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SUMMARY

This paper presents an analysis of the time delay difference between the outputs of two matched filter channels,
in the presence of parametric mismatch. A theorem for computing the cross-correlation value between two
signals is developed. From the cross-correlation theorem, expressions are developed that estimate the effect of
parametric mismatch in the differential time delay (DTD) for filters of arbitrary type and order and input signals
of arbitrary form. The accuracy of these expressions is simulated and then demonstrated experimentally using a
carefully designed setup. Filter design considerations that attempt to minimize spurious DTD in high-precision
time delay estimation systems are presented. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The estimation of the time delay of a signal captured by spatially separated sensors plays a key role in
many source localization and target tracking applications, such as communications, acoustics,
geophysics, sonar systems and sensor networks [1–8]. Signal conditioning and filtering is an
essential and unavoidable part in all of them, at the very first stage of the analog front-end. The use
of a filter in the signal path introduces a phase shift that depends on the filter parameters. A slight
difference between the filter parameters of two channels creates a frequency dependent phase
difference that will be interpreted by the processing stage as a delay difference produced by a shift
of the target source [9].

As an example, consider the system described in [10], where two channels (presumably identical)
are used to condition the output of microphones with fourth-order switched-capacitors bandpass
filters. The bandpass frequency range of these filters is from 100 to 300Hz, and the purpose of the
system is to measure the delay between the two signals with a precision of 5μs, which means 1°
accuracy in the bearing angle estimation. However, if a 0.5% mismatch is considered in the filters
cut-off frequencies, a spurious time delay of 14.81μs appears at the output when a single-tone signal
of 200Hz is used. Moreover, if a 90Hz noise source is added, the spurious time delay could be as
much as 38.1μs. This shows that for high accuracy sensor systems, even a small parameter
mismatch can induce errors much higher than the targeted precision.

Parameter differences amongst devices inside an integrated circuit are much smaller than the overall
process spread specifications. As such components have experienced exactly the same technological
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treatments, they are generally much more similar than devices made on different dies at different
times in the process life cycle. However, even between matched components on the same die,
parametric differences are observed. These differences, indicated with the term parametric
mismatch, can be divided into two categories, namely random mismatch and systematic mismatch
[11]. Random mismatch is generally attributable to microscopic device fluctuations, such as
random dopant fluctuations [12], lithographic edge roughness [13], or grain boundary effects [14].
Systematic mismatch effects are generally associated with circuit design and/or layout
imperfections. There are also some process technology related causes that can give rise to this type
of mismatch, such as etch effect, litography steps, well-proximity effects and local stress
asymmetries [15, 16].

This paper presents an analysis of the time delay difference between the outputs of two matched
filter channels, in the presence of parametric mismatch. The analysis begins considering a single
frequency tone, which allows deriving exact expressions for the time delay difference arising when
different order and type filters are used. When the signal is composed of more than one frequency
tone, the outputs of the channels are different, and there is no closed expression for the time delay
difference. In this case, we propose the use of the time delay that minimizes the cross-correlation
between the two outputs. Closed form expressions are found that together with reasonable
simplifications lead to practical design considerations. In fact, the analysis reveals that for
applications requiring high accuracy, analog filtering must be restricted to very low order filters. In
such cases, if further filtering is required by the application, it should be performed in the digital
domain after the corresponding A/D conversion. Otherwise, the time delay to be measured will be
completely overridden by the filters parametric mismatch. The results of the different analysis are
experimentally demonstrated using a carefully designed setup.

2. TIME DELAY ANALYSIS

To begin the analysis, it is illustrative to explain the situation of a first-order low-pass filter, excited
with a single-tone sinusoid. In such case, the system’s frequency response has the following form:

H jwð Þ ¼ a= jωþ bð Þ: (1)

Therefore, the phase is given by

ϕ ¼ tan�1 ω=bð Þ: (2)

As depicted in Figure F11, let us now consider two systems, of the form (1), with a common sinusoidal
input, namely u(t) =U × sin(ωt), where one of them suffers a variation in the value of the pole, changing
from b to b +Δb, that is,

H1 jωð Þ ¼ a= jωþ bð Þ (3)

H2 jωð Þ ¼ a= jωþ bþ Δbð Þ: (4)

Figure 1. Setup considered with a nominal system and a perturbed system.

2 G. STUARTS AND P. JULIÁN

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2014)
DOI: 10.1002/cta

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62



Accordingly, the outputs will differ in phase. Actually, both outputs will be of the following form:

y1 tð Þ ¼ ∥H1 ωð Þ∥U�sin ωt þ ϕ1 ωð Þð Þ (5)

y2 tð Þ ¼ ∥H2 ωð Þ∥U�sin ωt þ ϕ2 ωð Þð Þ: (6)

The electronic design will try to minimize the difference between the two filters, so it makes sense to
assume that Δb≪ b and perform a linearization of y2 as a function of b. Considering a variation Δb
around the point b, we obtain

ϕ2 ωð Þ ¼ tan�1 ω=bð Þ þ ω= ω2 þ b2
� �� ��Δb: (7)

If we define the differential time delay (DTD) as the time difference between the two output signals,
then the DTD corresponding to this system is

δ ωð Þ ¼ ϕ1 ωð Þ � ϕ2 ωð Þð Þ=ω ¼ Δb= ω2 þ b2
� �

: (8)

Figure F22 shows a plot of δ(ω) versus frequency for three different values of b = {1, 10, 100}. In the
three cases, Δb was chosen as a 5% variation on the nominal cut-off frequency value, that is,
Δb = 0.05 × b. It can be clearly appreciated that a maximum of value Δb/b2 occurs at low frequencies
and reduces to zero as frequency increases.

The analysis can be repeated for a single pole high-pass filter to find that it has exactly the same DTD
characteristics as a low-pass filter.

Notice that for both single pole filters (low-pass and high-pass), the mismatch in DTD will be small
if the frequencies are close to the cut-off frequency or above it; in other words, lower frequency signals
introduce larger DTD. In addition, the bigger the cut-off frequency ωo= b, the smaller the DTD.

2.1. Sensitivity analysis for general filters

According to the application, the designer may need to implement filters of higher order and different
type. In multiple-pole systems, the DTD can be calculated as the sum of the DTD contributions of each
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Figure 2. Differential time delay (DTD) as a function of frequency for a first-order low-pass or high-pass filter.
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pole. This means that a second-order filter with a double pole at the cut-off frequency will produce a
DTD twice as high as the single pole case.

Regarding filter type, a typical choice is a Butterworth filter that exhibits maximally flat magnitude
response, or a Bessel filter, with maximally linear phase response, which is suitable for audio
applications because it preserves the shape of the wave. Another type of filters that will be
considered is the critically damped filter (CDF), in which all the poles are found at the cut-off
frequency and on the real axis.

A more general expression is needed for these kinds of systems:

H sð Þ ¼∏
N

i¼1

mis2 þ cisþ di
nis2 þ aisþ bi

(9)

where the phase is given by

φ jωð Þ ¼
XN
i¼1

arctan
ciω

di � miω2

� �
� arctan

aiω
bi � niω2

� �� �
: (10)

If two systems are considered, with a small variation on some of their parameters, then it is possible
to derive an expression for the DTD that generalizes (8):

δ ωð Þ ¼
XN
i¼1

di � miω2ð ÞΔci � ciΔdi þ ciω2Δmi

ciωð Þ2 þ di � miω2ð Þ2 �
XN
i¼1

bi � niω2ð ÞΔai � aiΔbi þ aiω2Δni
aiωð Þ2 þ bi � niω2ð Þ2 : (11)

Figure F33 shows the DTD for 8th order Bessel, Butterworth and CDF low-pass filters with a
normalized cut-off frequency (ω0 = 1) and 5% mismatch. It is possible to derive some interesting
conclusions from this figure. First, the Butterworth filter gives the lowest DTD within the passband,
but it peaks around the cut-off frequency, and it can cause a DTD as high as twice the
low-frequency value. On the other hand, the DTD for the Bessel filter starts at a higher value but
remains constant through all the passband. The CDF filter presents the highest DTD at low
frequencies, but the DTD function is monotonically decreasing. As it will be shown later, this can be
an advantage in system design.
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Figure 3. Differential time delay (DTD) as a function of frequency for 8th order low-pass filters with
normalized cut-off frequency and 5% mismatch.
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2.2. Analysis for several frequency components

If the input to the linear system contains more than one frequency component, and the two systems
have a parametric difference, every frequency component is delayed by a different amount, and the
two systems produce in general two different signals. This means that it is not possible to find a time
delay δ such that one of the outputs can be delayed to match the other. Therefore, it is necessary to
introduce different criteria for DTD.

In this work, we propose the cross-correlation as the tool to define the time delay between two
signals that are different. Given two signals s1(t) and s2(t), the cross-correlation is defined as

Rs1;s2 τð Þ ¼ E s1 tð Þs2 t � τð Þ½ � (12)

where E denotes expectation [1]. The argument τ that maximizes (12) provides an estimate of the DTD,
that is,

δ ¼ argmaxRs1;s2 τð Þ: (13)

The choice of (13) is based on the widespread use of this mathematical tool for matching closely
related signals and even for estimating time delay between signals [1–4].

Without loss of generality, we consider for this case, a system like the one illustrated in Figure 1,
where the input has the following form:

u tð Þ ¼
XN
i¼1

Ui sin ωitð Þ (14)

then the two outputs y1(t) and y2(t) will be of the following form:

y1 tð Þ ¼
XN
i¼1

∥H1 ωið Þ∥Ui sin ωi t þ δ1i ωið Þ� �� �þ n1 tð Þ

y2 tð Þ ¼
XN
i¼1

∥H2 ωið Þ∥Ui sin ωi t þ δ2i ωið Þ� �� �þ n2 tð Þ;
(15)

where n1(t) and n2(t) are zero-mean and uncorrelated noise signals.
In the following, we will consider that the parametric variation is small enough such that

‖H1(ωi)‖≈ ‖H2(ωi)‖, for i= 1, 2,.. N, and we will note ai= ‖H(ωi)‖Ui. In addition, and without loss of
generality, we will consider y1(t) as reference and assume that δ1(ωi) = 0, for i= 1, 2,.. N, so that the
individual DTD between the tones, is given by δ(i)≜ δ2(ωi)� δ1(ωi).

§ Having introduced these
considerations, we can formulate the following theorem that states the result of the cross-correlation
between two outputs of the aforementioned form.

Theorem 1
Let us consider two signals y1, y2 formed as the sum of N tones with magnitude ak and frequencies ωk,
where ωk≠ωn for k≠ n and individual differential delays δk, that is,

y1 tð Þ ¼
XN
k¼1

ak sin ωktð Þ þ n1 tð Þ (16)

y2 tð Þ ¼
XN
k¼1

ak sin ωk t þ δk
� �� �þ n2 tð Þ (17)

§This notation is used for the sake of conciseness.

ANALYSIS OF TIME DELAY DIFFERENCE IN MATCHED FILTER CHANNELS 5

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2014)
DOI: 10.1002/cta

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62



then, the cross-correlation between them can be approximated by

R̂y1y2 τð Þ ¼
XN
k¼1

a2k
2
cos ωk τ þ δk

� �� �
: (18)

Proof
See The Appendix. ∎

Using the results of Theorem 18, it is possible to approximate the DTD as the time τ* that maximizes
(18). In fact, τ* is obtained from the solution of

∂R̂
∂τ

¼ 0; (19)

which is given by
XN
k¼1

a2kωk sin ωk δk þ τ
� �� 	 ¼ 0: (20)

In order to analyse the results of this theorem, it is illustrative to consider the input signal as a sum of
two frequency tones and calculate the DTD between the output signals. Let

y1 tð Þ ¼ a1 sin ω1tð Þ þ a2 sin ω2tð Þ þ n1 tð Þ
y2 tð Þ ¼ a1 sin ω1 t þ δ1

� �� �þ a2 sin ω2 t þ δ2
� �� �þ n2 tð Þ; (21)

according to (18), the cross-correlation between them is given by

R̂ τð Þ ¼ a21
cos ω1 δ1 þ τ

� �� �
2

þ a22
cos ω2 δ2 þ τ

� �� �
2

: (22)

The maximum value of R̂ τð Þ is obtained from solving dR̂ τð Þ=dτ ¼ 0 where also d2R̂ τð Þ=dτ2 < 0,
which is given by

a21ω1 sin ω1 δ1 þ τ
� �� �

2
¼ � a22ω2 sin ω2 δ2 þ τ

� �� �
2

: (23)

Two cases can be considered here. Let us first examine the case where each individual delay and the
solution delay are small compared to the period of the signal frequencies, that is,ωi(τ + δ(i))≪1 for i=1, 2.

(1) Individual DTD small compared to 1/ωi and i = 1, 2: In this case, we can approximate
sin(ωi(τ + δ(i))) ≅ωi(τ + δ(i)), so that (23) reduces to

a21ω
2
1 δ1 þ τ
� � ¼ �a22ω

2
2 δ2 þ τ
� �

: (24)

A simple algebraic manipulation yields the value for τ:

τ ¼ αδ1 þ 1� αð Þδ2 (25)

where

α ¼ ω2
1a

2
1

ω2
1a

2
1 þ ω2

2a
2
2

1� αð Þ ¼ ω2
2a

2
2

ω2
1a

2
1 þ ω2

2a
2
2

: (26)

Several interesting conclusions can be drawn from (25). First of all, notice that the composite DTD is
the convex combination of the two individual delays, thus, the DTD is always going to be an
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intermediate value, that is, a value in the set

Λ ¼ min δ1; δ2
� �

;max δ1; δ2
� �� 	

: (27)

This means that if the filter type is such that its DTD function is monotonically
decreasing, then the low-frequency DTD value can be used as an upper bound of the
system DTD, for any composition of the input signal.

Secondly, notice from (26) that whether the composite DTD is closer to one delay or the other is
dependent on the square of the frequency and the square of the amplitude. Therefore, for high order
filters where amplitude attenuation grows faster than frequency, the relative amplitude of one tone
versus the other has more influence on the composite DTD than the relative values of the frequencies.

Thirdly, notice that if the amplitudes of the tones are equivalent, then the composite DTD is closer to
the individual DTD of the higher frequency signal, which is always smaller for monotonically
decreasing DTD functions.

The following examples illustrate these points.

Example 1
Let us consider two low-pass filters of the form (3) and (4), with a = 1, b = 1 and Δb = 0.01 × b,
and a signal composed by the sum of two tones u1(t) = sin(ω1t) and u2(t) = sin(ω2t), where
ω1 = 0.5 rad/s is kept constant and ω2 is varied over the range [10� 2, 102]. The signals at the
output are of the form (21). Signal u1(t) is low frequency, so a1≈ 1, whereas a2 = ∥H(jω2) ∥.
According to (8), for a low-pass filter, the individual DTD are of the form δ(i) =Δb/(ω2 + b2).
As the first tone is fixed, δ1 =Δb/(0.12 + b2) is constant, whereas δ2 ¼ Δb= ω2

2 þ b2
� �

.
Figure F44 shows the individual DTD and the composite DTD. It can be appreciated that at low ω2

frequencies, both amplitudes are close to unity, the individual DTD satisfies δ2≈ δ1≈Δb/b2 so that
the composite DTD is also constant and equal to τ≈Δb/b2. In the mid-frequency range of ω2, we
can see that the magnitude has not yet fallen appreciably, but the frequency has increased; therefore,
τ is closer to δ2. Eventually, the increase in frequency is compensated by the decrease in magnitude,
and the composite DTD reaches an equilibrium point between δ1 and δ2.

Example 2
Let us consider now two high-pass filters of the form ∥H1(ω)∥= ajω/(jω+ b) and ∥H2(ω)∥= ajω/
(jω+ b +Δb), with a = 1, b = 1 and Δb=� 0.01 × b and two signals of frequencies ω1 = 1 rad/s,
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Figure 4. Individual (DTD1= δ1 and DTD2= δ2) and composite differential time delay (DTD) as a function
of ω2 for a first-order low-pass filter.
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ω2∈ [10� 2, 102]. In this case,ai ¼ ωi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
i þ b2

q
, i=1, 2, so that the low-frequency term is a1≈ω1/b, and

the high-frequency term is a2≈ 1. The individual DTD δ1 and δ2 are as in Example 4.
Figure F55 shows the individual and composite DTD as a function of frequency ω2. It can be seen that

while ω1>ω2, τ is closer to δ1. As frequency ω2 increases, τ approaches δ2.

(2). Individual DTD large compared to 1/ωi: In this case, we will consider the situation where one of
the frequencies, for example, ω2 is high, so that ω2(δ2 + τ)≫ 1 while the other still satisfies ω1

(δ1 + τ)≪ 1. In this case, the first term in (22) can be Taylor approximated as a constant term,

in a neighbourhood of τ =� δ1 where it reaches its maximum value, that is, a21
cos ω1 δ1þτð Þð Þ

2 ≈a21=2;
therefore, R̂ τð Þ can be written as

R̂ τð Þ ¼ a21
2
þ a22

cos ω2 δ2 þ τ
� �� �
2

: (28)

The second term in Eq. (28) is periodic and has maximum values on the points

Γ ¼ �δ2 þ 2kπ=ω2; k ∈ℤ: (29)

Because R̂ τð Þ has been reduced to the sum of a constant term plus a cosine function, then, it is clear
that its maximum will coincide with the maximum of the cosine function that is closer to � δ1. If k is
allowed to be a real number, the solution of (29) coincident at τ =� δ1 would be k=ω2(δ2� δ1)/(2π).
Therefore, the solution is given by

τ ¼ �δ2 þ 2k�π=ω2

k� ¼ ω2 δ2 � δ1
� �

= 2πð Þ� �� � (30)

where ⌈k⌉ stands for the ceiling function, which gives the smallest integer greater than k.
Figures F66 and F77 show the results of Examples 1 and 2 now letting ω2 ∈ [10� 2, 104] and including the

approximation for high frequencies.
The high-frequency behaviour of the composite DTD function needs to be treated carefully. In a

low-pass filter with an input signal containing both a low-frequency and a high-frequency
components, it would make sense to assume that the time delay between the outputs, if any, will be
produced by the low-frequency tone, that will have much higher amplitude. However, in this
example for a first-order low-pass filter, when ω2 = 400 rad/s it produces a composite DTD of 15ms
(almost twice the DTD for the low-frequency component) even after a 52 dB attenuation. This means
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Figure 5. Individual (DTD1= δ1 and DTD2= δ2) and composite differential time delay (DTD) as a function
of ω2 for a first-order high-pass filter.
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that any high-frequency noise source can significantly affect the DTD between the outputs. For this
simulation, both frequency components have the same amplitude, but the same behaviour will occur if
the noise source presents lower amplitude but is located closer to the sensors.

3. EXPERIMENTAL RESULTS

In order to validate the expressions obtained in the previous section, a set of experiments were
conducted to measure the DTD in filters of different types and orders.

For the first-order measurements, RC high-pass, low-pass and bandpass filters were implemented
with 1% tolerance resistors and 10% tolerance capacitors. Stanford Research Systems (SRS) SIM965
analog filters were used to implement higher order Butterworth and Bessel filters.
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Figure 6. Individual (DTD1= δ1 and DTD2= δ2) and composite differential time delay (DTD) as a function
of ω2 for a first-order low-pass filter.
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Figure 7. Individual (DTD1= δ1 and DTD2= δ2) and composite differential time delay (DTD) as a function
of ω2 for a first-order high-pass filter.
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The input signal was generated with the SRS-DS360 low-distortion signal generator, which can
provide single and dual tone signals with variable frequencies up to 200KHz.

The acquisition is a critical step of the DTD estimation. In order to obtain a good result from the
cross-correlation, at least 10 periods of the waveforms must be sampled [4]. Moreover, the sampling
period must be at least 20 times smaller than the target DTD in order to have 5% accuracy. This
imposes a limitation on the sampling speed and memory of the acquisition system. For example, in
order to measure a DTD of 1μs between two 50Hz signals, the sampling frequency needs to be
higher than 20MHz (50 ns period), and in order to acquire 10 periods of each waveform, the system
must be able to store 8 million points.

For these experiments, the acquisition was performed with a Wavemaster 804Zi-A LeCroy digital
oscilloscope, which allows 40GS/s and has a memory of 20 million points per channel. The input
channels, including probes, can also be a source of spurious DTD, so they need to be characterized
in order to compensate their mismatch before performing any measurement. Twenty cycles of each
waveform were acquired and then trimmed the data vectors from the first to the last zero-crossing,
both with positive edge. Every step of the frequency sweep was measured at least 10 times, and then
the resulting DTD was averaged.

The cross-correlation was performed by the xcorr routine in Matlab, which also requires a high
amount of memory and system resources. For example, in order to run the xcorr routine on two
vectors of 180MB each, the system needs at least 7GB of RAM memory.

3.1. High-pass RC filters

For the first-order high-pass filters, a 220 nF capacitor and a 12KΩ resistor were used to obtain a 60Hz
cut-off frequency. Because of parametric mismatch, cut-off frequencies are different on each filter, so
the frequency response of the filters had to be measured first.

The actual cut-off frequency of each filter was evaluated by means of a least-squares minimization
routine in Matlab, where fc1 = 57.81Hz and fc2 = 59.44Hz were obtained. With these values, the
numerical DTD was calculated and compared with the result of the cross-correlation estimation, and
they are shown in Figure F88.

3.2. Low-pass RC filters

The low-pass filters were designed to present a 20KHz cut-off frequency; in this case, a 1KΩ resistor
and a 8.2 nF capacitor were used. The actual cut-off frequencies were measured to be fc1 = 19690Hz
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Figure 8. Differential time delay (DTD) calculated and estimated from the measurements of first-order high-
pass filters.
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and fc2 = 17901Hz. The numerical calculation of the DTD and the estimation from the cross-correlation
analysis are shown in Figure F99.

3.3. Bandpass RC filters

Cascading the high-pass and low-pass filters from the previous subsections, two bandpass filters were
implemented, and the results are shown in Figure F1010.

3.4. Higher order filters

Depending on the application, the designer may need to implement higher order or different types of
filters. A general expression for the DTD of a set of filters as a function of their parameters and
mismatch was found (11). In order to validate this expression, a set of Butterworth and Bessel filters
of different order were implemented as shown in Figure F1111.

Figure F1212 shows the theoretical function and the measurements for 2nd, 4th, 6th and 8th order
Butterworth and Bessel low-pass filters with a cut-off frequency of 1KHz.
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Figure 9. Differential time delay (DTD) calculated and estimated from the measurements of first-order low-
pass filters.
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Figure 10. Differential time delay (DTD) calculated and estimated from the measurements of bandpass filters
implemented as the cascade of the previous high-pass and low-pass filters.
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Several conclusions can be drawn from Figure 12. First of all, an increase in the order of the filter
produces a higher DTD. The 8th order filters show a low-frequency DTD four times higher than the
value for the 2nd order case. This means that from the delay estimation perspective, it is not
convenient to increase the filter order. Secondly, Butterworth filters always show a lower DTD at
low frequencies than the Bessel filters. As the order increases, the difference is more appreciable.
Finally, Bessel filters exhibit a monotonically decreasing DTD function, while the DTD for
Butterworth filters shows a peak around the cut-off frequency.

The same conclusions hold for high-pass filters, as can be seen in Figure F1313. In this case, because of the
strong attenuation at low frequencies, 6th and 8th order filters show a higher error in the measured DTD.

3.5. Multitone input

Expressions (25) and (30) provide an estimation of the DTDwhen the input is a combination of two tones.
In order to validate these expressions, the filter setup of Figure 11 was implemented. The input signal was
constructed as the sum of a constant frequency tone ω1 = 500Hz and a variable frequency tone ω2 in the
range [25 and 10KHz]. Firstly, two Butterworth second-order low-pass filters were implemented with the
SIM965 filters, with cut-off frequencies of 1 and 950Hz. Figure F1414 shows the approximation and the result
of the measurements of the DTD between the filter outputs.

This figure shows an important result. For second (and higher) order low-pass filters, the attenuation on
the high-frequency tone is such that no periodic alternation will occur when the composite DTD converges
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Figure 12. Theoretical and measured differential time delay (DTD) for Butterworth and Bessel low-pass
filters of different orders.

Figure 11. Filter setup used to perform the measurements.
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to the low-frequency value. In particular, for filters with monotonically decreasing DTD functions,
this means that the low-frequency DTD can be used as upper bound for the composite DTD.

Secondly, two second-order high-pass Butterworth filters were implemented with the SIM965
filters, with cut-off frequencies of 500 and 450Hz. In this case, the tone ω2 had a variable
frequency in the range [10 and 50KHz], and the fixed tone had frequency ω1 = 300Hz.
Figure F1515 shows the approximation and the result of the measurements of the DTD between
the filter outputs.

For high-pass filters, increasing the filter order does not prevent the periodic alternation of the
composite DTD around the DTD of the fixed tone, but it does increase the low-frequency DTD of
each tone. This means that increasing the order of a high-pass filter is only prejudicial from the time
delay estimation perspective.

4. FILTER DESIGN

From the results obtained, we can extract the following considerations regarding filter design for signal
conditioning in high-precision measurement systems.
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Figure 13. Theoretical and measured differential time delay (DTD) for Butterworth and Bessel high-pass fil-
ters of different orders.
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Figure 14. Differential time delay (DTD) calculated and estimated from the measurements of two second-or-
der low-pass Butterworth filters when the input is the sum of two tones.
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4.1. High-pass filters

If possible, high-pass filters should be avoided in high-precision measurement systems. In a high-
pass filter, the cut-off frequency needs to be lower than the frequency band of interest, and
because the low-frequency DTD value is inversely related to the cut-off frequency, it will
produce a high DTD that will usually act as an upper bound for the DTD of the complete
system. The order of the filter acts as a multiplier of the DTD, so if a high-pass filter is
unavoidable, the order should be kept as low as possible, and the cut-off frequency as close as
possible to the band of interest.

In summary, for time delay applications, a high-pass filter should always be first-order and present a
cut-off frequency as high as possible, even at the expense of some attenuation in the passband.

4.2. Low-pass filters

Low-pass filters exhibit a similar DTD function than high-pass filters. However, the cut-off
frequency is higher than the band of interest, and this means a lower low-frequency DTD
(hence a lower upper bound). Again, the order of the filter needs to be kept as low as possible,
but in this case, a second-order filter can prevent the periodic alternation of the DTD shown in
Figures 4 and 6. It is possible to obtain the same result while preserving the low-frequency
value of the first-order case if the two poles are separated by a decade. A high cut-off
frequency will exhibit a lower low-frequency DTD, but it also means that signals out of the
band of interest (like noise sources) will be amplified. This is a compromise for the filter
designer to deal with.

In summary, a low-pass filter should always be second order, with a dominant pole setting, the
cut-off frequency as high as possible, and the second pole separated by one decade.

4.3. Bandpass filters

A bandpass filter can be considered as a cascade of a high-pass and a low-pass filter. As such, the
DTD contribution of each filter will be added and the same design rules for the individual filters
will hold. Nevertheless, if the bandwidth is high enough (that is, if the cut-off frequencies from
the high-pass and the low-pass are widely separated), the DTD produced by the high-pass filter
is highly dominant, and there are no design restrictions for the low-pass section.
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Figure 15. Differential time delay (DTD) calculated and estimated from the measurements of two second-
order high-pass Butterworth filters when the input is the sum of two tones.
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In summary, a bandpass filter should be designed as a first-order high-pass section with cut-off
frequency as high as possible, cascaded with a second-order low-pass section with cut-off frequency
as high as possible and a separation of one decade between the two poles.

4.4. Filter type

Butterworth, Bessel and critically damped filters were analysed in this work. Butterworth filters
are a typical choice because of their maximally flat magnitude response. Regarding time delay
estimation, they also produce a lower low-frequency DTD than the other filters for the same
order and mismatch. However, they show a peak in the DTD function around the cut-off
frequency that is increased with the order of the filter. Bessel filters have linear phase response
and that translates into a flat DTD response in the passband. The DTD function is also
monotonically decreasing, which means that the low-frequency DTD value can be used as an
upper bound for the composite DTD of the filter. Critically damped filters show no
performance improvements over Butterworth or Bessel filters.

In summary, if the application requires high order filtering, Bessel filters should be considered over
Butterworth or other sharp phase response producing filters. An alternative solution would be to use
low order filtering only to condition the input signals and then go through high order digital filters
that will not produce any DTD between them.

Example 3
Fourth-order Bandpass filter.

We consider again the example from [10] discussed in the Introduction. The 4th order bandpass
filters, with a frequency cut-off mismatch of 0.5%, will exhibit a DTD response as shown in
Figure F1616. For this simulation, the input signal is composed as the sum of a frequency-fixed 200Hz
tone, and a second tone with variable frequency between 0.1 and 1MHz. In this case, the composite
DTD shows a maximum of 18 μs, and the worst possible noise scenario would produce a DTD of
38.1μs between the outputs.

The DTD for a second set of filters is simulated in Figure 16, designed according to the guide
presented in this section. This bandpass filter consists in a first-order high-pass section with 100Hz
cut-off frequency and a second-order low-pass section with poles at 300 and 3KHz. If the same
input signal is injected to the filters and the same cut-off frequency mismatch is considered, the
maximum spurious DTD is found to be 4.16μs, and in the worst noise scenario, the filters would
produce a 10.8 μs DTD. This means, it is possible to achieve a 4 × spurious DTD reduction just by
selecting the appropriate filter setup.
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Figure 16. Differential time delay (DTD) comparison between the 4th order bandpass filter and the proposed
filter, for a cut-off frequency mismatch of 0.5%.
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5. CONCLUSIONS

Several expressions were developed for the estimation of time delay as a function of filter parameters.
The case of a single tone going through a filter was analysed, and expression (11) was proposed as an
estimation for the differential time delay between the outputs of two generalized filters of any order.
Experimental and simulated results show good matching with the actual numerical calculation.

The cross-correlation between the outputs was selected as the tool to derive expressions for the
estimation of the DTD when the input is a multitone signal. A set of measurements was performed
on filters of different type and order to validate the results.

From the obtained results, we can conclude that for applications where the DTD between two channels is
critical, the order of the signal conditioning filter must be minimized. The lowest cut-off frequency is the
most critical because it produces the greatest impact on the DTD; therefore, high-pass filters should be
avoided if possible or otherwise placed as close as possible to the band of interest. Low-pass filters should
be second order, with cut-off frequency as high as possible, and with the two poles separated one decade.
In this case, the DTD will be only slightly higher than the first-order case, and the second pole will
provide enough attenuation to prevent the periodic high-frequency DTD oscillations. These results clearly
suggest the need to perform the minimum required filtering at the front-end circuitry, leaving the higher
order filtering for a digital stage, where filter pairs can be implemented without mismatch.

APPENDIX
Proof of Theorem 1

Proof
Let two signals y1(t) and y2(t), where y1(t) is constituted as a sum of N sinusoidal signals of magnitude
ak and frequency ωk (k= 1, 2,.., N) and y2(t) is such that each of its components presents a time delay δk

(k = 1, 2,.., N) with respect to the components of y1(t), that is,

y1 tð Þ ¼
XN
k¼1

ak sin ωktð Þ þ n1 tð Þ (A1)

y2 tð Þ ¼
XN
k¼1

ak sin ωk t þ δk
� �� 	þ n2 tð Þ; (A2)

where n1(t) and n2(t) are zero-mean, uncorrelated noise signals. The cross-correlation between them is
given by

Ry1;y2 τð Þ ¼ E y1 tð Þy2 t þ τð Þ½ � (A3)

where E denotes expectation. Because of the finite observation time, however, Ry1y2 τð Þ can only be es-
timated. For ergodic processes, an estimate of the cross-correlation is given by

R̂y1y2 τð Þ ¼ lim
T→∞

1
2T

Z T

�T
y1 tð Þy2 t þ τð Þdt (A4)

where

y1 tð Þy2 t þ τð Þ ¼
XN
k¼1

ak sin ωktð Þ
XN
k¼1

ak sin ωk t þ δk þ τ
� �� 	

¼
XN
k¼1

a2k sin ωktð Þ sin ωk t þ δk þ τ
� �� 	

þ
XN
k¼1

XN
l¼1

l≠k


 � akal sin ωktð Þ sin ωl t þ δl þ τ
� �� 	

(A5)

16 G. STUARTS AND P. JULIÁN

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2014)
DOI: 10.1002/cta

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62



Because sin(α)sin(β) = 1/2[cos(α� β)� cos(α + β)], the second term of (A5) is

akal sin ωktð Þ sin ωl t þ δl þ τ
� �� 	 ¼

¼ akal
2

cos ωk � ωlð Þt � ωl δl þ τ
� �� 	

� akal
2

cos ωk þ ωlð Þt þ ωl δl þ τ
� �� 	

then

Z T

�T
akal sin ωktð Þ sin ωl t þ δl þ τ

� �� 	 ¼

¼ akal
2

Z T

�T
cos ωk � ωlð Þt � ωl δl þ τ

� �� 	� akal
2

Z T

�T
cos ωk þ ωlð Þt þ ωl δl þ τ

� �� 	

Each of the terms in (A7) is an integral of a cosine function between�T and T. Because the integral of a
full period is null, its value can be bounded by the area of a cosine half cycle, which has a value of 2.
Then,

∥E akal sin ωktð Þ sin ωl t þ δl þ τ
� �� 	� �

∥ ¼ ∥li m
T→∞

1
2T

Z T

�T
akal sin ωktð Þ sin ωl t þ δl þ τ

� �� 	
dt∥

¼ li m
T→∞

1
2T

∥
Z T

�T
akal sin ωktð Þ sin ωl t þ δl þ τ

� �� 	
dt∥

≤ li m
T→∞

1
2T

∥
akal
2

Z T

�T
cos ωk � ωlð Þt � ωl δl þ τ

� �� 	
dt∥

�li m
T→∞

1
2T

∥
akal
2

Z T

�T
cos ωk þ ωlð Þt þ ωl δl þ τ

� �� 	
dt∥

≤ li m
T→∞

1
2T

∥
akal
2

2∥� limT→∞
1
2T

∥
akal
2

2∥ ¼ 0:

Because

∥E akal sin ωktð Þ sin ωl t þ δl þ τ
� �� 	� �

∥ ¼ 0

then

E akal sin ωktð Þ sin ωl t þ δl þ τ
� �� 	� � ¼ 0: (A8)

On the other hand,

a2k sin ωktð Þ sin ωk t þ δk þ τ
� �� 	 ¼ a2k

2
cos ωk δk þ τ

� �� 	� a2k
2

cos 2ωkt þ ωk δk þ τ
� �� 	

(A9)

then

E a2k sin ωktð Þ sin ωk t þ δk þ τ
� �� 	� � ¼ E

a2k
2

cos ωk δk þ τ
� �� 	� �

� E
a2k
2

cos 2ωkt þ ωk δk þ τ
� �� 	� �

(A10)

The second term in (A10) is of the same form as each of the terms in (A7), so

E
a2k
2

cos 2ωkt þ ωk δk þ τ
� �� 	� �

¼ 0: (A11)

(A6)

(A7)
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For the first term of (A10), we have that

E
a2k
2

cos ωk δk þ τ
� �� 	� �

¼ lim
T→∞

1
2T

Z T

�T

a2k
2

cos ωk δk þ τ
� �� 	

dt: (A12)

Because the integrand does not depend on t, it results

E
a2k
2

cos ωk δk þ τ
� �� 	� �

¼ lim
T→∞

1
2T

Z T

�T

a2k
2

cos ωk δk þ τ
� �� 	

dt

¼ a2k
2

cos ωk δk þ τ
� �� 	

lim
T→∞

1
2T

Z T

�T
dt

¼ a2k
2

cos ωk δk þ τ
� �� 	

lim
T→∞

1
2T

T � �Tð Þ½ �

¼ a2k
2

cos ωk δk þ τ
� �� 	

: (A13)

Therefore, from (A11) and (A13), it results

E a2k sin ωktð Þ sin ωk t þ δk þ τ
� �� 	� � ¼ a2k

2
cos ωk δk þ τ

� �� 	
(A14)

Finally, from (A8) and (A14), we find that

R̂y1y2 τð Þ ¼
XN
k¼1

a2k
2

cos ωk t þ δk
� �� 	

:

∎
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This paper presents an analysis of the time delay difference between the outputs of two matched filter
channels, in the presence of parametric mismatch. Expressions are developed that estimate the effect of
parametric mismatch in the differential time delay (DTD) for filters of arbitrary type and order. The ac-
curacy of these expressions is simulated and demonstrated experimentally. Filter design considerations
that attempt to minimize spurious DTD in high-precision time delay estimation systems are presented.
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