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A detailed characterization 
of complex networks using 
information theory
cristopher G. S. freitas  1*, Andre L. L. Aquino  1, Heitor S. Ramos 3, Alejandro c. frery 1 &  
osvaldo A. Rosso 2,4

Understanding the structure and the dynamics of networks is of paramount importance for many 
scientific fields that rely on network science. Complex network theory provides a variety of features that 
help in the evaluation of network behavior. However, such analysis can be confusing and misleading as 
there are many intrinsic properties for each network metric. Alternatively, information theory methods 
have gained the spotlight because of their ability to create a quantitative and robust characterization 
of such networks. In this work, we use two Information Theory quantifiers, namely Network Entropy 
and network fisher information Measure, to analyzing those networks. our approach detects non-
trivial characteristics of complex networks such as the transition present in the Watts-Strogatz model 
from k-ring to random graphs; the phase transition from a disconnected to an almost surely connected 
network when we increase the linking probability of Erdős-Rényi model; distinct phases of scale-free 
networks when considering a non-linear preferential attachment, fitness, and aging features alongside 
the configuration model with a pure power-law degree distribution. Finally, we analyze the numerical 
results for real networks, contrasting our findings with traditional complex network methods. In 
conclusion, we present an efficient method that ignites the debate on network characterization.

Understanding how networks arrange their connections (structure), and how the information flows through their 
nodes (dynamics), is a breakthrough for many scientific fields that rely on network science to assess all kinds of 
phenomena. Recently, Information Theory methods gained the spotlight because of their ability to create a more 
quantitative and robust characterization of complex networks, as an alternative to traditional methods. Standard 
quantifiers such as Shannon Entropy and Statistical Complexity were adapted to network analysis, providing a 
different perspective when evaluating networks1.

The quantification of systems with multidimensional measures, in particular, a 2D representation or “plane 
representation” formed by Information Theory-based quantifiers is extensively applied to time series analysis and 
characterization. For instance, Rosso et al.2 employed the time causal Entropy-Complexity plane to distinguish 
stochastic from deterministic systems. The Entropy-Complexity plane is comprised of measures of entropy () 
and Statistical Complexity (). Two pieces of information are required to calculate , namely the information 
content and the disequilibrium () of the system. To evaluate the Statistical Complexity, we use the entropy as a 
measure of the information content, and the disequilibrium is expressed by the divergence between the current 
system state and an appropriate reference state. The calculation of these quantifiers requires the use of a proper 
probability distribution that represents the system under study. In the case of time series, the distribution derived 
from the symbolization proposed by Bandt and Pompe3 has been successfully used to capture the intrinsic time 
causality behavior of the underlying system (see Supplemental Material). The Shannon Entropy is a global disor-
der measure commonly used in many applications of the Information Theory field and the Entropy-Complexity 
plane. It is relatively insensitive to substantial changes in the distribution taking place in a small-sized region of 
the space. For these reasons, the Shannon Entropy is referred to as a global measure. The Statistical Complexity 
(), when defined as a divergence in the space of entropies, is also a global measure. Alternatively, the Fisher 
Information Measure ( ) can be interpreted as a measure of the ability to estimate a parameter, as the amount of 
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information that can be extracted from a set of measurements, and also, a measure of the state of disorder of a 
system or phenomenon4. The Fisher Information Measure ( ) is a local measure as it is based upon the gradient 
of the underlying distribution, being, thus, significantly sensitive to even tiny localized perturbations.

Recently, the Entropy-Complexity plane was extended and used in the context of complex networks. In ref. 1, 
the authors showed that networks of the same category tend to cluster into distinct regions. To calculate the two 
required quantifiers, , and , for complex networks, the authors used the probability distribution of a random 
walker traveling between two nodes to represent the topological properties of the network. Based on this distri-
bution, they calculated the Shannon Entropy and the Statistical Complexity. For the evaluation of the disequilib-
rium, they used the Jensen-Shannon divergence between the actual network and random networks and used the 
last as a reference model. To obtain this divergence it is necessary to average several random networks with the 
same number of nodes, which is typically time-consuming. They demonstrated the applicability of their proposal 
to families of Random Erdős-Rényi5, Small-World Watts-Strogatz6, and Scale-Free Barabási-Albert7 networks. 
However, this plane presents several limitations, as regularly, the random networks overlap with all the other 
models, creating confusion and misleading the conclusions when evaluating the network’s features.

In this work, we propose the Fisher information quantifier, more sensitive to a local relationship between 
nodes, as a measure of network disorder. Alongside, we suggest the use of the Shannon-Fisher plane as an alter-
native to the Entropy-Complexity plane for network characterization. Our approach does not require the calcu-
lation of a divergence to a reference model, which decreases the computational burden. We analyze two different 
groups of networks: synthetic and real-world networks.

Methods
Network definition. We assume a graph G(V, E), where V is the set of nodes and E is the set of links (edges) 
as a suitable model of a network. The graph is represented by an adjacency matrix A with dimension N × N, N 
being the number of nodes in the network, where aij = 1 if a link exists between nodes i and j, otherwise, aij = 0. 
We consider undirected, unweighted, and without the presence of loops graph, i.e., simple unweighted graphs. 
Hence, their adjacency matrices have the main diagonal aii = 0, ∀i = 1, …, N, and A = AT. The node degree ki is 
calculated by k ai j ij= ∑ , therefore, 0 ≤ ki ≤ N − 1.

network entropy. Network Entropy is based on the classical Shannon Entropy for discrete distributions. 
Small8 proposed a measure of Network Entropy based on the probability that a random walker goes from node i 
to any other node j. This probability distribution P(i) is defined for each node i and has entries
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Finally, the normalized Network Entropy is calculated averaging the normalized node entropy over the whole 
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The normalized Network Entropy is maximal = 1  for fully connected networks, since pi → j = (N − 1)−1 for 
every i ≠ j and the walk becomes fully random, i.e., jumps from node i any other node j are equiprobable. The 
walk becomes predictable in a sparse network because it limits the possibility of jumps. The sparser the network, 
the lower becomes its Network Entropy.

The normalized Network Entropy , hence, quantifies the heterogeneity of the network’s degree distribution, 
with lower values for nodes with lower degrees and higher values for nodes with higher degrees. For example, 
peripheral nodes present lower  i( ) than hubs. Entropy, thus, ranges from  0→  (sparse networks) to  1→  
(fully connected networks).

Network fisher information measure. The normalized Fisher Information Measure (FIM)9 for a node i 
is given by
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The normalized network Fisher Information Measure is given by

N
P1 [ ]

(6)i
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If the system under study is in a very ordered state, i.e., a sparse network, almost all pi → j values are zeros, we 
have Shannon Entropy → 0  and normalized Fisher’s Information Measure  → 1. On the other hand, when a 
very disordered state represents the system under study, that is when all pi → j values are similar, we obtain  → 1 
and 0 → . We can then define a Shannon-Fisher plane, which can also be used to characterize Complex 
Networks.

Results: Synthetic networks
In this section, we analyze the behavior of Information Theory quantifiers when applied to Random (RN), Small 
World (SWN), and Scale-Free networks (SFN). We simulated independent instances of these networks for several 
parameters and then analyzed how their Network Entropy and Fisher Information Measure vary. These synthetic 
networks may present some degree of stochasticity related to its parameters setting, which results in variations of 
the quantifiers; for this, when we observe variations in any measure  , we represent it by its average value   along 
with its sampling standard deviation s . These variations, when too small, can be hard to distinguish in figures, 
but their numerical results should make this clearer.

Erdős-rényi: random networks. Boccaletti et al.10 state that: “the term random graph refers to the disor-
dered nature of the arrangement of links between different nodes.” According to ref.11, Solomonoff and Rapoport12 
initiated the study upon the nature of random graphs, but Erdős and Rényi5 are most known by observing the 
properties of networks as they increase the number of random connections, thus, defining an ensemble of graphs 
GN,M, with N nodes and M edges. Later, Gilbert13 described an alternative method for generating random graphs 
by defining an ensemble of graphs GN,p with N nodes connecting randomly according to a linking probability p 
that is analogous to the link density ξ = − ∑−N N k( ( 1)) i

N
i

1 . Although Erdős-Rényi (ER) random graphs are well 
studied in network science, they often fail at describing essential properties of real networks.

We analyzed fifty independent ER graphs GN,p for every combination of N = {50, 1000, 10000} and p ∈ {0, 
0.001, 0.002, …, 0.99, 1} making, thus, a total of 50 × 3 × 1001 graphs. Figure 1 shows the variation of the Shannon 
Entropy (Fig. 1a) and Fisher Information Measure (Fig. 1b) with respect to the link density, while Fig. 1c depicts 
the relationship in between the Shannon Entropy and Fisher Information Measure.

Figure 1a shows how the Shannon Entropy  varies with respect to the link density ξ. The variation starts 
steep, then saturates. This may enhance the sensibility of Shannon-Fisher plane for sparse networks, but it may 
not be sensitive to denser graphs. The relationship between  and ξ also depends on the number of nodes N. The 
Shannon Entropy increases, for the same link density, with N. However, the rate of this growth decreases with N.

Figure 1b suggests that the Fisher Information Measure presents two distinct regimes for ER graphs as a func-
tion of their link density. Initially, this measure grows steadily: for p = 0 the network starts is totally disconnected; 
as p increases, it reaches a critical point pc that is relative to the network number of nodes N, after which the 
measure decreases in a quasi-linear fashion ≈ − p1  for every p > pc, regardless N. For N = 50, the critical point 
is p 0 08c = .  with standard deviation spc = 0.02 and = .0 90 , s 0 02 = . ; for N = 1000, p 0 008c = . , spc = 0.002 
with 0 99= . , = .s 0 001 ; for N = 10000, p 0 001c = .  with  0 999= .  and no variation observed. As the linking 
probability for ER graphs is analogous to the link density, this also stands for the link density, so ξ≈ − 1  for 
every ξ > ξc. This result relates to the expected phase transitions in random graphs at pc > lnN/N14, as the network 
will almost surely be connected.

Figure 1. Results showing the relationship of Shannon Entropy and Fisher Information Measure with link 
density (a,b), and between Fisher Information Measure and Shannon Entropy (c) for 50 independent Erdős-
Rényi networks. The dark-green circles corresponds to N = 50; the light-green squares to N = 1000; and the 
orange crosses to N = 10000.
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Figure 1c shows the relationship between the Shannon Entropy and the Fisher Information Measure. As 
expected, the larger the network is, the less the variability observed. For this reason, we will only present results 
for N = 1000 hereinafter.

Watts-strogatz: small-world networks. Small-world networks present an intrinsic characteristic of hav-
ing relatively small average path length between nodes15. Watts and Strogatz6 (WS) proposed a model to build 
graphs GN,k that can reproduce this small-world property with a high clustering coefficient. Start with a k-ring 
network with N nodes and a probability β. The rewiring consists of removing existing edges and connecting to 
another random node. When β = 0, we have a ring lattice, and for β = 1, it produces a random graph. For interme-
diate values, the model produces networks with the small-world property and a nontrivial clustering coefficient10. 
Figure 2 shows the same analysis as presented previously for random networks.

Figure 2a shows that the relationship between Network Entropy and link density is consistent with what was 
observed in Random Networks and that there is little variation with respect to β. Therefore, the Network Entropy 
 by itself does not provide information to identify different Small-World models.

Figure 2b shows the relationship between the Fisher measure and link density, indexed by the rewiring proba-
bility β (shades of blue). As expected, the behavior in the limit β = 1 is the same (linear decay) as the one observed 
for RN; cf. Figure 1b. There is a lower bound which corresponds to k-rings (red dots).

The red arrows (Fig. 2c) identify the change of regime. For k = 1 (red-downward arrow), increasing the rewir-
ing probability decreases the Fisher   measure, while for k ≥ 2 (after red-upward arrow), this behavior is inverted, 
and increasing β also increases  .

The Shannon-Fisher plane provides a rich description of Watts-Strogatz (WS) networks. Similarly to what was 
observed with ER graphs, there are two distinct regimes when evaluating WS graphs. Firstly, we see in Fig. 2 that 
for k = 1, we start with a ring lattice where 0 1 = . , 0 999= . , and increasing β, we see   decreasing until it 
reaches a random graph; this happens because when k = 1 and β > 0, the rewiring mechanism isolates some 
nodes, and we have disconnected components lowering the   values. Secondly, for k > 1, WS has a different 
behavior, wherefore the rewiring mechanism most likely will not leave isolated nodes when β > 0; in fact, it will 
create larger components without fully disconnecting the other ones, this will increase the   values. The red 
arrows in Fig. 2 identify this change of regime. Alongside this, the Shannon-Fisher plane corroborates with the 
evidence of the transition between ring lattices and random graphs for the WS model.

Figure 3 summarizes the main differences between Erdős-Rényi (Fig. 3a) and Watts-Strogatz (Fig. 3b) net-
works in the ξ× ×H F  space. While Erdős-Rényi networks are equivalently well-described by the Network 
Entropy and the Fisher Information Measure (they span a 1D region of the space), Watts-Strogatz graphs are 
better characterized by the latter, as different networks span a 2D manifold. Permanent links to interactive ver-
sions of these 3D plots are available at http://tiny.cc/ERN and at http://tiny.cc/SWN.

Barabási-albert: scale-free networks. The literature often uses scale-free networks as models for real 
networks. They have a degree distribution that can be fitted by a power-law, i.e., P(k) ~ k−γ, where γ is the degree 
exponent usually in 2 ≤ γ ≤ 3, as for γ > 3 the scale-free property can easily be confused with random networks16. 
We will evaluate the Barabási-Albert7 model (BA) for evolving scale-free networks, as it has two important fea-
tures: network growth and the preferential attachment mechanism.

For network growth, at each time step t, new nodes are inserted with m links connecting with N0 existing 
nodes in the network. These links are created according to a probability given by the preferential attachment: the 
probability that a node i connects with j is proportional to the actual degree of node i:

Figure 2. Results showing the relationship between Shannon Entropy and Fisher Information Measure with 
link density (a,b), and between Fisher Information Measure and Shannon Entropy for Watts-Strogatz networks 
(c). We restricted the analysis to N = 1000, ∈ …k {1, 2, 3, , 499, 500} and β ∈ . . … .{0, 0 001, 0 002, , 0 99, 1}; 
the downward red triangles correspond to k-rings (GN k,  with β = 0); the upwards blue triangles are random 
graphs (GN k,  with β = 1). The blue gradient from dark to light corresponds to rewiring probability β: the 
intensity of the blue color is inversely proportional to the value of β. The red arrows (c) identify the change of 
regime.
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In this way, the preferential attachment (PA) induces hubs (highly connected nodes), and peripheral commu-
nities, where nodes have similar degree. We know that the Barabási-Albert model is unable to reproduce all the 
diversity existing for scale-free networks, as it captures only the power-law with degree exponent γ = 3. Therefore, 
many variations of this model have been proposed throughout the years. In this work, we extend our analysis for: 
non-linear preferential attachment; the fitness property; the aging property; and finally, the configuration model.

Non-linear preferential attachment. Krapivsky et al.17 introduced a non-linear preferential attachment that 
creates different regimes for the network according to an exponent α controlling the network topology. The 
non-linear PA is given by

k
k (8)
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For α ≠ 1, the growth model stops resulting in a power-law degree distribution. There are, thus, three different 
growth regimes:

•	 The sublinear regime (α < 1) has a power-law with an exponential cutoff, where the preferential attachment 
is not strong enough to produce a pure power-law degree distribution.

•	 The linear regime (α = 1) has a pure power-law behavior corresponding to the Barabási-Albert7 model, with 
a resulting γ = 3.

•	 The superlinear regime (α > 1) presents a particular behavior where the network condensates, i.e, very few 
nodes win all connections; it also does not result in a power-law degree distribution.

We mapped outcomes of the BA model with a non-linear preferential attachment using the Krapivsky’s model 
onto the Shannon-Fisher plane, as shown in Fig. 4a. For α = 0, we have a random network, since Π(i) = 1 for 
every i, the network no longer obeys the preferential attachment mechanism, just the evolving growth property; 
the result is 0 074= . ,  = .s 0 001 and  = .0 997, = .s 0 001 . Increasing α in steps of 0.01 changes the regime 
of the network slowly, and we see this transition in the Shannon-Fisher plane until it reaches α = 1. In the linear 
regime  = .0 063,  = .s 0 001 and = .0 993 , s 0 001= . . In the superlinear regime 0→  and   starts oscil-
lating above α > 1.4, as seen in Fig. 4b. This oscillation happens due to the fact that after the network condensates, 
a small change in the network topology may cause   to drop from  1=  to  = .0 5, as the Fisher Information 
Measure is sensitive to local disturbances.

Similar to earlier sections, we evaluated the link density ξ along with Network Entropy  and Fisher 
Information Measure  . This time, the results with link density in comparison with Network Entropy, shown in 
Fig. 5b, have more interesting behavior. Although the link density does not change (ξ = 0.002),  absorbs the 
changes and when increasing α,  → 0. In Fig. 5a, we observe how Fisher Information Measure   against link 
density ξ produces confusing results, as the oscillation for α > 1.4 heads toward 0 5≈ .  and ≈ 1  with 
ξ = 0.002.

Fitness property. Some networks have nodes that create connections with more ability, e.g., a popular web page. 
Usually, these nodes gain relationships faster than common nodes. The Bianconi-Barabási model18,19 describes 

Figure 3. Relationship among the Network Entropy, Fisher Information Measure and link density for Erdős-
Rényi (a) and Watts-Strogatz (b) networks in the ξ× ×H F  space.
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this property named fitness. We can model it using the preferential attachment considering a fitness coefficient ηi 
alongside the node degree ki:

k
k (9)

i i i

j j j

( ) η

η
Π =

∑
.

In Eq. 9, the dependence of Π(i) on ηi models the fact that even younger nodes can acquire links faster if they 
have sufficiently higher fitness than older nodes. Therefore, we draw 30 networks with N = 1000 considering a 
uniform distribution for the fitness ηi of each node i. For this, we do not expect a perfect power law, but we expect 
γ = 2.255, asymptotically.

Figure 6a shows consistency between the Bianconi-Barabási, and the Barabási-Albert models, wherefore  
grows slowly while ξ does not change and their numerical results are 0 00278ξ = .  with standard deviation 
sξ = 0.00006. Figure 6b also shows a similar behavior in comparison with Fig. 5a. Finally, Fig. 6c shows that most 
networks generated by the fitness model lie at a region close to the results presented for the BA model with 

0 091= . , = .s 0 005  and 0 979= . , s 0 038= . .

Figure 4. (a) Shows the results for Barabási-Albert networks using a non-linear preferential attachment with 
N = 1000 and [0, 3]α ∈ . For the sake of visualization, we plot the red downward triangles representing GWS 
with β = 0, i.e., k-ring graphs; and blue upward triangles representing GWS with β = 1, i.e., random graphs. (b) 
Shows how changing α causes disturbances in the Fisher Information Measure, when evaluating the Barabási-
Albert model with non-linear PA.

Figure 5. (a) Shows the relationship between link density and Fisher Information Measure for Barabási-Albert 
networks using a non-linear preferential attachment; the gradient indicates how the preferential attachment 
exponent α changes. (b) Shows the relationship between the Network Entropy and link density, where 

0 002ξ = .  for any α. To help the visualization of the region where Barabási-Albert networks stand in relation to 
the other synthetic networks, we plot the red downward triangles representing GWS with β = 0, i.e., k-ring 
graphs, and blue upward triangles representing GWS with β = 1, i.e., random graphs.
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Aging property. Another aspect we can also consider for a scale-free network is the aging property20. Regularly, 
for the Barabási-Albert model, we account only for the node degree or as seen before, the fitness coefficient. 
However, what happens when a node starts to reduce the rate of acquiring new links with time? This aging pro-
cess causes the nodes to lose relevance; thus, it changes the network structure and dynamics. We can model this 
property considering:

~k t t k t t( , ) ( ) , (10)i
i i i

( )Π − − ν−

where ν is a parameter controlling the dependence of the attachment probability on the node’s age. According to 
ν, we can define three scaling regimes:

•	 If ν < 0, new nodes will connect to older nodes. If ν → −∞, each new node connects to the oldest node, 
resulting in a condensed network or hub-and-spoke topology. Hence, we have a more heterogeneous network 
with a few hubs and many peripheral nodes.

•	 If ν > 0, nodes connect to younger nodes. By aging, nodes lose the ability of preferential attachment. In this 
case, the network tends to be more homogeneous.

•	 For ν > 1, the aging effect dominates the preferential attachment effect, the network loses its scale-free prop-
erty, and it eventually approaches a random network. When ν → ∞, each node connects to its immediate 
predecessor.

For evaluating the aging property, we generate distinct networks with N = 1000 and ν ∈ {−3.0, −2.9, −2.8, ..., 
2.9, 3.0} with 30 replications of each setting; thus, we have a total of 18030 networks. Figure 7a shows the results 
for networks with a growing Network Entropy  and a steady link density ξ = 0.002, the same result as for BA 
model. Figure 7b shows the results for the aging property, and once more, we can observe the “oscillation” that 

Figure 6. These results show the relationship between Shannon Entropy and Fisher Information Measure with 
link density (a,b), and between Fisher Information Measure and Shannon Entropy (c) for Biaconi-Barabási 
(Fitness model). Black points indicate the 30 networks with N = 1000 generated using a uniform distribution for 
the fitness scores of each node.

Figure 7. These results show the relationship between Shannon Entropy and Fisher Information Measure with 
link density (a,b), and between Fisher Information Measure and Shannon Entropy (c) for the Aging model. The 
gradient indicates the aging exponent [ 3, 3]ν ∈ −  and how its growth controls the network scaling regimes.
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happens to all the other scale-free models previously discussed. Figure 7c presents the results considering the 
Network Entropy  and Fisher Information Measure  , where we can see the Aging model transition in the 
plane according to its scaling regimes.

The numerical results for the Aging model are the following: for ν = −3, 0 024 = . , s 0 0014 = .  and 
 = .0 845,  = .s 0 042 i.e., we have a condensed network; when ν > 0,  and   continue to grow until ν = 1, 
wherefore 0 072 = . ,  = .s 0 0009 and = . 0 992, = .s 0 0021; for ν > 1,  grows steadily and   decays, 
reaching a random regime. Finally, we noticed that the scale-free regime expected for ν ∈ [0, 1] is observed in the 
Shannon-Fisher plane, where the values for 0 063 = . , = .s 0 005 and = .0 990 , s 0 0064 = . .

The configuration model. A recurrent problem is “how do we generate networks with an arbitrary P(k)?”. For 
this, we use the configuration model, also known as a random network with a pre-defined degree sequence21. 
According to ref.16, the algorithm consists of the following steps:

 1. Assign a degree to each node as stubs or half-links. It is required that we start from an even number of 
stubs; otherwise, we will have unpaired stubs.

 2. Randomly selects a pair of half-links and connect them; then randomly choose another pair from the 
remaining 2L − 2 half-links and connect them.

 3. Repeat this process until all stubs are paired up. Depending on how we pair them up, we may obtain 
distinct networks. Some networks include cycles, self-loops, or multi-links. In this work, we consider only 
simple graphs, thus, after generating the network for a degree sequence, we “simplify” the graph, removing 
self-loops and multi-links.

As we are trying to reproduce scale-free properties using the configuration model, we assign a pure power-law 
distribution P(k) = k−γ with γ ∈ [2, 5]. For this model, we expect that for 2 ≤ γ ≤ 3, the network is in the scale-free 
regime; when γ > 3, the network starts to condensate, as the distribution has a steep curve. It means that few 
nodes have most of the links and most nodes have few links. Such networks present structure and dynamics more 
similar to a hub-and-spoke topology.

Finally, we evaluate these networks with N = 1000 using a pure power-law distribution with γ ∈ {2.0, 2.1, 2.2, 
..., 4.9, 5.0}; as we cannot guarantee that networks with the same degree exponent have the same topology, we 
replicate this experiment 30 times, then, we have 1312 networks. In Fig. 8a we have that ξ = .0 001, with 
sξ = 0.0006 while the Network Entropy  decreases as we increase the degree exponent. This behavior is similar 
for all the other scale-free models when we are in the condensed regime. Figure 8b shows how the   values are 
stable for this model with = .0 998 , s 0 001 = . . And later, in Fig. 8c, we observe how Network Entropy  is 
actually the one capturing the changes, wherefore the degree exponent γ ∈ [2, 3] we have = .0 045 , = .s 0 017  
and  0 998= . , = .s 0 001; and for γ ∈ [3, 5], we have = .0 010 , s 0 005= .  and 0 998 = . ,  = .s 0 001.

Figure 9 summarizes the main features observed in the Shannon-Fisher plane for simulated networks, 
alongside examples illustrating different topologies and their expected results in the Shannon-Fisher plane. The 
fitness, aging, and configuration models were left out of this plot, as they are represented well enough by the 
Barabási-Albert model with nonlinear preferential attachment and its distinct scaling regimes. Considering the 
standard definition for the scale-free property and the network models evaluated, we observe how scale-free 
networks are subtle and can be easily confused with others in the Shannon-Fisher plane, as the usual result for 
scale-free networks is confined to a tiny region of the plane, and a few inputs can dismantle the scale-free prop-
erty. This observation reflects a recent discovery that states that “scale-free networks are rare”22.

Figure 8. These results show the relationship of Shannon Entropy and Fisher Information Measure with link 
density (a,b), and between Fisher Information Measure and Shannon Entropy (c) for the configuration model 
with a degree distribution following a pure power-law γ−~P k k( ) . The gradient indicates the degree exponent 
γ ∈ [2, 5] and how it controls the network scaling regimes.
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Results: Real networks
We evaluate real networks, assessing their topological features such as clustering coefficient CΔ, average path 
length L, and if the degree distribution follows a power law (P(k) ~ k−γ); we also consider the degree exponent γ. 
Table 1 shows the real networks analyzed in this work. Each network is presented with its number of nodes N, 
average degree 〈k〉, and link density ξ. We inform their small-world indicators: average path length L, clustering 
coefficient CΔ, small-world-ness value SΔ (see below). We also provide scale-free indicators: degree exponent γ 
and p-value for the power-law fitting. Finally, we provide the Network Entropy  and Fisher Information 
Measure  , along with a literature reference.

As shown in Fig. 10a,b, most real networks are sparse, with ξ ≤ 0.009. The only exception is network #14 with 
ξ = 0.157. Therefore, our analysis will rely on our ability to distinguish sparse networks, with link density ξ that 
does not present distortions in Network Entropy  (Fig. 1a) nor Fisher Information Measure   (Fig. 1b). 
Nevertheless, care is needed not to jump into conclusions without further analysis, as differences in the 
Shannon-Fisher plane for sparse networks are subtle; thus, it is where other metrics are welcome in helping to 
confirm our findings.

Figure 9. An overview of the most significant results for network models discussed in earlier sections. All the 
topologies presented have N = 50, and they are only a guide to understanding our proposal. Networks with 
labels p indicate ER networks; WS graphs are indexed by β and k; and α is the parameter for networks with a 
nonlinear preferential attachment model; other network growth models discussed in this work (e.g., fitness 
model) fall together with the Barabási-Albert model with nonlinear preferential attachment.

ID Network N 〈k〉 ξ L CΔ SΔ γ p-value ℋ F ref.

1 Email Network 1133 9.622 0.009 3.606 0.166 17.146 6.775 1.000 0.253 0.925 26

2 Adolescent Health 2539 8.236 0.003 4.559 0.142 38.118 8.244 0.996 0.248 0.902 27

3 Arxiv AstroPh 18772 21.101 0.001 4.194 0.318 239.693 4.496 0.980 0.231 0.992 28

4 NetScience Collaborations 1461 3.754 0.003 5.823 0.693 271.946 3.607 0.401 0.141 0.696 29

5 Science Collaborations 23133 8.078 0.000 5.352 0.264 737.276 3.426 0.310 0.160 0.996 16

6 Slucene 2956 7.336 0.002 4.499 0.057 22.710 2.187 0.896 0.174 0.894 30

7 AS Caida 16301 4.043 0.000 3.771 0.008 66.782 2.124 1.000 0.070 0.995 31

8 Power Grid 4941 2.669 0.001 18.989 0.103 92.461 7.629 1.000 0.094 0.967 6

9 Amazon pages 2879 2.700 0.001 3.433 0.023 56.123 3.257 0.000 0.016 0.956 32

10 Roget’s Thesaurus 1010 7.224 0.007 4.075 0.134 17.770 6.246 0.919 0.250 0.927 33

11 Autobahn 1168 4.257 0.002 19.419 0.003 0.745 7.050 0.000 0.099 0.998 34

12 Protein Interactions 2018 2.681 0.001 5.611 0.024 23.907 2.782 1.000 0.077 0.971 16

13 Drosophila Medulla 1 1781 10.007 0.006 2.911 0.069 14.828 3.957 0.986 0.198 0.982 35

14 Mouse Retina 1 1076 168.794 0.157 1.861 0.400 2.526 2.312 0.000 0.693 0.725 36

Table 1. Real networks and their descriptors.
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Foremost, considering the results for the Watts-Strogatz model in the Shannon-Fisher plane, it is expected that 
networks in between the upper (i.e., random) and lower (k-ring) limits are very likely to be small-world networks. 
Although, this should not be confused with saying that these networks have the same topology. Our purpose here 
is to study how the information flows through the nodes. Networks may present similar topology that will result 
in similar dynamics, but distinct topologies may have similar dynamics; this feature is noteworthy.

From the results in Fig. 11a and in Table 1, we may state that networks #1, #2, #4, #6, #10, #13 and #14 pres-
ent small-world behavior. That said, we observe that the average path length L for these networks in Table 1 is 
small, considering its number of nodes N. Cohen and Havlin23 demonstrated that WS networks under some 
expected conditions have an average path length that scales as logN, and we can see that the largest network in our 
small-world set has N = 4941, therefore, as logN ≈ 8.50, and observing that L for every small-world network in 
our study has L < 8.5, following this criterion, they present the small-world behavior.

Another aspect that we can observe for small-world networks is their clustering coefficient (CΔ), but there is 
no certainty of which values to expect. In an attempt to perform quantitative analysis for clustering coefficient in 
small-world networks, and considering a relationship with the average path length, Humphries et al.24 proposed 
the small-world-ness SΔ, defined as

Figure 10. (a) Shows the relationship between link density and Network Entropy for real networks (Table 1), 
while (b) shows the relationship between link density and Fisher Information Measure. For the sake of 
visualization, we plot the red downward triangles representing GWS with β = 0, i.e., k-ring graphs, and blue 
upward triangles representing GWS with β = 1, i.e., random graphs.

Figure 11. (a) Shows the relationship between Fisher Information Measure and Shannon Entropy for the real 
world networks. Blue upward triangles represent the ER graphs; the dashed-blue line indicates the upper limit of 
the small-world region delimited by graphs GWS with β = 1; the downward red triangles represent k-ring graphs, 
as the dashed-red line indicates a “rough” lower limit for the small-world region. (b) Zooms over the black 
points which represent the networks generated using a non-linear preferential attachment mechanism.
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where CΔ and L are, respectively, the clustering coefficient and average path length, and Crand
Δ and Lrand are the 

results computed for an ensemble of 100 ER networks, simulated with the same link density ξ as the real network. 
With this approach, Humphries et al.24 state that for SΔ > 1, the network can be considered small-world.

However, Table 1 shows that only network #11 has SΔ < 1, and if we analyze only the small-world-ness value, 
we may attest that all of the other networks are also small-world. This is inaccurate, if not wrong.

Alongside the small-world-ness value, as an attempt to identify scale-free networks, we can also estimate the 
degree exponent γ of the power-law degree distribution. Using a method proposed by Newman25, we reject the 
fit whenever p-value < 0.05, and if the estimated γ lies between two and three (2 < γ < 3), we consider these net-
works scale-free; for γ > 3, these networks may present hubs, but they become hard to distinguish from random 
or small-world networks.

We proceed with our study zooming into the Shannon-Fisher plane, as we can see in Fig. 11b. First, we observe 
networks #5 and #8, which are outside the small-world region, and network #3 that is overlapping the upper limit. 
We state that these three networks are random; Table 1 shows that they have γ > 3 with p-value > 0.05.

Although the identified random networks are outside the small-world region, they could easily be confused 
with scale-free or even regular networks considering just the results provided by the Shannon-Fisher plane, there-
fore, we ought to be careful with networks outside the small-world region, and for these cases, we must have a 
look into the degree distribution and estimate the degree exponent.

Network #7 is mapped into the ×H F  plane closely to the classic Barabási-Albert model, along with 
γ = 2.124 and p-value = 1, thus, we cannot reject the fitting for a power-law, and we expect this network to be 
scale-free. Also, network #12 has γ = 2.782 with p-value = 1, and it is also close to network #7, although it is even 
closer to network #8.

Another “odd” result is the fact that network #6, although its results and properties signal for a small-world 
network, has degree exponent γ = 2.187 with p-value = 0.896, also indicating the scale-free property. Finally, 
network #9 has resulted in a point in H F×  equal to those generated with superlinear preferential attachment, 
leading to a “condensed” network. Indeed, with L = 3.771 and a degree distribution that does not fit a power-law 
at all, we state this network is “condensed.”

Discussion
Complex networks have many faces, thus attempting to label them considering a single network property may 
be misleading. Real networks have many components and distinct interactions among them, for example, a 
scale-free network may have peripheral communities that lead to small-world structure. Our proposal quantifies 
network structure and dynamics, considering a simplified plot. We show consistent results with other network 
features when this methodology is applied to synthetic networks.

The Shannon-Fisher plane enhances our ability to evaluate complex networks:

•	 The transition that the Watts-Strogatz model exhibits in between k-ring and random graphs, leading us to 
define the small-world region;

•	 The two distinct regimes for the Erdős-Rényi model when reaching the critical linking probability;
•	 The three regimes for the non-linear preferential attachment on scale-free networks and distinct growth mod-

els, which transits between random, scale-free and condensed networks;
•	 The behavior of the fitness model when we consider a uniform distribution for the fitness of each node, and 

how it has similar features to the Barabási-Albert model;
•	 The effect of aging for scale-free networks and how the aging exponent can control the system’s behavior in 

the same manner to what happens with the non-linear preferential attachment;
•	 And finally, how we can generate networks with a pure power-law considering distinct degree exponent.

The evaluation of real networks gave us a peek into the real world and its deceitful aspects. Our method 
succeeds in characterizing most of the real networks in comparison with synthetic networks, even though a few 
examples showed unexpected behaviors that will be widely explored further. That said, our proposal is not the 
perfect fit for labeling networks as a small-world or scale-free, but it opens a world of possibilities when evaluating 
information spread, network robustness, or controllability. Our approach allows identifying distinct interactions 
in real networks, observing how they transit within the Shannon-Fisher plane and comparing how they affect 
other network features.

Data availability
The datasets generated during and/or analysed during the current study are available in the fisher-networks 
repository, https://gitlab.com/cristophersfr/fisher-networks.
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