neither in % spermatozoa with

signs of apoptosis (PS externalization) nor

in chromatin compactness.

PS externalization

(mean � SEM)

N

With MI = 7.9 � 4.1; Without

MI = 2.7 � 1.1 (NS)

OAT

With MI = 8 � 2.5; Without

MI = 4.6 � 0.8 (NS)

Abnormal chromatin compactness

(mean � SEM)

N

With MI = 17.5 � 3.1; Without

MI = 19. � 3.6 (NS)

OAT

With MI = 23.7 � 2.9; Without

MI = 27.3 � 2.9 (NS)

Condorelli et al.

(2011)

Prospective study 40 20 N

20 OAT

Semen supplemented with 2 mg/

mL MI and incubated for 2 h,

followed by swim-up for 30 min.

OAT

(mean � SEM)

Progressive sperm motility (%):

Post = 42 � 4.0; Pre = 28.0 � 4.0

(p < 0.05).

MMP

% spermatozoa with high MMP:

Post = 80.0% � 2.0; Pre = 58.0 � 4.0

(p < 0.05)

% spermatozoa with low MMP:

Post = 15% � 3.0; Pre = 38.0 � 4.0

(p < 0.05).

Sperm vitality and chromatin compactness

were similar in sperm suspensions from

MI-treated and placebo control samples.

Post-swim-up sperm motility (% total and

progressive) and sperm count were

increased in both N (p < 0.05) and OA

(p < 0.05)

MI-treated patient samples.

Condorelli et al.

(2012)

Prospective study 33 Patients without testicular

pathology but abnormal

high semen viscosity

(semen threads of >2 cm

length)

Semen centrifuged at 1800 rpm/

10 min, resuspended, and

incubated with 2mg/mL MI

(Andrositol� DGN, Lo.Li.

Pharma, Rome, Italy: 133 mg/mL

MI in 9 mg/mL sodium chloride)

for 15 min at 37 °C

(mean � SD)

Sperm motility (%):

MI-treated = 38.9% � 3.0;

control = 24.35 � 2.41 (p < 0.0001)

Samples classified according to

Andrositol� DGN criteria: High (≥60–
100%)-, Medium (≥30–<60%)-, Poor (≥1
–<30%)-, and No (0%)-responders.

Hyper viscous semen response> 90% of

cases.

High-responders: 57.6%

Medium-responders: 24.2%

Poor-responders: 12.1%

No-responders: 6.1%

Scarselli et al.

(2016)

Prospective study 30 Patients diagnosed with

grade II and III

varicocoele.

Semen centrifuged at 1800 rpm/

10 min, resuspended, and

incubated with 2 mg/mL MI

(Andrositol� DGN, Lo.Li.

Pharma, Rome, Italy: 133 mg/mL

MI in 9 mg/mL sodium chloride)

for 15 min at 37 °C

Varicocoele patients response in> 60% of

the samples

High-responders: 20%

Medium-responders: 16.7%

Poor-responders: 26.7%

No-responders: 36.7%

Overall % motile spermatozoa was

comparable between MI-treated and

control samples

Scarselli et al.

(2016)

Prospective study 100 46 N

19 O

15 A

Semen supplemented with 15 µL/
mL of MI (Andrositol�-LAB (Lo.Li.

(mean � SD)

Total motility (%):

Palmieri et al.

(2016)

(continued)
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Table 2 (continued)

Type N Diagnostics Treatment Outcome Refs

20 OA Pharma, Rome, Italy) and

incubated 15 min at 37 °C
MI = 50.23 � 18.92, control = 46.55% �
18.62

(p ≤ 0.0001)

Progressive motility (%):

MI = 56.91 � 20.68,

control = 47.76 � 20.64

(p ≤ 0.05)

Swim-up or discontinuous density-gradient

sperm selection procedures in the

presence or absence of MI.

Total sperm motility (%):

MI = 70.87 � 31.46,

control = 73.99 � 28.94

(p ≤ 0.05)

Progressive motility (%):

MI = 70.67% � 26.72,

control = 69.97 � 27.27). (ns).

A similar evaluation with pentoxifylline did

not improve sperm motility

Prospective study 25 3 N,

7 O,

6A

9 OA

(Sample from biopsy or fresh

ejaculate;

volume of less than 1.5 mL)

Frozen-thawed sample

supplemented with 3,2 mg/mL MI

and incubated 15 min at 37 °C

Total sperm motility (%):

MI = 14.88% � 16.86,

control = 11.4 � 16.51 (ns)

Progressive motility (%):

MI = 16.4 � 20.64, control = 9.8 � 14.1

(p < 0.05)

Note: high variability in the values among

samples

Palmieri et al.

(2016)

Prospective study 63 31 N

32 OA

Semen supplemented with 2 mg/

mL MI (Andrositol�-LAB, Lo.Li.

Pharma, Rome, Italy) and

incubated 30 min at 37 °C

(mean � SD)

Total motile sperm concentration:

N

MI-treated = 50.2 � 20.9 million/mL,

control = 44.6 � 21.2 (p < 0.05)

Progressive motile sperm concentration:

N

MI-treated = 36.6 � 28.9 million/mL,

control = 31.8 � 28.5 (p < 0.05)

OAT

MI-treated = 6.6 � 6.2 million/mL,

control = 4.5 � 2.1 (p < 0.05).

Observations:

No significant changes in Total motile

sperm concentration in OAT patients

Artini et al. (2017)

Cross-sectional study 10 Men attending infertility

clinic.

Sample divided into four aliquots,

1 left in seminal plasma (SP-4h), 1

in SP + 2 mg/mL MI (Andrositol-

LAB; Lo.Li. Pharma; Rome, Italy)

(SP-4h + MI), one in SP + 1:2

medium (SP-4h + culture

medium), 1 diluted as

before + MI SP-4h + culture

medium + MI).

All aliquots incubated for 4 h

DNA fragmentation (sperm chromatin

dispersion method; %)

(500 spermatozoa/sample).

baseline: 24% (1200/5000 spermatozoa),

SP-4h: 51.6% (2580/5000),

SP-4h + MI: 40.9% (2045/5000),

SP-4h + culture medium: 35.8% (1790/

5000),

(p < 0.001 all between aliquots and

baseline)

SP-4h + culture medium + MI=24.5%
(1225/5000) (p = 0.576)

Parmegiani et al.

(2015) (ESHRE

Meeting abstract)

Prospective study 90 Men subjected to basic

semen analysis

Semen cryopreserved (slow freezing)

with freezing medium

supplemented with 2 mg/mL MI

Sperm motility

Improvement = 45/90

Decrease = 28/90

DNA fragmentation

Reduction (3.7%) = 66/90

Increase (2%) = 9/90

No variation (16%) = 15/90

Note: limited to samples with ≥5 million

spermatozoa/mL

Paternostro et al.

(2015) (ESHRE

Meeting abstract)

Randomized controlled

trial done

50 Infertile men

(9 excluded; final 41)

Evaluated as total (n = 41)

(only shown) or normal

(n = 15) and abnormal

(n = 26)

Semen samples supplemented with

1 mg MI to cryoprotectant, slow

freezing cryo.

Median (25th–75th percentile)

paired t-test analysis

Total motility (%):

Pre-freeze = 50 (30–50)
Post-MI: 15 (10–35)
Post-control = 10 (6–30)
(p = 0.15, post-MI vs post-control)

Saleh et al. (2018)

(continued)
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with MI prior to cryopreservation. A preliminary report had been

presented at ASRM 2017 (Saleh et al., 2017).

Recently, Mohammadi et al. (2019) reported the results on

semen supplementation with MI prior to cryopreservation in

semen samples from N young men without pathologies

related to semen abnormalities (i.e., varicocoele, accessory

gland infection, cigarette smoking, among others). Cryopre-

served samples were thawed after one month and analyzed.

As result, a significant improvement was observed in total

and progressive motile spermatozoa, as well as normal sperm

Table 2 (continued)

Type N Diagnostics Treatment Outcome Refs

Progressive motility (%):

Pre-freeze = 35 (20-35)

Post-MI: 10 (5-20)

Post-control = 5 (3-15)

(p = 0.14, post-MI vs post-control)

Cryo-Survival Rate (%):

Post-MI = 40 (25–70)
Post-control = 30 (13–58)
(p = 0.041, post-MI vs post-control)

Prospective study 40 N Semen divided into two aliquots ad

cryopreserved: one with 2 mg/mL

MI; one without MI (control), slow

freezing cryo.

(mean � SE)

Total sperm motility (%) (CASA):

MI = 19.62 � 2.68,

control = 16.32 � 2.75 (p = 0.045).

Progressive sperm motility (%) (CASA):

MI = 16.97% � 1.86, control:

12.77 � 1.78). (p = 0.042).

Normal sperm morphology (%) (CASA):

MI = 11.9 � 0.97, control = 9.57 � 0.9

(p = 0.019).

ROS (reactive oxygen species)

(ns; MI vs control)

TAC (total antioxidant assay)

(p < 0.001 MI increased compared to

control).

MDA (malondialdehyde)

(p < 0.05 MI decreased compared to

control)

DNA fragmentation (TUNEL)

(p < 0.05 MI increased compared to

control).

Mohammadi et al.

(2019)

Prospective study 30 Semen preparation media with

2 mg/mL Andrositol�-LAB

(Lo.Li Pharma, Rome, Italy).

IUI

Clinical pregnancy:

MI = 33.3%, control = 20.4% (p: 0.0492).

Note: MI-treated couples compared to a

control group (retrospective) of 28 cases

matched for clinical fertility history and

women age

Poverini et al.

(2014)

Prospective study 376 Group MI: (n = 144)

Group control (n = 232)

Samples grouped in N, O,

and OA cases

Preparation medium

supplemented with MI.

Density-gradient centrifugation

selection method for

spermatozoa washed twice in the

MI presence or absence

Pregnancy rate:

A + MI=28.8%, A-MI = 18.8;

OA + MI=33.3%, A-MI = 25.0% (ns)

Note: Sperm parameter values were similar

in cell suspensions incubated with or

without MI

Park et al. (2016)

Prospective bicentric

randomized study

78 Group MI (n = 262

oocytes)

Group placebo (n = 238

oocytes)

Semen supplemented with 2mg/

mL Andrositol�-LAB (Lo.Li

Pharma, Rome, Italy) or placebo

for 20 min.

Washed and subjected to swim-up

with MI or placebo-

supplemented medium for 30-

60 min

Spermatozoa recovered used for

ICSI

(mean � SD)

Motile spermatozoa in swim-up selected

(%): MI = 72.9 � 24.3,

placebo = 67.8 � 24.2 (p = 0.004)

Fertilization rate (%):

MI = 78.9 � 28.6, placebo: 63.2 � 36.7

(p = 0.002)

Day 3, grade A embryos (%):

MI = 59.8 � 35.6,

placebo = 43.5% � 41.5 (p = 0.019)

Expanded blastocysts (%):

MI = 56.6 � 31.2, placebo = 61.6 � 61.5

(ns)

Implantation/pregnancy rates

Implantation rate (%):

MI = 21.3, placebo: 13.6% (ns)

Pregnancy rate (%):

MI = 35.1, placebo = 20.0 (ns)

Rubino et al.

(2015)

A, asthenozoospermic men; O, oligozoospermic men; OA, oligoasthenozoospermic men; OT, oligoteratozoospermic men; OAT, oligoasthenoteratozoospermic men;

N, healthy fertile men. Text in light blue highlights outcome for fertility treatment. Rows in italic highlight information on frozen-thawed semen samples. SD, standard

deviation of the mean; SEM, standard error of the mean.
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forms compared to controls. In addition, sperm freezing in

the presence of MI resulted in a significant increase in antiox-

idant activity (ZB-TAC-96A commercial kit), as well as a

decrease in lipid peroxidation (malondialdehyde production)

and DNA fragmentation assessed by TUNEL assay. No signifi-

cant changes were observed in ROS between both groups.

The study is well designed, and the succesfull outcome

encourages its use in abnormal semen samples.

In addition to the studies designed to assess the impact on

semen parameters in fresh and frozen-thawed human spermato-

zoa, the effect of in vitro sperm incubation with MI on male fer-

tility was addressed by some authors. Among them, Poverini

et al. (2014) reported a prospective study done with couples

counseled for IUI cycles using MI supplemented swim-up

media, revealing an increase in clinical pregnancy rate after

treatment. Another study presented in a 2016 meeting, described

the impact of MI addition in the sperm preparation medium on

sperm quality and pregnancy rates in IUI procedures (Park et al.,

2016). The prospective study comprised a cohort of patients

divided into two groups, MI and control. Samples were sub-

grouped in N, O, and OA cases, and density-gradient centrifuga-

tion was used to select motile spermatozoa. The study revealed a

trend toward higher pregnancy rates in A and OA patients with

semen samples treated with MI, although similar sperm parame-

ters were determined in cell suspensions regardless of

treatment.

To address the impact of sperm treatment with MI on in vitro

fertilization and embryo development in IVF-ICSI procedures,

Rubino et al. (2015) published a report of a prospective bicentric

randomized study to assess the impact of MI in fertilization out-

comes of microinjected oocytes. Semen samples were supple-

mented with MI or placebo, washed and then subjected to

swim-up with MI or placebo-supplemented medium; spermato-

zoa recovered after selection were used for ICSI. Fertilization

rate and embryonic development were registered. MI-treated

spermatozoa depicted a discrete significant increase in sperm

motility after swim-up. Moreover, a significant increase in fertil-

ization rate and the percentage of day 3 grade A embryos was

found in the MI group when compared to the control. However,

the percentage of expanded blastocysts was similar in both

groups, and no differences were found in implantation or preg-

nancy rates. This was the first report describing the positive

impact of MI supplementation in in vitro sperm selection on fer-

tilization rate and early embryo development after ICSI

procedures.

IN VIVO AND IN VITRO SEMEN SUPPLEMENTATION
WITH MYO-INOSITOL AND IMPACT ON SPERM
FERTILIZING POTENTIAL
In addition to the in vivo and in vitro protocols tested to assess

the impact of MI treatment on male infertility, in a 2017 report,

Korosi and collaborators described the effect of combining both

approaches on sperm performance in IVF-ICSI procedures (Kor-

osi et al., 2017). The prospective randomized controlled trial of

couples involved male partner treatment with MI. In addition,

semen samples from these patients provided for the ART proce-

dures were subjected to gradient centrifugation and swim-up

procedures for motile sperm selection, followed by incubation

with MI. Finally, the sperm suspension was subjected to a final

sperm selection by means of hyaluronan hydrogel binding

(PICSI dish). Couples with OAT male partners who did not

receive any in vivo and in vitro MI treatment served as control.

Patient treatment with MI was associated with a higher fertiliza-

tion rate and a higher percentage of good-quality embryos. Preg-

nancies were obtained only in the MI-treated group, indicating a

positive impact of the supplement. These findings are summa-

rized in Table 3.

CONCLUDING REMARKS/ PERSPECTIVES
This review work has presented an overview of MI identifica-

tion, natural dietary sources and absorption, biosynthesis and

concentrations in human tissues and body fluids. Moreover, it

has outlined information on MI functions in its free form as well

as through its derivatives (PI, PIP, GPI, IPG) and their impact in

health and disease, highlighting the relevance of this molecule in

numerous functions. The following sections described MI pres-

ence, biosynthesis and functions in the male genital tract and

spermatozoa, although the literature is scarce regarding the

underlying changes in reproductive tissues and sperm structure

and functions in association with MI deficiency. Based on the

background information about the molecule and its relevance in

several diseases, and the available formulations to treat patients

or use it in in vitro assays, its supplementation was initially

tested and reported in several clinical studies mainly from one

country, and has been extended to other countries as reflected

by recent reports. Studies evaluated the impact of in vivo MI

treatment on some hormones, as well as in vivo and in vitro sup-

plementation on sperm parameters from fresh and frozen-

thawed semen. Other studies have assessed the impact of MI

treatment on natural and assisted male fertility. In summary,

several studies have reported the beneficial use of different

Table 3 In vivo and in vitro supplementation with MI and impact in male fertility

Type N Diagnostics Treatment Outcome Refs

Prospective

randomized

controlled

trial

35 MI-treated group: 22; control:

13 couples with OAT male

partners who did not receive

any in vivo and in vitro MI

treatment

Male partner treatment with a MI based

supplement (Folandrol, Exeltis, Hungary; a

formula equivalent to Andrositol� described by

Montanino Oliva et al in 2016) for two months

ART semen sample subjected to gradient

centrifugation and swim-up procedures for

motile sperm selection, followed by incubation

for 2 h with 2 mg/mL Ins (Andrositol�-LAB

(Lo.Li. Pharma, Rome, Italy)

The sperm suspension was subjected to a final

sperm selection by means of hyaluronan

hydrogel binding (PICSI dish)

(mean � SD)

Fertilization rate (%):

MI = 84.8 (134/158),

control = 60.5 (66/109)

(p < 0.001)

Day 3, good-quality embryos (%):

MI = 54.7, control = 32 (p = 0.001).

Number of pregnancies:

MI-treated group = 11,

control group = 0

Korosi et al. (2017)

OAT, oligoasthenoteratozoospermic men. Text in light blue with outcome from fertility treatment is highlighted.
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formulations of MI on sperm motility and DNA damage. In any

case, several studies failed to include appropriate controls, and

almost no investigation has reported the underlying mecha-

nisms of action. The background information on its possible

impact on male reproductive tract organs and sperm functions

encourages further investigations to unravel MI roles in sperm

physiology and the underlying molecular mechanisms. More-

over, larger prospective randomized controlled multicenter stud-

ies will contribute to confirm the positive effect of MI

supplementation in male infertility management.

NOTESNotes
1 MI: myo-inositol. Inositol has also been proposed as the

accepted abbreviation for myo-inositol, both free and in chemi-

cal combination (http://www.sbcs.qmul.ac.uk/iupac/cyclitol/

myo.html).
2 Alternative names: myo-inositol 1-phosphate synthase, short

name MI-1-P synthase; MIP synthase, short name hIPS; myo-

inositol 1-phosphate synthase A1, short name hINO1.
3 Alternative name: sodium/myo-inositol transporter 1, SMIT1.
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