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Abstract 20 

Prostaglandins (PGs) are synthesized through the action of the rate-limiting 21 

enzyme cyclooxygenase (COX) and further specific enzymes. The development of 22 

Cox-deficient mice in the 1990s gave insights into the reproductive roles of PGs. 23 

Female Cox-knockout mice were subfertile or infertile. Interestingly, fertility was not 24 
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affected in male mice deficient in Cox, suggesting that PGs may not be critical for 25 

the functioning of the testis. However, this conclusion has recently been challenged 26 

by observations of important roles for PGs in both physiological and pathological 27 

processes in the testis.  28 

The two key somatic cell types in the testis, Leydig and Sertoli cells, express the 29 

inducible isoenzyme COX2 and produce PGs. Testicular COX2 expression in 30 

these somatic cells is regulated by hormonal input (FSH, PRL and testosterone) as 31 

well as by IL1ß. PGs modulate steroidogenesis in Leydig cells and glucose uptake 32 

in Sertoli cells. Hence, the COX2/PG system in Leydig and Sertoli cells acts as a 33 

local modulator of testicular activity, and consequently may regulate spermatogenic 34 

efficiency. 35 

In addition to its expression in Leydig and Sertoli cells, COX2 has been detected in 36 

the seminiferous tubule wall, and in testicular macrophages and mast cells of 37 

infertile patients. These observations highlight the possible relevance of PGs in 38 

testicular inflammation associated with idiopathic infertility. 39 

Collectively, these data indicate that the COX2/PG system plays crucial roles not 40 

only in testicular physiology (i.e. development, steroidogenesis, spermatogenesis), 41 

but more importantly in the pathogenesis or maintenance of infertility status in the 42 

male gonad. Further studies of these actions could lead to new therapeutic 43 

approaches to idiopathic male infertility.  44 

 45 

Introduction 46 

Prostaglandins (PGs) are bioactive lipid substances derived from arachidonic acid.  47 
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Arachidonic acid is generated from phospholipid hydrolysis catalyzed by combined 48 

phospholipase A2 (PLA2) and cyclooxygenase or lipoxygenase activities. 49 

Arachidonic acid can also be generated from diacylglycerol (DAG) by the action of 50 

a diacylglycerol lipase (Harnett & Goodrigde 2005). 51 

PGs, which are found in most tissues and organs, are produced by almost all 52 

nucleated cells. They were discovered in the 1930s and named prostaglandins 53 

because they were originally thought to be prostatic products (Goldblatt 1933, Von 54 

Euler 1935). 55 

PGs are involved in a diversity of physiological and pathological systems such as 56 

regulation of inflammatory and immune responses, cell growth, intraocular 57 

pressure, calcium movement, contraction and relaxation of vascular smooth 58 

muscle cells, aggregation and disaggregation of platelets, glomerular filtration rate 59 

in the kidney, sensitivity of spinal neurons to pain, body temperature in response to 60 

fever and parturition (Narumiya 2007). 61 

The biosynthetic pathway of PGs is initiated when cyclooxygenase (COX) 62 

catalyzes two sequential reactions, cyclooxygenation of arachidonic acid to PGG 63 

and a subsequent peroxidation in which PGG is reduced to PGH. The resulting 64 

PGH is converted to other bioactive PG isomers by the action of synthases and 65 

ketoreductases, reactions of dehydration, and non-enzymatic isomerization (Fig. 1; 66 

Simmons et al. 2004, Frungieri et al. 2006). The majority of the biologically active 67 

PGs belong to series 2, characterized by the presence of two double bonds in the 68 

hydrocarbon structure (Simmons et al. 2004, Frungieri et al. 2006). 69 

COX, the rate-limiting enzyme of PG biosynthesis, is also known as prostaglandin 70 

H synthase (PGHS) or prostaglandin endoperoxide synthase (PTGS). COX is 71 
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present in two distinct isoforms, type 1 and type 2, encoded by separate genes 72 

(Smith & Langenbach 2001, Simmons et al. 2004). COX1, commonly known as the 73 

constitutive isoform, is found in most cell types, while COX2, the inducible form, 74 

appears to be expressed only during early stages of cell differentiation or 75 

replication, in response to varying stimuli such as cytokines and mitogenic factors. 76 

COX2 expression has been described in physiological and pathological processes 77 

including inflammation, angiogenesis, bone absorption, gastric ulceration, kidney 78 

diseases, brain disorders and female genital tract disorders (Katori & Majima 79 

2000). Furthermore, COX2 is over-expressed in many types of cancer, including 80 

breast, colon, lung and prostate cancers (Harris 2009). 81 

Depending on the biological process, COX isoenzymes can act individually, in 82 

concert, or in cases where one isoenzyme is lacking, in a compensatory manner 83 

(Smith & Langenbach 2001). Recently, new variants of COX have been 84 

discovered, such as COX3 and PCOX1, splice variants that affect the coding 85 

region of COX1, as well as a number of alternatively polyadenylated transcripts of 86 

COX and single nucleotide polymorphisms (SNPs) (Simmons et al. 2004). COX 87 

variants and mutants are likely to yield altered or expanded biological function. 88 

DP, EP, FP, IP and TP are serpentine plasma membrane-localized prostanoid 89 

receptors that bind PGD, PGE, PGF, PGI and thromboxane, respectively. In 90 

addition, several prostanoids, of which 15-deoxy- 12,14-PGJ2 (15d-PGJ2) is the 91 

most potent, may activate the peroxisome proliferator-activated receptor gamma 92 

(PPARγ) members of the steroid/thyroid family of nuclear hormone receptors, 93 

which act as transcription factors and may thus directly influence gene transcription 94 

(Simmons et al. 2004, Narumiya 2007). 95 
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 96 

Cyclooxygenase and prostaglandins in the human testis 97 

In the 1990s, the development of Cox1 and Cox2 deficient mice yielded insights 98 

into the reproductive roles of PGs. Whereas female Cox2 knockout mice are 99 

infertile, those deficient in Cox1 have difficulties with parturition but produce litters 100 

with normal weight. In contrast, fertility is not affected in male mice deficient in 101 

Cox1 or Cox2 (Langenbach et al. 1999). These early reports suggested that PGs 102 

may not be critical to testicular function. However, this view has recently been 103 

challenged by novel observations. It has been reported that paracetamol and some 104 

nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin and indomethacin 105 

induce endocrine disturbances in the human fetal testis capable of interfering with 106 

testicular descent (Mazaud-Guittot et al. 2013). Furthermore, PGD2 influences 107 

male germ cell differentiation in the fetal mouse testis (Moniot et al. 2014), and it 108 

has been proposed that the hematopoietic PGD2 synthase participates in the 109 

SOX9 nuclear translocation necessary for the process of Sertoli cell differentiation 110 

(Rossitto et al. 2014). 111 

PG receptors have been described in Leydig cells (i.e. EP1, DP, FP, TP and 112 

PPARγ receptors) (Walch et al. 2003, Schell et al. 2007, Frungieri et al. 2006, 113 

Kowalewski et al. 2009, Pandey et al. 2009), Sertoli cells (e.g. EP1, EP2, EP3, 114 

EP4, DP, IP, FP and PPARγ receptors) (Ishikawa & Morris 2006, Winnal et al. 115 

2007, Kristensen et al. 2011, Matzkin et al. 2012) and the seminiferous tubule wall 116 

(PPARγ receptors) (Frungieri et al. 2002a). DP prostanoid receptors have also 117 

been detected in germ cells of the fetal mouse testis (Moniot et al. 2014), whereas 118 
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functional PPARγ and PGE receptors have been found in sperm (Schaefer et al. 119 

1998, Santoro et al. 2013).  120 

PGs, mainly those from the PGE and 19-hydroxy-PGE series, are present in 121 

human seminal plasma. Several reports have claimed that there is a correlation 122 

between PG levels in semen and otherwise unexplained male infertility (Kelly 123 

1978). The lipocalin and hematopoietic PGD2 synthase is also detected in seminal 124 

plasma and its concentration is lower in oligozoospermic than in normozoospermic 125 

men (Tokugawa et al. 1998). PGs in human seminal plasma are mostly secreted 126 

from the seminal vesicles. Nevertheless, testicular secretions also contribute up to 127 

5 percent of the composition of the semen (Thibodeau & Patton 2012).  128 

Data from our group revealed that COX is not detectable by immunohistochemistry 129 

in normal adult human testes without morphological abnormalities. However, the 130 

inducible isoenzyme COX2 is expressed by several cell types in testicular biopsies 131 

of men with impaired spermatogenesis and infertility (Frungieri et al. 2002a, Welter 132 

et al. 2011). They include Leydig cells, Sertoli cells and cells of the tubular wall that 133 

present an altered morphology (Figs. 2 and 3; Schell et al. 2008, Matzkin et al. 134 

2010). COX2 was also found in testicular immune cells, namely mast cells and 135 

macrophages (Matzkin et al. 2010, Welter et al. 2011, Rossi et al. 2014). 136 

Similarly, Hase et al. (2003) did not detect COX expression in the normal human 137 

testis, but described induction of COX1 and COX2 in testicular cancer. Additionally, 138 

lipocalin and hematopoietic PGD2 synthases are expressed in testes from patients 139 

with impaired spermatogenesis (Schell et al. 2007). 140 

These data suggest that in pathological situations the human testis is capable of 141 

synthesizing PGs. In this regard, we recently described the presence of the PG 142 
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metabolite, 15d-PGJ2, in biopsies of patients suffering from idiopathic infertility 143 

(Kampfer et al. 2012).  144 

Overall, the wide distribution of PG receptors and synthesizing enzymes in the 145 

testis emphasizes the plethora of functions and potential key roles exerted by 146 

these bioactive lipid substances on testicular development, steroidogenesis, sperm 147 

maturation and male fertility. 148 

Physiological studies cannot be performed using human testicular biopsies. In the 149 

search for an adequate model, our laboratory turned to the Syrian hamster. It was 150 

chosen as the experimental model because the exposure of male adult animals to 151 

less than 12.5 h of light per day for 3–4 months results in a severe testicular 152 

regression with morphological features resembling those seen in biopsies of 153 

patients suffering from hypospermatogenesis and germ cell arrest. For instance, 154 

seminiferous tubules in photoperiodically regressed hamster testes contain mostly 155 

Sertoli cells, spermatogonia and a few primary spermatocytes (Fig. 4; Sinha Hikim 156 

et al. 1988, Rossi et al. 2014). 157 

 158 

Cyclooxygenase and prostaglandins in Leydig cells 159 

We initiated the investigation of COX expression in Syrian hamster testes, and 160 

although COX1-immunoreactive cells were not detected, immunoperoxidase 161 

staining revealed the presence of COX2 in the cytoplasm of interstitial cells 162 

showing the characteristic punctate chromatin pattern of Leydig cells in 163 

peripubertal, pubertal and adult hamster testes. Surprisingly, testicular expression 164 

of COX2 was barely detectable when adult hamsters were exposed to light 165 

deprivation conditions (Frungieri et al. 2006). Thus, although testes from regressed 166 
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hamsters are histologically similar to biopsies of infertile patients, they are deficient 167 

in COX2 expression a typical feature of Leydig cells in the pathological human 168 

testis. This discrepancy may imply that PGs play distinctly different roles in testes 169 

of different species (Frungieri et al. 2006). Thus, COX2 and PGs may have a 170 

biological relevance in the pathogenesis or maintenance of infertility states in men. 171 

Conversely, considering that COX2 levels are much more abundant in Leydig cells 172 

of reproductively active hamsters than in testes of photoperiodically-regressed 173 

animals, we propose that PGs could act as physiological mediators involved in the 174 

modulation of steroidogenic cell function in seasonal breeders.  175 

In contrast to our observations in testes of reproductively active hamsters, we 176 

failed to detect COX2 by immunohistochemistry in testes from other species (i.e. 177 

Rhesus monkeys, pigs, BALBc mice, Wistar rats, Sprague Dawley rats) (Frungieri 178 

et al. 2006). However, Parillo et al. (2011) have recently described COX 179 

immunoreactivity in Leydig cells of the alpaca Lama pacos. Furthermore, some 180 

authors (Wang et al. 2005, Balaji et al. 2007, Winnall et al. 2007) have reported 181 

COX2 expression in mouse and rat Leydig cells using more sensitive assays such 182 

as western blot, quantitative PCR and enzyme activity assays. These data allow us 183 

to speculate about the existence of species-specific levels of COX2 expression in 184 

Leydig cells which may be explained by the evolutionary divergence in testicular 185 

coding sequences (Oduru et al. 2003) and/or the existence of a marked variation 186 

between different species in the regulation of the hypothalamic-pituitary-testicular 187 

axis by hormones and local factors (Lincoln 2000).  188 

Revisiting the issue of COX2 expression in hamster Leydig cells, this isoenzyme is 189 

detected mainly in pubertal and adult reproductively active hamsters with increased 190 

Page 8 of 45



circulating concentrations of LH, PRL and androgens (Frungieri et al. 2006, 191 

Matzkin et al. 2009, Matzkin et al. 2012). On the other hand, in adult hamsters 192 

exposed to a short-day photoperiod and also in prepubertal hamsters, testicular 193 

COX2 is barely detected, coinciding with low serum concentrations of LH, PRL and 194 

androgens (Frungieri et al. 2006, Matzkin et al. 2009, Matzkin et al. 2012). These 195 

results suggest that some hormones (LH, PRL and/or androgens) could be 196 

involved in the regulation of testicular COX2 expression and PG production.  197 

The unique expression of PGD synthase in adult Leydig cells had already been 198 

described (O'Shaughnessy et al. 2002, Schell et al. 2007). However, to our 199 

knowledge, the potential role of COX2 as a marker of mature active Leydig cells 200 

during cell development has not previously been suggested. 201 

In vitro experiments performed in Leydig cells purified from reproductively active 202 

adult hamsters incubated in the presence or absence of LH/hCG and testosterone, 203 

and with or without the addition of bicalutamide (a pure non-steroidal antiandrogen) 204 

to the incubation medium showed an up-regulation of COX2 expression and 205 

PGF2α production. This LH action is not derived from a direct mechanism but 206 

rather from its stimulatory role in testosterone synthesis (Matzkin et al. 2009). In 207 

fact, testosterone effects in hamster Leydig cells are exerted via androgen 208 

receptors (Matzkin et al. 2009). The classical mechanism of testosterone action 209 

involves binding of this steroid to the cytoplasmic androgen receptor, translocation 210 

of the newly formed complex into the nucleus, its binding to specific DNA 211 

regulatory elements and finally, gene transcription regulation. In addition to this 212 

classical pathway, there is growing evidence indicating that androgens can trigger 213 

cellular processes through rapid, non-genomic mechanisms (Foradori et al. 2008). 214 
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In this context, the stimulatory effect of testosterone on COX2/PGF2α in hamster 215 

Leydig cells takes place via a non-classical mechanism that involves 216 

phosphorylation of the extracellular signal-regulated kinase isoforms 1 and 2 217 

(ERK1/2) (Matzkin et al. 2009).  218 

On the other hand, PRL also mediates up-regulation of COX2 expression and 219 

stimulation of PGD2 and PGF2α production in hamster Leydig cells through 220 

activation of p38-MAPK and JAK2 (Matzkin et al. 2012). Post-translational 221 

modifications of the PRL molecule including glycosylation, tyrosine sulfation, 222 

phosphorylation and deamination, may well represent a key mechanism for 223 

creating diversity in the biological actions of this hormone (Sinha 1992). In 224 

particular, pituitaries from reproductively active hamsters contain PRL charge 225 

analogues with isoelectric points (pI) of 5.16, 4.61 and 4.34. The exposure of adult 226 

hamsters to a short-day photoperiod of 6 h light per day results in a decline in PRL 227 

pituitary levels and in the presence of less acidic PRL charge analogues with a pI 228 

of 5.44. Interestingly, the more acidic PRL charge analogues present in the 229 

pituitaries of reproductively active hamsters strongly induce COX2 expression in 230 

hamster Leydig cells. By contrast, the less acidic analogues detected in the 231 

pituitaries of regressed animals have no effect (Matzkin et al. 2012). The 232 

stimulatory effect of more acidic PRL charge analogues on COX2 expression in 233 

hamster Leydig cells takes place through a mechanism that involves the pro 234 

inflammatory cytokine IL1ß (Matzkin et al. 2012). It has been shown that IL1ß 235 

induces COX2 expression and PGD2 and PGF2α production in mouse TM3 Leydig 236 

cells (Matzkin et al. 2010). The expression of the IL1R1 functional receptor of IL1ß 237 
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in Leydig cells has been described not only in rodents (hamsters and mice) but 238 

also in humans (Matzkin et al. 2010, Matzkin et al. 2012).   239 

The prostanoid receptors DP and FP have been described in both hamster and 240 

human Leydig cells (Schell et al. 2007, Frungieri et al. 2006). Whereas PGD2 has 241 

a stimulatory effect on basal testosterone production in hamster Leydig cells 242 

(Schell et al. 2007), PGF2α exerts an inhibitory effect on the expression of the 243 

steroidogenic acute regulatory (StAR) protein and the 17β-hydroxysteroid 244 

dehydrogenase (17β-HSD) enzyme, as well as on the synthesis of testosterone 245 

induced by hCG/LH (Frungieri et al. 2006).  246 

It is therefore tempting to assume that, at least in hamster Leydig cells, there exists 247 

a regulatory loop in which testosterone induces COX2 expression and PGF2α 248 

production. In turn, PGF2α inhibits StAR and 17β-HSD expression and 249 

consequently, testosterone production, thereby setting a brake on testicular 250 

steroidogenesis (Fig. 5; Frungieri et al. 2006, Matzkin et al. 2009). 251 

In agreement with our findings in hamsters, it has been reported that PGF2α 252 

reduced hCG-stimulated testosterone secretion in rat Leydig cells (Romanelli et al. 253 

1995). Additionally, other authors (Saksena et al. 1973, Didolkar et al. 1981, 254 

Sawada et al. 1994) have shown that PGF2α decreases plasma testosterone 255 

levels in male rats. On the contrary, injection of PGF2α in male Rhesus monkeys is 256 

followed by an abrupt rise in serum testosterone (Kimball et al. 1979).  257 

Syntin et al. (2001) and Wang et al. (2005) have described that COX2/PG system 258 

represents a potential key factor in the age-related reduction in testosterone 259 

production, as up-regulation of COX2 expression in Brown-Norway rats during 260 
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aging is accompanied by decreased testicular production of testosterone. In this 261 

context, COX2 inhibition enhances steroidogenesis and StAR gene expression in 262 

MA-10 mouse Leydig cells, whereas its overexpression leads to the opposite 263 

(Wang et al. 2003). Furthermore, production of testosterone by decapsulated 264 

mouse testes is significantly inhibited by adding some PGs (PGA1, PGA2, PGE1) 265 

to the incubation medium (Bartke et al. 1976). On the other hand, COX2 seems to 266 

be involved in aromatase post-translational activation and increased cell 267 

proliferation in the rat Leydig tumor cell line R2C (Sirianni et al 2009). 268 

From the aforementioned data, it is clear that Leydig cells express the inducible 269 

isoenzyme COX2 and produce PGs with age-, photoperiodic- and species-specific 270 

differences. In addition to its regulation by PRL and IL1ß, COX2 expression is also 271 

regulated by testosterone through a non-genomic mechanism. The existence of a 272 

COX2/PG system in Leydig cells serves as a local modulator of steroid hormone 273 

production.  274 

 275 

Cyclooxygenase and prostaglandins in Sertoli cells 276 

Spermatogenesis is dependent upon adequate Sertoli cell function (Griswold 277 

1998). The expression of COX, production of PGE2, PGF2α and PGI2, as well as 278 

the existence of the prostanoid receptors (i.e. EP1, EP2, EP3, EP4, IP and FP) has 279 

been reported in Sertoli cells of immature and juvenile rodents (Ishikawa & Morris 280 

2006, Winnal et al. 2007, Kristensen et al. 2011). 281 

Studies are usually limited to Sertoli cells isolated from immature rodents to avoid 282 

germ cell contamination during the purification procedure. Consequently, data 283 

obtained from adult Sertoli cells are scarce. Because only Sertoli cells, 284 
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spermatogonia and a few primary spermatocytes are seen in testes of 285 

photoperiodically regressed adult Syrian hamsters (Fig. 4; Bartke 1985, Sinha 286 

Hikim et al. 1988, Rossi et al. 2014), this species becomes a useful and available 287 

experimental model for isolation of Sertoli cells from adult animals.  288 

FSH and testosterone are the two major hormones that act in the testis to regulate 289 

spermatogenesis. Sertoli cells transduce signals from FSH and testosterone into 290 

the synthesis of factors that are required for spermatogenesis. These actions take 291 

place through FSH and androgen receptors located in Sertoli cells (Walker & 292 

Cheng 2005, Matzkin et al. 2009, Matzkin et al. 2012).  293 

In recent studies performed on Sertoli cells purified from testes of adult hamsters 294 

exposed to a short-day photoperiod, we demonstrated that FSH exerts a 295 

stimulatory effect on COX2 expression, as well as on 15d-PGJ2 and PGF2α 296 

production through a mechanism that involves ERK1/2 phosphorylation (Matzkin et 297 

al. 2012). Supporting our results, Jannini et al. (1994) have shown FSH-stimulated 298 

eicosanoid generation dependent upon activation of the COX pathway in immature 299 

rat Sertoli cells. Moreover, both stimulatory and inhibitory actions of FSH on 300 

ERK1/2 phosphorylation were described in rodent Sertoli cells (Crepieux et al. 301 

2001, Meroni et al. 2004).  302 

Testosterone also induces COX2 expression and increases 15d-PGJ2 production 303 

in adult hamster Sertoli cells via androgen receptors most likely located on the cell 304 

surface (Matzkin et al. 2012). The existence of testosterone binding sites in the 305 

plasma membrane has been previously reported for Sertoli cells (Fix et al. 2004). 306 

Using the plasma membrane-impermeable testosterone-BSA, we observed that 307 

both COX2 expression and 15d-PGJ2 production are enhanced in adult hamster 308 
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Sertoli cells, via a non-classical androgen action associated to the activation of the 309 

ERK1/2 signalling pathway (Matzkin et al. 2012). Supporting these data, members 310 

of the MAPK pathway have been shown to form complexes with androgen 311 

receptors on molecular scaffolds anchored to the plasma membrane (Pedram et al. 312 

2007). Moreover, using an immunofluorescence technique, Cheng et al. (2007) 313 

have found that upon testosterone stimulation of rat Sertoli cells, a population of 314 

androgen receptors is localized, in a transient manner, in the plasma membrane. 315 

Among Sertoli cell functions that may be important to germ cell development is the 316 

provision of adequate levels of energy substrates such as lactate. In this context, 317 

the transport of glucose through the plasma membrane is the rate-limiting step in 318 

glucose metabolism and, consequently, in lactate production (Riera et al. 2001, 319 

2009). Glucose enters the cell by carrier proteins called glucose transporters 320 

(GLUT). So far, expression of GLUT1, GLUT3 and GLUT8 transporters has been 321 

demonstrated in Sertoli cells (Carosa et al. 2005, Galardo et al. 2008). In adult 322 

hamster Sertoli cells, FSH and testosterone induce the uptake of [2,6-3H]-2-deoxy-323 

D-glucose, a non-metabolizable glucose analogue. In accordance with these data, 324 

an increased FSH-mediated glucose uptake has been described in immature rat 325 

Sertoli cells (Riera et al. 2001).  326 

The nuclear PPARγ receptor is present in hamster Sertoli cells (Matzkin et al. 327 

2012), suggesting a potential autocrine action of its natural ligand 15d-PGJ2. In 328 

fact, 15d-PGJ2 inhibits glucose uptake in adult hamster Sertoli cells via the nuclear 329 

PPARγ receptor (Matzkin et al. 2012). The participation of arachidonic acid, 330 

precursor in PG biosynthesis, in the regulation of Sertoli cell function has recently 331 

been addressed (Meroni et al. 2004). 332 
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These results therefore have led to the suggestion that testosterone and FSH 333 

induce glucose uptake, COX2 expression and 15d-PGJ2 production in Sertoli cells. 334 

Subsequently, 15d-PGJ2 acts via the nuclear PPARγ receptor to impair glucose 335 

entry. Therefore, the COX2/15d-PGJ2/PPARγ system may serve as a local 336 

autocrine modulator of Sertoli cell activity, and consequently of spermatogenic 337 

efficiency (Fig. 6). 338 

Harmful actions of COX/PGs have also been described in Sertoli cells. Elevated 339 

testicular temperature in cryptorchidism decreases the expression of the cystic 340 

fibrosis transmembrane conductance regulator (CFTR), resulting in overexpression 341 

of COX2 and excessive PGE2 production in rodent Sertoli cells, which in turn leads 342 

to further damage of inter-Sertoli cell tight junctions and defective spermatogenesis 343 

(Chen et al. 2012). In contrast, toxic xenobiotics such as nonylphenol, which is 344 

commonly used as a detergent, up-regulates COX2 in TM4 immature mouse 345 

Sertoli cells (Liu et al. 2014).  346 

In summary, Sertoli cells express COX2 and produce PGs in response to FSH and 347 

a non-classical mechanism triggered by testosterone. PGs serve as local autocrine 348 

modulators of Sertoli cell function, and thus indirectly regulate sperm maturation.  349 

 350 

Cyclooxygenase and prostaglandins in the seminiferous tubule wall 351 

Depending on the species, the seminiferous tubule wall can be either a simple 352 

structure or a rather complex one. For instance, in rodents, the tubular wall is 353 

composed of a single cell layer and a tiny extracellular matrix. However, in the 354 

human testis, the seminiferous tubule wall is composed of: an internal acellular 355 

basal membrane adjacent to the germinal epithelium containing collagen fibers, 356 
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laminin, glycoproteins and hyaluronic acid, a middle cellular zone made of spindle-357 

shaped and contractile cells (called myoid cells or myofibroblasts) and an external 358 

cellular zone consisting of collagen-producing fibroblasts (Pop et al. 2011, 359 

Mayerhofer 2013). Disturbances in testicular function and decreased or absent 360 

spermatogenic activity are associated with a thickening of the seminiferous tubule 361 

wall which becomes fibrotically remodeled. Fibroblasts, together with smooth 362 

muscle cells, mediate tissue fibrosis and collagen deposition (Mayerhofer 2013). 363 

This frequent change is observed irrespective of the causes of male infertility and 364 

is regarded as a hallmark of male infertility (Frungieri et al. 2002a, Weinbauer et al. 365 

2010). Different human cellular models have been used to study tubular fibrosis, 366 

the involvement of the local COX/PG system and its regulation. For instance, we 367 

used human fetal foreskin fibroblast cells (HFFF2) which showed increased COX2 368 

protein levels, PG (PGF2α and 15d-PGJ2) production and cell proliferation in the 369 

presence of the serine protease tryptase (Frungieri et al. 2002a). Tryptase is a 370 

mast cell product known to cause proliferation of fibroblasts and fibrosis (Frungieri 371 

et al. 2002a). The effect of tryptase was tested in HFFF2 because increased 372 

numbers of tryptase-immunoreactive mast cells are detected in the seminiferous 373 

tubule wall in the testes of infertile men (Meineke et al. 2000). Furthermore, the 374 

amount of testicular tryptase-immunoreactive mast cells correlates with the fibrotic 375 

thickening of the tubular wall in patients with impaired spermatogenesis or Sertoli 376 

cell only (SCO) syndrome (Meineke et al. 2000). When the COX2 antagonist 377 

meloxicam was added to the incubation media, the proliferative action of the mast 378 

cell product tryptase on HFFF2 was blocked, implying that PGs derived from COX2 379 

activity are crucially involved in this action. On the other hand, the nuclear PPARγ 380 

Page 16 of 45



receptor is expressed in the seminiferous tubule wall of infertile patients as well as 381 

in HFFF2 cells, and its natural ligand 15d-PGJ2 directly increases fibroblast 382 

proliferation (Frungieri et al. 2002a). Thus, there is a signalling pathway linked to 383 

fibroblast proliferation that involves the mast cell product tryptase, its receptor 384 

PAR2, induction of COX2, synthesis of 15d-PGJ2 and its action through PPARγ. 385 

The initial events of the tryptase/PAR2 signalling pathway leading to COX2 386 

induction and fibroblast proliferation involve up-regulation of the immediate-early 387 

genes c-jun and c-fos, and phosphorylation of ERK1/2 (Frungieri et al. 2005). 388 

It is important to bear in mind that PAR2 receptors are expressed in interstitial cells 389 

while PPARγ receptors are found in the peritubular cells of the human testis. 390 

Furthermore, mast cells containing tryptase accumulate in testes showing 391 

abnormal spermatogenesis, and COX2 is mostly detected in biopsies of patients 392 

with idiopathic infertility (Frungieri et al. 2002a). Thus, the fact that all components 393 

involved in the tryptase/COX2/15d-PGJ2/PPARγ-induced proliferation of HFFF2 394 

cells are also present in the testes of infertile patients showing fibrotic thickening in 395 

the wall of the seminiferous tubules implies that COX2 and some PGs could be of 396 

relevance for human diseases linked to fibrotic disorders. 397 

To further explore the wall of the seminiferous tubules in health and disease, a new 398 

and more reliable experimental model has recently been developed. Human 399 

testicular peritubular cells were isolated from very small testicular tissue samples 400 

from adult patients with obstructive azoospermia but normal spermatogenesis 401 

(HTPCs), as well as from biopsies of men with non-obstructive azoospermia, 402 

impaired spermatogenesis, and testicular fibrosis (HTPCFs) (Albrecht et al. 2006, 403 

Schell et al. 2008, 2010, Spinnler et al. 2010, Mayerhofer 2013).  404 
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TNFα, a cytokine with pleiotrophic actions, which is known to be released from 405 

human testicular macrophages (Frungieri et al. 2002b), induces inflammatory 406 

markers in HTPCs such as COX2 and PGD2 (Schell et al. 2008). Previously, a 407 

PGD2 system had been identified in the human testis (Schell et al. 2007). This 408 

system includes the expression of PGD2 synthases and the existence of the 409 

prostanoid receptor DP in the testes of men suffering from spermatogenic damage 410 

and infertility (Schell et al. 2007). 411 

On the other hand, 15d-PGJ2, via the generation of reactive oxygen species 412 

(ROS), strongly influences cultured HTPCs and HTPCFs (Kampfer et al. 2012). 413 

Upon 15d-PGJ2 treatment, cells become hypertrophic, and show a diminished 414 

expression of smooth muscle cell markers (e.g. smooth muscle actin, MYH11, 415 

calponin) as well as a reduced ability to contract. Interestingly, upon removal of 416 

15d-PGJ2, cells spontaneously revert to the normal phenotype, an indication of a 417 

high intrinsic degree of cellular plasticity (Schell et al. 2010, Welter et al. 2013, 418 

Mayerhofer 2013). HTPCFs express higher levels of the H2O2-metabolizing 419 

enzyme catalase than HTPCs, circumstantial evidence for increased ROS levels in 420 

the tubular wall of infertility patients (Kampfer et al. 2012). Thus, it is possible to 421 

speculate that up-regulation of COX2/15d-PGJ2 and generation of ROS are 422 

interconnected events, forcing smooth muscle-like peritubular cells to adapt and 423 

change their phenotype, and finally, to lose contractility (Mayerhofer 2013). Since 424 

contractility of the tubular wall is crucial for sperm transport and fertility, COX2/15d-425 

PGJ2 could be, to date, an overlooked factor that contributes to male infertility. 426 

Hence, results obtained from cellular studies and parallel examinations of human 427 

testicular biopsies provide insights into the roles played by PGs on tubular fibrosis 428 
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and contractility. Consequently, PGs may be crucial factors for the active 429 

transportation of immotile sperm that takes place in the seminiferous tubules. 430 

Furthermore, these bioactive lipid substances might be key players in the paracrine 431 

interactions taking place between peritubular cells and other testicular somatic 432 

cells such as Leydig and Sertoli cells.  433 

 434 

Cyclooxygenase and prostaglandins in testicular immune cells 435 

The testis is one of a small number of so-called immunologically privileged tissues 436 

of the body. In fact, the production, differentiation, and presence of germ cells 437 

represent inimitable challenges to the immune system, because these cells appear 438 

long after the maturation of the immune system and formation of systemic self-439 

tolerance (Fijak & Meinhardt 2006). The blood-testis barrier represents an essential 440 

element for local immunosuppression. However, the existence of the blood-testis 441 

barrier does not mean that the lymphatic drainage of the testis is deficient or that 442 

immune cells are unable to access germ cells (Hedger 2002). Actually, immune 443 

cells are seen in the capsule, interstitium and seminiferous tubules of the testis. In 444 

particular, large numbers of macrophages are found in the testis. Significant 445 

amounts of testicular mast cells, dendritic cells, as well as effector, regulatory and 446 

natural killer T lymphocytes have also been reported (Itoh et al. 1995, Tompkins et 447 

al. 1998, Meineke et al. 2000, Frungieri et al. 2002b, Hedger 2002, Jacobo et al. 448 

2009). 449 

Testicular immunoregulation depends on a delicate equilibrium between 450 

immunoprivilege and inflammation in which immune cells play a dual role. Under 451 

physiological conditions, antigen-specific auto immune responses are prevented by 452 
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systemic and local tolerance mechanisms involving the actions of dendritic cells 453 

and regulatory T lymphocytes, as well as immunosuppressor cytokines mainly 454 

secreted by resident macrophages. Breakdown of immune homeostasis in the 455 

testis leads to inflammation (Pérez et al. 2013). It is known that male genital tract 456 

inflammations are relevant co-factors in infertility. Human testicular macrophages 457 

from infertile patients secrete pro-inflammatory cytokines such as IL1ß and TNFα 458 

(Frungieri et al. 2002b). The number of macrophages and mast cells is markedly 459 

increased in testes of patients showing impaired spermatogenesis (Meineke et al. 460 

2000, Frungieri et al. 2002b). Furthermore, the distribution pattern and morphology 461 

of these immune cells is altered in pathological states. For instance, there is a 462 

significant shift in the location of macrophages and mast cells from the interstitium 463 

to the tubular compartment in the testes of infertile men (Meineke et al. 2000, 464 

Frungieri et al. 2002b). In samples with normal spermatogenesis, these immune 465 

cells are round and located mainly in the interstitial spaces close to Leydig cells. In 466 

pathological conditions, mast cells and macrophages are heterogeneous, with 467 

rounded but also elongated shapes and signs of degranulation (Meineke et al. 468 

2000, Frungieri et al. 2002b). In contrast to men, it has been described that mast 469 

cells are located almost exclusively in the capsule adjacent to testicular blood 470 

vessels in the testes of rodents, including hamsters (Frungieri et al. 1999, Rossi et 471 

al. 2014). 472 

COX2 is expressed in both testicular mast cells and macrophages of patients 473 

suffering from hypospermatogenesis, germ cell arrest, mixed atrophy or SCO 474 

syndrome (Matzkin et al. 2010, Welter et al. 2011, Rossi et al. 2014). Interestingly, 475 

few mast cells which do not express COX2 are observed in testes with normal 476 
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spermatogenesis (Welter et al. 2011). Human testicular macrophages secrete 477 

IL1ß, and a positive correlation between IL1ß levels and COX2 expression has 478 

been described in the testes of infertile patients (Matzkin et al. 2010). 479 

Thus, mast cells and macrophages increased population number, secretion of pro-480 

inflammatory cytokines and the acquisition of the capability to produce 481 

prostaglandin inflammatory mediators seem to play a decisive role in the 482 

autoimmune basis of testicular inflammation associated with subfertility and 483 

infertility. 484 

 485 

Concluding remarks and future perspectives 486 

In contraposition to initial data showing that fertility is not affected in Cox-deficient 487 

male mice (Langenbach et al. 1999), and therefore that PGs might not be 488 

significant to testicular function, research carried out in recent years describes a 489 

plethora of PG functions in the male gonad.  490 

A COX2/PG system has been described in the two key somatic cell types of the 491 

testis: Leydig and Sertoli cells. Furthermore, studies have provided new insights 492 

into how several hormones and cytokines (i.e. FSH, PRL, testosterone, IL1ß) 493 

modulate COX2 expression and PG production in Leydig and Sertoli cells. Studies 494 

performed mainly in rodents indicate that some PGs (i.e. PGD2 and PGF2α) 495 

modulate androgen production in Leydig cells, while 15d-PGJ2 regulates glucose 496 

transport in Sertoli cells and, consequently spermatogenic efficiency. Recently, an 497 

additional physiological role of COX2 as protector of germ cells against 498 

spermatogenic disturbance has been reported in an experimental cryptorchidism 499 

mouse model (Kubota et al. 2011). 500 
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Most importantly, besides their action on testicular physiology, PGs seem to be 501 

associated to pathogenesis or maintenance of infertility states in men. 502 

For instance, 15d-PGJ2 has been associated to the fibrosis and loss of contractility 503 

often seen in the wall of the seminiferous tubules in patients suffering from 504 

idiopathic infertility. Furthermore, the existence of a COX2/PG system in testicular 505 

immune cells (mast cells and macrophages) showing a significant increase in 506 

number in some pathologies, strongly suggests the importance of PGs in the 507 

development of local inflammation that might further compromise testicular function 508 

in patients with hypospermatogenesis, germ cell arrest or SCO syndrome. 509 

Currently, the majority of infertile men present disorders either untreatable or 510 

treatable with drugs of questionable effectiveness. In this context, drugs targeting 511 

COX, PGs and prostanoid receptors are being developed or are already in clinical 512 

use for a variety of conditions. For example, there are widely marketed and 513 

relatively safe drugs such as celecoxib, valdecoxib and rofecoxib, developed for 514 

specific COX2 inhibition, that possess all of the analgesic, antipyretic, and anti-515 

inflammatory activities of the older nonselective NSAIDs (Simmons et al. 2004).  516 

Therefore, the study of COX and PG actions appears a promising field of research 517 

with potential impact on male fertility. Further advances in the knowledge of the 518 

role played by COX, PGs and their receptors in the human testis, as well as future 519 

investigations concerning the impact of drugs targeting COX/PGs at the testicular 520 

level could lead to new therapeutic approaches in idiopathic male infertility. In this 521 

context, non-selective inhibitors of COX usually used as mild analgesics such as 522 

indomethacin, paracetamol and aspirin have been shown to display endocrine 523 

disrupting properties in the adult human testis in vitro (Albert et al. 2013). 524 
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Nevertheless, the beneficial or disadvantageous effects of specific COX2 inhibitors 525 

in the infertile human testis have not, to date, been fully explored. 526 
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Figure legends 847 

Figure 1: Schematic representation of prostaglandin (PG) biosynthetic pathway. 848 

The process is initiated by the action of the cyclooxygenase (COX) enzyme, which 849 

catalyzes both the conversion of arachidonic acid into PGG2, and the subsequent 850 

reduction of PGG2 to PGH2. Afterward, PGH2 is the common precursor for the 851 

synthesis of the remaining major PGs. 852 

 853 

Figure 2: Immunohistochemical images of consecutive testicular sections of a 854 

patient with hypospermatogenesis immunostained for 3β-hydroxysteroid 855 

dehydrogenase (3β-HSD) and cyclooxygenase 2 (COX2). Most, but not all, 3β-856 

HSD-immunoreactive Leydig cells found in the human testis are also positively 857 

stained for COX2. 858 

A polyclonal rabbit anti-COX2 serum (Oxford Biomedical Research, Oxford, UK, 859 

1:200) and a polyclonal rabbit anti-3β-HSD serum (kindly provided by Prof. Dr. JI 860 

Mason, University of Edinburgh Centre of Reproductive Biology, Scotland, 1:2000), 861 

were used. Bar: 100 µm. 862 

 863 

Figure 3: Using laser capture microdissection, androgen receptor (AR)-864 

immunoreactive peritubular (A) and Sertoli (B) cells were isolated from a testicular 865 

biopsy of a patient suffering from germ cell arrest, and then subjected to RT-PCR 866 

studies.  867 

(A) Each panel depicts the same specimen before laser microdissection (left), after 868 

UV-laser delimitation of AR-immunoreactive peritubular cells (middle), and after IR-869 
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laser microdissection (right) of target cells. A polyclonal rabbit anti-AR serum 870 

(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA, 1:200) was used. Bar, 50 871 

µm.  872 

(B) Each panel depicts the same specimen before laser microdissection (left), after 873 

UV-laser delimitation of AR-immunoreactive Sertoli cells (middle), and after IR-874 

laser microdissection (right) of target cells. A polyclonal rabbit anti-AR serum 875 

(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA, 1:200) was used. Bar, 50 876 

µm.  877 

(C) COX2 mRNA expression was detected in human peritubular and Sertoli cells 878 

by RT-PCR assays performed using oligonucleotide primers from the reference 879 

Matzkin et al. (2010). PCR products were separated on 2% agarose gels and 880 

visualized with ethidium bromide. The identity of the cDNA products was confirmed 881 

by sequencing, using a fluorescence-based dideoxysequencing reaction and an 882 

automated sequence analysis on an ABI 373A DNA sequencer.  883 

 884 

Figure 4: Testicular morphology in Bouin’s fluid fixed and haematoxylin stained 885 

cross sections of a patient suffering from hypospermatogenesis (A) and a 886 

reproductively regressed adult hamster (B).  887 

Sertoli cells (black arrows), spermatogonia (white arrows), spermatocytes (black 888 

arrowheads) and prematurely detached spermatocytes (white arrowheads) are 889 

shown. Bar, 50 µm. 890 

 891 
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Figure 5: Summary view of COX2 expression/PGs synthesis regulation, and the 892 

modulatory effect of some PGs on steroidogenesis in hamster Leydig cells.  893 

Based on experimental results, PRL induces COX2 expression as well as PGD2 894 

and PGF2α production in Leydig cells through activation of p38-MAPK and 895 

JAK2/STAT5. In addition, testosterone (T) via androgen receptors and a non-896 

classical mechanism that involves phosphorylation of ERK1/2 also increases 897 

COX2 expression and PGs production.  898 

While PGD2 through DP receptors stimulates testosterone (T) production under 899 

basal conditions, PGF2α via FP receptors inhibits StAR and 17β-hydroxysteroid 900 

dehydrogenase (17β-HSD) expression and consequently testosterone production in 901 

the presence of LH/hCG, thus setting a brake on testicular steroidogenesis. 902 

 903 

Figure 6: Summary view of COX2 expression/PGs production regulation, and the 904 

signalling pathway involved in the PG modulation of glucose uptake in Sertoli cells.  905 

Based on experimental results, testosterone (T) exerts a stimulatory effect on 906 

COX2 expression and 15d-PGJ2 production in Sertoli cells through a non-classical 907 

mechanism that involves the presence of androgen receptors (AR) and ERK1/2 908 

activation. FSH also stimulated COX2/PGs via ERK1/2 phosphorylation. 909 

FSH and testosterone (T) stimulate glucose uptake in Sertoli cells. Nevertheless, 910 

these hormones also exert an indirect negative regulation on glucose uptake which 911 

involves the COX2/15d-PGJ2/PPARγ system.  912 

 913 
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