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Abstract

In the (k, i)-coloring problem, we aim to assign sets of colors of
size k to the vertices of a graph G, so that the sets which belong to
adjacent vertices of G intersect in no more than i elements and the
total number of colors used is minimum. This minimum number of
colors is called the (k, i)-chromatic number. We present in this work
a very simple linear time algorithm to compute an optimum (k, i)-
coloring of cycles and we generalize the result in order to derive
a polynomial time algorithm for this problem on cacti. We also
perform a slight modification to the algorithm in order to obtain
a simpler algorithm for the close coloring problem addressed in
[R.C. Brigham and R.D. Dutton, Generalized k-tuple colorings of
cycles and other graphs, J. Combin. Theory B 32:90–94, 1982].
Finally, we present a relation between the (k, i)-coloring problem
on complete graphs and weighted binary codes.
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1 Introduction

We consider finite undirected graphs without loops. A classic coloring
(i.e. proper coloring) of a graph G is an assignment of colors (or natural
numbers) to the vertices of G such that any two adjacent vertices are
assigned different colors. The smallest number t such that G admits a
coloring with t colors (a t-coloring) is called the chromatic number of G
and is denoted by χ(G).

Several generalizations of the coloring problem were introduced in the lit-
erature, in particular, cases in which each vertex is assigned not only a
color but a set of colors, under different restrictions. One of these vari-
ations is the k-tuple coloring introduced independently by Hilton, Rado
and Scott [13], Stahl [19], and Bollobás and Thomason [3]. A k-tuple
coloring of a graph G is an assignment of k colors to each vertex in such
a way that adjacent vertices are assigned distinct colors.

Brigham and Dutton [4] generalize the concept of k-tuple coloring by in-
troducing the concept of k : i-coloring, in which the sets of colors assigned
to adjacent vertices intersect in exactly i colors. The k : i-coloring prob-
lem consists into finding the minimum number of colors in a k : i-coloring

of a graph G, which we denote by χ
(i)
k (G). By using a theorem of Stahl

([19], p.193), Brigham and Dutton obtain the following result on cycles.

Theorem 1.1 [4] Let Cn be a cycle, with n = 2t+ 1. Then,

χ
(i)
k (Cn) =

{

2k − i if k ≤ i(t+ 1),

2k − i+ 1 + bk−i(t+1)−1
t

c = dn(k−i)
t

e if k > i(t+ 1).

However, it is not so evident how to construct efficiently a k : i-coloring

of an odd cycle Cn with χ
(i)
k (Cn) colors in polynomial time.

In this paper, we will deal with another generalization, known as (k, i)-
coloring, introduced by Méndez-Dı́az and Zabala in [17], in which the
sets of colors assigned to adjacent vertices intersect in at most i colors.
Formally, let G = (V,E) be a graph and let k, i, j be non-negative integers,
with 0 ≤ i ≤ k ≤ j then, a (k, i)-coloring of G with j colors is a function
c : V (G) → [j]k that assigns to each vertex v ∈ V a k-subset of the
set [j] = {1, 2, . . . , j} such that each pair of adjacent vertices u, v verifies
|c(v) ∩ c(u)| ≤ i. The minimum positive integer j such that G admits a



(k, i)-coloring with j colors is called the (k, i)-chromatic number and it
is denoted by χi

k(G). Note that for k = 1, i = 0, we have the classical
coloring problem and thus χ0

1(G) = χ(G) for any graph G. For arbitrary
k and i = 0, we have the k-tuple coloring.

Note that χi
k(G) ≤ χ

(i)
k (G), since every k : i-coloring is in particular

a (k, i)-coloring, but they are not necessarily equal, even for complete
graphs. We will provide an example in Section 3.

From another point of view, a graph G is t-colorable if and only if there
is a graph homomorphism from G to the complete graph on t vertices
Kt, where an homomorphism from a graph G to a graph H is an edge
preserving map between G and H. Denley [5] introduced the generalized
Kneser graphs K(j, k, i) as follows. Let i, j, k be integers such that 0 ≤
i ≤ k ≤ j. Define the graph K(j, k, i) as the graph having as set of
vertices the family of k-subsets of {1, . . . , j}, and where two k-subsets A
and B are adjacent if and only if |A ∩ B| ≤ i. When i = 0, the graphs
K(j, k, 0) are the well known Kneser graphs [7]. It is not difficult to see
that a graph G admits a (k, i)-coloring with j colors if and only if there
is a graph homomorphism from G to K(j, k, i).

Méndez-Dı́az and Zabala solved in [17] the (k, i)-coloring problem for some
values of k and i on complete graphs, studied the notion of perfectness
and criticality for the (k, i)-coloring problem and gave general bounds
for the (k, i)-chromatic number. The authors proposed also an heuristic
approach and a linear programming model for the problem, which they
further developed and generalized in [18].

Graph coloring problems on cactus graphs were also studied in several ar-
ticles (see for example [6, 16, 15]). We present in this work a linear time
algorithm to compute the (k, i)-chromatic number of cycles and we gener-
alize the result in order to derive a polynomial algorithm for this problem
on cacti. We also show that these results hold for the k : i-chromatic
number of cycles and cacti. Finally, we present a relation between the
(k, i)-coloring problem on complete graphs and weighted binary codes.

1.1 Definitions and preliminary results

For standard definitions in graph theory not included in this section, we
refer to [2]. The line graph L(G) of a graph G = (V,E) is the graph
having as its vertex set the set E of edges, two vertices in L(G) being
adjacent if their corresponding edges in G are incident.



A multigraph is a graph where parallel edges are allowed. Multicycles are
cycles in which we can have parallel edges between two consecutive ver-
tices. A multigraph is k-uniform if the number of parallel edges between
any two adjacent vertices is exactly k.
An edge coloring of a (multi)graph G is an application from the edge set
E to a set of colors such that incident edges are assigned different colors.
The minimum number of colors in an edge coloring of G is called the
chromatic index χ′(G).
An independent set (respectively matching) of a graph G is a subset
of vertices (respectively edges) pairwise non-adjacent (respectively non-
incident). Clearly, a matching in G corresponds to an independent set in
L(G) and vice-versa.
A vertex v in a connected graph G is called a cut-vertex if G \ {v} is un-
connected. A block is a maximal biconnected subgraph (i.e., a maximal
connected subgraph without cut-vertices) of a graph. An end-block is a
block containing exactly one cut-vertex. It is known that every connected
graph that is not biconnected has an end-block.

Let G be a (multi)cycle on n vertices, m ≥ n edges and maximum degree
equal to ∆. It is well known that χ′(G) = ∆ if n is even. In fact, it follows
from König’s Theorem on edge-coloring of bipartite (multi)graphs. When
n is odd, we have the following result due to Berge.

Theorem 1.2 [2] Let G = (V,E) be a multicycle on n vertices with m

edges and maximum degree ∆. Let τ = bn
2 c denote the maximum cardi-

nality of a matching in G. Then

χ′(G) =

{

∆ if n is even,

max{∆, dm
τ
e} if n is odd

Let G be a k-uniform multicycle on n vertices. It is not difficult to see that
the line graph L(G) of G can be seen as the cycle Cn where each vertex is
replaced by a clique of size k and all edges between two disjoint copies of
Kk associated with two adjacent vertices in Cn are added. Therefore, we
can rephrase Theorem 1.2 for k-uniform multicycles in terms of a vertex
coloring problem of L(G) as follows.

Corollary 1.3 Let L(G) be the line graph of a k-uniform multicycle G

on n vertices. Let α = bn
2 c denote the maximum cardinality of an inde-



pendent set in L(G). Then

χ(L(G)) =

{

2k if n is even,

max{2k, dnk
α
e} if n is odd

Corollary 1.3 has been obtained independently by Stahl [19].

2 (k, i)-coloring of cycles

It was already noticed in [17] that a bipartite graph has (k, i)-chromatic
number at most 2k−i, and that this is also the trivial lower bound for the
(k, i)-chromatic number of any graph with at least one edge. Since even
cycles are bipartite, this case is solved, and we will turn our attention to
the odd case. In this section, we obtain a similar result as the one found
by Brigham and Dutton [4] on odd cycles (Theorem 1.1). We prove that
the (k, i)-chromatic number and the k : i-chromatic number are equal
on odd cycles. Furthermore, we derive a simple linear time algorithm
to (k, i)-color an odd cycle with the minimum number of colors, and we
adapt it also for k : i-coloring.

We will compute first a lower bound for the (k, i)-chromatic number of
Cn as follows.

Lemma 2.1 Let Cn be a cycle on n = 2t + 1 vertices. Then, for any
non-negative integers i, k with 0 ≤ i ≤ k, we have that : χi

k(Cn) ≥

max{2k − i, dn(k−i)
t

e}.

Proof. Notice that 2k − i is a trivial lower bound for any graph with at

least one edge. So, we only need to prove that χi
k(Cn) ≥ dn(k−i)

t
e, where

n = 2t + 1. Assume that the vertices of Cn are labeled consecutively by
v0, . . . , vn−1. Arithmetic operations will be taken modulo n. Let c be
an optimum (k, i)-coloring of the vertices of Cn, that is, for each vertex
vi we have that |c(vi)| = k; for each pair of adjacent vertices vi, vi+1

we have that |c(vi) ∩ c(vi+1)| ≤ i; and the maximum color included in
the set

⋃

v∈V (Cn)
c(v) is equal to χi

k. Now, for each vertex vi in Cn, let

c′(vi) = c(vi)\ (c(vi)∩c(vi+1)). Notice that the size of each set c′(vi) is at
least k− i, and that c′(vi)∩ c′(vi+1) = ∅ for every i = 1, . . . , n. Therefore,



it is not difficult to deduce that the sets c′ can be used in order to color
the vertices of the line graph of a multicycle on n vertices having at least
k − i parallel edges between each pair of adjacent vertices. By Corollary
1.3, the result follows. 2

Now, in order to compute an upper bound for the (k, i)-chromatic number
of cycles, we will construct a (k, i)-coloring for these graphs. First, we
need the following lemma.

Lemma 2.2 Let n, n′ be two odd integers, with n′ > n ≥ 3. Then any
(k, i)-coloring of Cn can be extended to a (k, i)-coloring of Cn′ without
using additional colors.

Proof. Let v1, . . . , vn be the vertices of Cn and let c be a (k, i)-coloring
of Cn. Let v

′

1, . . . , v
′

n′ be the vertices of Cn′ and define c′ as c′(v′i) = c(vi)
for i = 1, . . . , n; c′(vn+j) = c(vn−1) if j is odd, c′(vn+j) = c(vn) if j is
even, for j = 1, . . . , n′ − n. It is easy to check that c′ is a (k, i)-coloring
of Cn′ . 2

Based on this, we propose the following simple algorithm.

Lemma 2.3 Let n = 2t + 1 with t ≥ 1. Then, χi
k(Cn) ≤ max{2k −

i, dn(k−i)
t

e}. Moreover, a (k, i)-coloring of Cn with max{2k− i, dn(k−i)
t

e}
colors can be obtained by Algorithm 1.

Proof. Let us see that the assignment c obtained by Algorithm 1 on
C2t+1 defines a (k, i)-coloring.

Note that the algorithm assigns circular intervals of size k (i.e., either
intervals of k consecutive numbers or intervals formed by the last d and
the first k − d numbers) to each vertex of the cycle in such a way that
c(v1) = {1, 2, . . . , k} and for 2 ≤ j ≤ 2t′ + 1, c(vj) is the circular interval
whose first i colors are the last i colors of c(vj−1). As we have at least
2k−i colors, the intersection of c(vj) and c(vj−1) are exactly those i colors.
The property |c(vj)∩c(vj−1)| = i holds also for 2t′+2 ≤ j ≤ 2t+1, when
t′ < t, since they use alternately c(v2t′) and c(v2t′+1). Therefore, in order
to ensure that c is a valid (k, i)-coloring of C2t+1, we just need to check
that |c(v2t′+1) ∩ c(v1)| ≤ i.

By construction, the first number in the circular interval c(v2t′+1) is the
number d in [1, N ] that is congruent to 2t′(k − i) + 1 modulo N . We



Algorithm 1

Input: A cycle Cn, n = 2t+1, with vertices v1, v2, . . . , vn, integers k and
i with 0 ≤ i < k.

Output: An assignment of k colors to each vertex vi, i.e. c(vi), for

i = 1, 2, . . . , n, from the set {1, . . . ,max{2k − i, dn(k−i)
t

e}} to each
vertex of Cn.

1: Let N = max{2k−i, dn(k−i)
t

e}; ` = 1. Let t′ be the minimum positive

integer value such that d (2t′+1)(k−i)
t′

e = dn(k−i)
t

e, i.e., either t′ = 1 or

t′ > 1 and d (2t′−1)(k−i)
t′−1 e > dn(k−i)

t
e. (This value can be obtained by

binary search.)
2: For j = 1 to 2t′ + 1 do:

If `+ k − 1 ≤ N then
c(vj) = [`, `+ k − 1]

else
c(vj) = [`,N ] ∪ [1, `+ k − 1−N ]

end if
If `+ k − i ≤ N then
` = `+ k − i

else
` = `+ k − i−N

end if
end for

3: For j = t′ + 1 to t do:
c(v2j) = c(v2t′)
c(v2j+1) = c(v2t′+1)

end for

should prove
k − i+ 1 ≤ d ≤ N − (k − i) + 1.

If t′ = 1, then 2t′(k−i)+1 = 2(k−i)+1 and it holds k−i+1 ≤ 2(k−i)+1.
Also, 2(k − i) + 1 ≤ N − (k − i) + 1 if and only if 3(k − i) ≤ N , but

N = max{2k − i, dn(k−i)
t

e} and dn(k−i)
t

e = d (2t′+1)(k−i)
t′

e = 3(k − i), so
d = 2(k − i) + 1 and this finishes the case t′ = 1. Assume from now on

that t′ > 1 and dn(k−i)
t

e = d (2t′+1)(k−i)
t′

e but dn(k−i)
t

e < d (2t′−1)(k−i)
t′−1 e,

so dn(k−i)
t

e <
(2t′−1)(k−i)

t′−1 . We will split now the proof into two cases,
depending on the value of N .

Case 1: N = 2k−i. Note that dn(k−i)
t

e = d (2t+1)(k−i)
t

e = d 2tk−2ti+k−i
t

e =

2k − i + d (k−(t+1)i)
t

e. So, dn(k−i)
t

e ≤ 2k − i ⇔ (k−(t+1)i)
t

≤ 0 ⇔ k ≤



(t+ 1)i. In particular, this will not be the case if i = 0. Thus, max{2k −

i, dn(k−i)
t

e} = 2k − i if and only if i > 0 and k
i
≤ t + 1 ⇔ dk

i
e − 1 ≤ t.

By our assumption about t′ and as we have discarded the case t′ = 1, it
should be t′ = dk

i
e − 1.

But 2t′(k − i) + 1 = t′(2k − i) − t′i + 1 ≡ 2k − i − t′i + 1 (mod 2k − i).
Since t′i < k ≤ (t′ + 1)i, it holds k − i + 1 < k − i + k − t′i + 1 =
k+ k− (t′ +1)i+1 ≤ k+1, so d = 2k− i− t′i+1 and this closes Case 1.

Case 2: N = dn(k−i)
t

e = d (2t′+1)(k−i)
t′

e. By the analysis in Case 1, that

means (k−(t′+1)i)
t′

> 0. Let b = d (k−(t′+1)i)
t′

e, thus N = 2k− i+ b. By our
assumption about t′ and as we have discarded the case t′ = 1, it should

be (k−t′i)
t′−1 > b.

In this case, 2t′(k− i) + 1 = t′N − t′i− t′b+1 ≡ N − t′i− t′b+1 modulo
N . On one hand,

N − t′i− t′b+ 1 ≤ N − (k − i) + 1 ⇔

−t′(i+ b) ≤ −(k − i) ⇔

k − (t′ + 1)i

t′
≤ b

and this is satisfied because b = d (k−(t′+1)i)
t′

e. On the other hand,

k − i+ 1 ≤ N − t′i− t′b+ 1 = (2k − i+ b)− t′(i+ b) + 1 ⇔

(t′ − 1)b ≤ k − t′i ⇔

b ≤
(k − t′i)

t′ − 1

and we have observed that this inequality already holds. So d = N − t′i−
t′b+ 1 and this ends the proof of this lemma. 2

Lemma 2.4 Let Cn be a cycle on n = 2t+1 vertices. The running time
of Algorithm 1 with input Cn, integers k and i, with 0 ≤ i < k, is O(n).

Proof. Let M = dn(k−i)
t

e. We analyze first Step 1 of Algorithm 1. Let
t′c be the current value processed by the binary search, 1 ≤ t′c ≤ t. The



procedure is guaranteed to work due to the fact that the possible values

for t′c contain at least one value that satisfies d (2t′
c
+1)(k−i)
t′
c

e = M , namely

t, and to the fact that d (2t′
c
+1)(k−i)
t′
c

e is non-increasing in t′c. This means

that if d (2t′
c
+1)(k−i)
t′
c

e > M , we may safely discard all values in the set

{1, . . . , t′c}. In turn, d (2t′
c
+1)(k−i)
t′
c

e ≤ M implies that values in the set

{t′c+1, . . . , N} should be disregarded. The search occurs thus in no more
than O(log t) = O(log n) steps.
For Step 2 of the algorithm, note that the assignment c is built for every
vertex vi of Cn from consecutive colors intervals. Hence, we only need to
store the first and last color as a compact representation of the whole color
interval. If c(vj) = [`, `+ k − 1], we assign to c(vj) a reference to a tuple
< `, `+ k− 1 > in O(1). Analogously, if c(vj) = [`,N ]∪ [1, `+ k− 1−N ],
we assign to c(vj) references to tuples < `,N > and < 1, `+ k− 1−N >.
There are 2t′ + 1 iterations, and hence this step is O(2t+ 1) = O(n).
Step 3 of Algorithm 1 is analogous to Step 2. Tuples are copied and as-
signed in O(1) during t − t′ iterations, clearly resulting in no more than
O(n) operations.
Therefore, the total execution time of all three steps (executed sequen-
tially) is O(max{log n, n, n}) = O(n), as desired. 2

By the proofs of Lemmas 2.1, 2.3 and 2.4, we have the following result.

Theorem 2.5 Let Cn be a cycle on n = 2t+1 vertices. Then, χi
k(Cn) =

max{2k − i, dn(k−i)
t

e} and a (k, i)-coloring of Cn with χi
k(Cn) colors can

be obtained in O(n) time.

For example, the (4, 1)-coloring of C3 obtained by Algorithm 1 is
{1, 2, 3, 4}, {4, 5, 6, 7}, {7, 8, 9, 1}, the (4, 1)-coloring of C5 obtained by
Algorithm 1 is {1, 2, 3, 4}, {4, 5, 6, 7}, {7, 8, 1, 2}, {2, 3, 4, 5}, {5, 6, 7, 8},
the (4, 1)-coloring of C7 obtained by Algorithm 1 is {1, 2, 3, 4}, {4, 5, 6, 7},
{7, 1, 2, 3}, {3, 4, 5, 6}, {6, 7, 1, 2}, {2, 3, 4, 5}, {5, 6, 7, 1}, and the (4, 1)-
coloring of C11 obtained by Algorithm 1 is an extension of the coloring
of C7, namely, {1, 2, 3, 4}, {4, 5, 6, 7}, {7, 1, 2, 3}, {3, 4, 5, 6}, {6, 7, 1, 2},
{2, 3, 4, 5}, {5, 6, 7, 1}, {2, 3, 4, 5}, {5, 6, 7, 1}, {2, 3, 4, 5}, {5, 6, 7, 1}.

2.1 Extension to the k : i-coloring problem

Note that an optimal (k, i)-coloring of C2t is always a k : i-coloring, since
it uses 2k− i colors, but for odd cycles this is not always the case. Indeed,



the (4, 1)-coloring of C5 obtained by Algorithm 1 is not a 4 : 1-coloring,
since c(v5) ∩ c(v1) = ∅.

Note also that an analogous to Lemma 2.2 can be proved for the k : i-
coloring problem. We will show now that, if a (k, i)-coloring c of C2t+1

is obtained by Algorithm 1, one can modify the set c(v2t+1) by a simple
procedure, in order to obtain a k : i-coloring of C2t+1 with the same
number of colors.

First notice that |c(vi) ∩ c(vi+1)| = i for i = 1, . . . , 2t, and |c(v2t+1) ∩
c(v1)| ≤ i. Assume |c(v2t+1)∩ c(v1)| < i, otherwise we are done. We have
to show how to increase |c(v2t+1) ∩ c(v1)| without decreasing |c(v2t+1) ∩
c(v2t)|.

Let us define the following sets: A = c(v1)∩ c(v2t) \ c(v2t+1), B = c(v1)∩
c(v2t) ∩ c(v2t+1), C = c(v1) \ (c(v2t) ∪ c(v2t+1)), D = c(v2t) \ (c(v1) ∪
c(v2t+1)), E = c(v2t) ∩ c(v2t+1) \ c(v1), F = c(v1) ∩ c(v2t+1) \ c(v2t), G =
c(v2t+1)\(c(v1)∪c(v2t)) (see Figure 1), and let x = |X| for X = A, . . . , G.

Figure 1: Diagram for the definition of color sets.

If g > 0 and c > 0, we can replace in c(v2t+1) a color from G by a color
from C, and if e > 0 and a > 0, we can replace in c(v2t+1) a color from
E by a color from A. In both cases, we are increasing |c(v2t+1) ∩ c(v1)|
without decreasing |c(v2t+1) ∩ c(v2t)|.

If c = 0, the total number of colors used by v1, v2t, and v2t+1 is 2k − i,
so |c(v2t+1) ∩ c(v1)| ≥ i, a contradiction to our assumption. So, c > 0. If
g = 0 then e > 0, otherwise |c(v2t+1)| = b + f < i ≤ k, a contradiction.



Therefore, we only have to show that if g = 0 then a > 0. Suppose
g = a = 0. Then c > k − i, d = k − i, and b + e + f = k. So, the total
number of colors used by v1, v2t, and v2t+1 is strictly greater than 3k−2i.
We will show that, instead, the number of colors used by Algorithm 1 is
at most 3k − 2i. It is clear that 2k − i ≤ 3k − 2i since i ≤ k, so we will

assume that the number of colors used is 2k − i+ d (k−(t+1)i)
t

e.

2k − i+ d
(k − (t+ 1)i)

t
e ≤ 3k − 2i ⇔ d

(k − (t+ 1)i)

t
e ≤ k − i ⇔

(k − (t+ 1)i)

t
≤ k − i ⇔ 0 ≤ (t− 1)k + i

And this completes the argument.

In the previous example, the (4, 1)-coloring of C5 obtained by Algorithm 1
would be modified as to obtain, for instance, the following 4 : 1-coloring:
{1, 2, 3, 4}, {4, 5, 6, 7}, {7, 8, 1, 2}, {2, 3, 4, 5}, {5, 6, 7, 1}.

It may be interesting to characterize in general the graphs G such that

χi
k(G) = χ

(i)
k (G), or those graphs G such that χi

k(H) = χ
(i)
k (H) for each

induced subgraph H of G.

2.2 Generalization to cacti

These results can be easily generalized for cacti. A graph G is a cactus if
it does not contain two cycles that share an edge. It is a known fact that
every block (maximal 2-connected subgraph) of a cactus is either an edge
or a chordless cycle. We will base our proof on the following easy lemma,
that holds for many coloring problems.

Lemma 2.6 Let G be a graph. The (k, i)-chromatic number of G is the
maximum of the (k, i)-chromatic numbers of its blocks.

Proof. Clearly, it is enough to prove it for connected graphs. We proceed
by induction on the number of blocks m of G. If G has only one block,
the result trivially holds. For the inductive case, suppose the lemma holds



for all graphs with fewer than m blocks. Let B be an end-block of G and
let v be the cut-vertex of G that belongs to B. Let G′ be the subgraph
of G induced by (V (G) \ B) ∪ {v}. By inductive hypothesis, the (k, i)-
chromatic number of G′ is the maximum of the (k, i)-chromatic numbers
of its blocks.

Let f ′ be a (k, i)-coloring of G′ with the minimum number of colors,
and f ′′ be an optimal (k, i)-coloring of the subgraph of G induced by B.
By renaming the colors in f ′′ in such a way that f ′′(v) = f ′(v), we can
combine f ′ and f ′′ in order to obtain a (k, i)-coloring of G without adding
any new colors. This proves the lemma. 2

By Theorem 2.5 and Lemma 2.6, we obtain directly the following result.

Corollary 2.7 Let G be a cactus. Then, a (k, i)-coloring of G with χi
k(G)

colors can be computed in linear time.

Note that Lemma 2.6 and Corollary 2.7 can be proved analogously for
the k : i coloring problem.

3 (k, i)-coloring of cliques

Brigham and Dutton proved the next partial results on the k : i-coloring
of cliques:

Theorem 3.1 [4]

(a) If n ≤ k
i
+ 1 then χ

(i)
k (Kn) = kn− n(n−1)i

2 .

(b) If n ≥ k2 − k + 2 then χ
(i)
k (Kn) = kn− (n− 1)i.

Part (a) of Theorem 3.1 also holds for χi
k(Kn). This was proved by

Méndez-Dı́az and Zabala in [17]. Part (b), however, does not. For a

counterexample, let n = 4, k = 2 and i = 1. We have that χ
(1)
2 (K4) =

5, but χ1
2(K4) = 4. Indeed, by Theorem 3.1 part (b), we have that

χ
(1)
2 (K4) = 5 and {{1, 2}, {1, 3}, {1, 4}, {1, 5}} is a proper 2 : 1 coloring

of K4. On the other hand, {{1, 2}, {1, 3}, {1, 4}, {3, 4}} is a proper (2, 1)-
coloring of K4, and thus χ1

2(K4) ≤ 4. By Proposition 3.5 below, we will
obtain that χ1

2(K4) ≥ 4.



The general problem of (k, i)-coloring cliques is still open, and it is also
closely related to one of the central concerns in coding theory. We give now
some definitions we need to present this relation. A binary code (or just a
code, for brevity) is a set of binary vectors (or codewords) of length j. If
a position in a binary vector contains a one, it will be called a 1-position
and a 0-position otherwise. The size of a code is its cardinality. The
Hamming distance of two codewords a and b is the number of positions in
which they differ. The distance dC of a code C is the smallest Hamming
distance between any two codewords of C. A (j, d, k)-constant weight code
is a set of codewords of length j and exactly k ones in each of them, with
Hamming distance at least equal to d.
Given j, d and k, the question of determining the largest possible size
A(j, d, k) of a (j, d, k)-constant weight code has been studied for almost
forty years, and remains one of the most basic questions in coding theory.
The general answer is not known, but several upper and lower bounds on
A(j, d, k) have been found (see [1, 8] and references therein). We study
now the relation between A(j, d, k) and the k, i-coloring of cliques in the
following Theorem:

Theorem 3.2 A (k, i)-coloring for Kn with j colors does exist if and only
if A(j, 2(k − i), k) ≥ n.

Proof. We start with the proof of necessity. Let f be a (k, i)-coloring of
Kn with j colors. Construct a set B = {b1, b2, . . . , bn} of n binary vectors,
each of length j, such that every vector is the characteristic function of the
set of colors associated with each vertex of Kn. That is, for every vertex
vs of Kn we have vector bs = (b1s, b

2
s, . . . , b

j
s), where bts = 1 if and only if

color t belongs to f(vs). We will show that dB ≥ 2(k − i). Let vx and vy
be any two vertices of Kn, and bx and by their associated binary vectors
in B. Since |f(vx) ∩ f(vy)| ≤ i, bx and by have at most i 1-positions in
common. Vector bx has k 1-positions in total, so at least (k−i) 1-positions
of bx must be distributed along positions where by holds a 0. Analogously,
vector by must also accommodate at least (k− i) 1’s along positions that
store a 0 in bx. This means that they differ in at least 2(k−i) positions, so
d(bx, by) ≥ 2(k − i). Since vx and vy are two arbitrary vertices of Kn, we
have by definition of distance that dB ≥ 2(k− i), so A(j, 2(k− i), k) ≥ n.
We prove now sufficiency. Suppose A(j, 2(k − i), k) ≥ n. Let B be a
code that realizes A(j, 2(k − i), k). Choose any n-subset of B. We have
now only to interpret each binary vector b ∈ B as a color set Sb, where
a color c belongs to Sb if and only if bc = 1. We obtain n color sets,
each of cardinality k. By the same argument as before, no two of them
have more than i colors in common, otherwise their corresponding binary



vectors would be at a distance smaller than 2(k − i). Assign each set to
a vertex of Kn. This is a valid (k, i)-coloring f that uses no more than j

colors. 2

By Theorem 3.2, we can rephrase the definition of the (k, i)-chromatic
number of a complete graph Kn as the minimum positive integer j such
that A(j, 2(k−i), k) ≥ n. This fact is used in the following straightforward
corollary.

Corollary 3.3 If A(j, 2(k − i), k) ≤ n and m > n, then χi
k(Km) > j.

Thanks to Corollary 3.3, any upper bound on A(j, d, k) for an even number
d, can be used for generating new lower bounds for the (k, k− d

2 )-chromatic
number of complete graphs. We will do so with the well known Johnson
bound, presented in the next theorem:

Theorem 3.4 [14] A(j, 2r, k) ≤ b rj
k2−kj+rj

c, if the denominator is posi-
tive.

Let j be an integer such that k2

i
> j (1). By Theorem 3.4 applied to

A(j, 2(k − i), k), we have that A(j, 2(k − i), k) ≤ b (k−i)j
k2−ij

c. Note that
by our choice of j, the denominator is a positive number. Corollary 3.3

applied on this bound yields χi
k(Kn) > j, if n > b (k−i)j

k2−ij
c (2). We are

interested in the largest possible lower bound on χi
k(Kn), so we will find

the maximum value for j that meets the given inequalities (1) and (2).
For (2), we may write:

n > b
(k − i)j

k2 − ij
c

n >
(k − i)j

k2 − ij
(If x ∈ R, n ∈ N, n > x ⇐⇒ n > bxc)

nk2 > (k − i)j + nij

nk2

(n− 1)i+ k
> j

For any real number x and any natural number j, we have x > j ⇐⇒

dxe > j, so the largest possible value for j is d nk2

(n−1)i+k
e − 1. We show



now that this value of j also meets (1):

d
nk2

(n− 1)i+ k
e − 1 ≤ d

nk2

(n− 1)i+ i
e − 1 (Because k ≥ i)

= d
k2

i
e − 1 <

k2

i

The second line holds since for all x ∈ R, dxe − x < 1.
We have thus calculated our maximum possible j. Replacing this value of
j in χi

k(Kn) > j gives rise to the following new lower bound on χi
k(Kn):

Proposition 3.5 χi
k(Kn) > d nk2

(n−1)i+k
e − 1

We may as well take advantage of results on specific values of A(j, d, k)
found in the literature for achieving bounds on χi

k(Kn), for some values
of n, k and i. We choose as an example a theorem due to Hanani:

Theorem 3.6 [9, 10, 11, 12]

(a) A(j, 6, 4) = j(j−1)
12 , if and only if j ≡ 1 or 4 (mod 12).

(b) A(j, 8, 5) = j(j−1)
20 , if and only if j ≡ 1 or 5 (mod 20).

Proposition 3.7 Let j ≡ 1 or 4 (mod 12). Then

(a) χ1
4(Kn) > j, if n >

j(j−1)
12 .

(b) χ1
4(Kn) ≤ j, if n ≤ j(j−1)

12 .

Proof. Part (a) is a direct consequence of Theorem 3.6 (a) and Corollary
3.3. Part (b) follows from Theorem 3.6 (a) and Theorem 3.2. 2

Proposition 3.8 Let j ≡ 1 or 5 (mod 20). Then

(a) χ1
5(Kn) > j, if n >

j(j−1)
20 .

(b) χ1
5(Kn) ≤ j, if n ≤ j(j−1)

20 .

Proof. The proof is analogous to Proposition 3.7, using now Part (b) of
Theorem 3.6. 2



4 Conclusions

We have presented in this work a simple linear time algorithm to com-
pute the (k, i)-chromatic number and an optimum (k, i)-coloring of cycles,
and we have generalized the result in order to derive a polynomial time
algorithm for this problem on cacti. We have furthermore adapted the
algorithm in order to obtain an optimum k : i-coloring of cycles and cacti
(the k : i-chromatic number of cycles was already known [4]).

We also present a relation between this problem on complete graphs and
weighted binary codes. However, computing the (k, i)-chromatic number
and the k : i-chromatic number of complete graphs are both still open
problems.
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