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Abstract. A Three-Dimensional Finite Volume Arbitrary Lagrangian-Eulerian simulation code was developed to study 
different plasma physics problems in 3D+t. The code is based on a complex multi-component species program with 
transport and radiation terms written and applied to plasma and fusion physics problems. Three different examples are 
shown: double-base chemical propellant combustion, ignition and propagation of a thermonuclear detonation wave, and, 
the development of the Kelvin-Helmholtz (KH) instability in local plane slab models of the magnetopause, showing the 
response of a background equilibrium to the excitation by finite amplitude perturbations generated upstream. 
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INTRODUCTION 

A Three-Dimensional Finite Volume Arbitrary 
Lagrangian-Eulerian simulation code was developed, 
that includes ion viscosity, thermal conduction 
(electrons and ions), magnetic diffusion, 
thermonuclear production or chemical reactions 
(including local and non-local capabilities for the 
deposition of the charged thermonuclear products), 
Bremsstrahlung radiation, EOS (from the ideal gas to 
the degenerate electron gas). 

Nowadays there exist several efficient numerical 
codes in the subject. They are the result of many years 
of research, test and development as they are able to 
deal with very complex physics and geometry and 
most important, they are supported with empirical 
validation. However they are not always accessible 
mainly because of the high costs of their licenses. On 
the other hand the construction of own computational 
codes brings the following important advantages: a) to 
get a deeper knowledge of the physical processes 
involved and the numerical methods used to simulate 
them, and b) more flexibility to adapt the code to 
particular situations in a more efficient way than a 
closed general code would. 

These advantages have motivated the present work, 
which is intended to set a starting point in the subject. 
The present work will show in brief the distinct 
aspects that have been worked out in order to cover the 
simulation objective. 

PLASMA EQUATIONS 

We use a 3D, time dependent, two fluids (ions and 
electrons), two-temperature model. The equations are 
(MKS units except where noted) 
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Faraday's Law 
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Ampere's Law (neglecting displacement current) 
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Electric field transformation 
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where ρ is the mass density, ne (ni) the electron (ion) 
number density, Yk the mass concentration of species, 
ωk the overall reaction rate for the species, qD

k flux 
vector diffusion for species, v the fluid (ion) velocity, 
p the total pressure (ions plus electrons), εe (εi) the 
specific electron (ion) internal energy, Te (Ti) the 
electron (ion) temperature (in eV), qe (qi) the electron 
(ion) heat flux, Π the viscosity tensor (including 
artificial viscosity for numerical purposes), E (E’) the 
electric field in the laboratory (plasma) frame, B the 
magnetic field, j the current density, R is the 
momentum transfer between ions and electrons, τeq the 
equipartition time, e is the elementary charge, me the 
electron mass, mp the proton mass, and k the 
Boltzman’s constant. 

The above plasma equations are completed with 
the equation of state. 

NUMERICAL RESOLUTION 

We have used a Lagrangian Finite Volume method 
with hexaedric cells that move at arbitrary velocity. 
The notation and definition of the geometry is 
described Ref. 1. 

The main advantage of this method is that the 
geometry is imposed to the cells and not to the 
operators. This means, for example, that a general 

problem with cylindrical geometry is calculated in 
Cartesian coordinates. 

The numerical scheme is based on the Finite 
Volumes method. The integration in time is sequential. 
This means that each process is integrated with a 
different uncoupled method during a time step. 

Diffusion processes (of species concentration and 
energy) are integrated with ADI methods (Alternating 
Direction Implicit), full implicit or explicit methods 
according to the case. 

Hydrodynamics is integrated with a new variant of 
the ICE method (Implicit Continuous Eulerian) treated 
in Ref. 2. For the numerical integration we assume that 
a variable is constant over the volume or surface where 
it is defined.  

Source terms from chemical or nuclear reactions 
are explicitly integrated in time. 

Each integration is performed in a Lagrangian way, 
thus temporally avoiding the convective terms. Then, 
after each calculation cycle, mesh vertices are moved 
arbitrary over the fluid. This is done in order to 
dynamically adapt the mesh to the solution. As a 
consequence, convective terms are restored. This 
reorganization technique allows the calculation to 
automatically increase spatial resolution where steep 
gradients of any flux variable are produced. 
The numerical scheme is implemented according to 
the following general procedure: 

1. Read constants and calculation parameters. 
2. Read initial conditions and boundary 

information. 
3. Read mesh and connectivity structures. 
4. Initiate chemical/nuclear properties, kinetics 

and transport properties. 
5. Time step calculation. 
6. Burning rate calculation. 
7. Update Y and ε due to chemical reactions. 
8. Update Y, and ε due to diffusion process 

(conductivity, diffusion, viscosity) 
9. Update p, ε, coordinates and velocities due to 

hydrodynamics (Euler equations) 
10. Rezone the mesh in order to adapt the nodal 

concentration to the solution. 
11. Apply boundary conditions. 
12. Update flux properties. (i.e., temperature, 

pressure, speed of sound, etc., with equations 
of state). 

13. Update chemical or nuclear reactions, kinetics 
and transport properties. 

14. Perform auxiliary calculation. This optional 
step involves adding artificial pressure if shock 
waves must be captured, and artificial volume 
acceleration if some smoothing is required in 
order to dissipate numerical oscillations. 

15. Write results in file 
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16. Update time: ttt Δ+= , and repeat from step 5 
until the end of the calculation is reached. 

Steps 1 to 4 are performed once at the beginning of 
the calculation. Steps 5 to 16 are performed once at 
each time step.  

Boundary conditions are implemented with 
phantom cells and vertices. 

FINITE VOLUME FORMULATION 

This method is very similar to finite difference and 
consists of integrating conserved quantities over a cell. 
For a general fluid property φ, the following identity 
holds 
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where integration is performed over a cell of volume V 
with boundary S moving at an arbitrary speed w. 

For example, setting v ρφ = , and using the 
momentum equation 
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The integration domain is represented with a 

structured irregular mesh, with fixed connectivity 
made of hexaedric cells. Each cell is surrounded by 6 
faces and 8 vertices. Fluid variables are assigned to 
staggered locations in the mesh. Pressure, internal 
energy, density, species concentration, cell volume and 
mass are all assigned to cell centers. Coordinates 
(x,y,z) and velocities (ux,uy,uz) are assigned to cell 
vertices. 

Mesh is constructed with GID pre and post 
processing software, then recalculated with the Near 
Orthogonal Grid (NOG) method. 

TIME INTEGRATION 

Step 1. Integration of hydrodynamic terms. By 
“hydrodynamic terms” we refer only to the Euler 
equations included into the full set of conservation 
equations. So in this part of the calculation fluid 
variables are updated in time assuming that the other 
processes (diffusion, chemical or nuclear reaction, 
convection) are temporally frozen during one time 
step.  

The calculations necessary to advance a solution 
one step in time Δt are separated in two distinct 

phases. Phase One consists of an explicit Lagrangian 
calculation, except mesh vertices are not moved. Phase 
Two consists of an iteration that adjusts the pressure 
gradient forces to the advanced time level. This phase, 
which is optional, eliminates the usual Courant–like 
numerical stability condition that limits sound waves 
to travel no further than one cell per time step. In an 
explicit method pressure forces can be transmitted 
only one cell each time step, that is, cells exert 
pressure forces only on neighboring cells. When the 
time step is chosen so large that sound waves should 
travel more than one cell, the one cell limitation is 
inaccurate and a catastrophic instability develops. To 
overcome this instability time-advanced pressure 
gradients may be used. Unfortunately the time 
advanced pressures depend on the accelerations and 
velocities computed from those pressures, so an 
iterative calculation of the set of equations is required. 
Physically, iteration offers a means by which pressure 
signals can traverse across more than one cell in a unit 
time step. 

For regions where a low Mach number is expected, 
a good rule of thumb obtained from discussions kept in 
www.CFD-online.com is that the relative error in the 
pressure field, must be less than the square of the 
Mach number. So for M ≈ 10-3, the pressure should be 
iterated to one part in a million. If we include a safety 
factor of 0.1, just to ensure convergence, it would be 
necessary to run the calculation with 8 bytes in a 
floating point format number (double precision), since 
4 bytes offer only about 6 significant figures. 

Step 2. In the second sequential step we consider 
the time advance of the internal energy and species 
concentration due to thermal conduction through 
Fourier’s law, species diffusion through Fick’s law 
and viscosity through Newton’s law. In this step 
hydrodynamics, convection and chemical or nuclear 
reactions are kept frozen. 

In what follows we give the basis of the numerical 
implementation only for the thermal conduction, 
however, the other diffusive processes are treated 
almost exactly in the same way. 

The total internal energy (mε) into cell i will 
change due to the contribution of diffusion flux (q) 
through cell boundaries according to: 

 

 ( ) ( )∫
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All time derivatives are forward in time, transport 

coefficients are evaluated at cell faces. Because T and 
Y are assigned to cell centers, a weighted average 
between adjacent cells is performed in order to obtain 
values at the face.  
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In order to express the diffusive flux, the 
temperature gradient must be considered at cell 
boundaries. On the other hand, it is performed a local 
linearization between temperature and internal energy 
(with fixed concentration in the thermal conduction 
case). 

All the above mentioned assumptions allow us to 
implement explicit, or implicit or a regular ADI 
(Alternating Implicit Direction)3,4 methods. During 
each ADI stage, several tridiagonal systems must be 
solved, one for each row of cells lying in a column. 
This is done with the Thomas algorithm. 

Step 3. In the final sequential step chemical or 
nuclear reactions are considered. They represent the 
source terms in the energy and species concentration 
equations. In the present work they are explicitly 
integrated in time. This is tentatively done because it is 
possible that the explicit treatment would not be the 
principal cause of the time step restriction. 

Note that due to the time splitting procedure the 
overall truncation error is O(∆r,∆z,∆t). 

MESH REZONING 

The following considerations led to implement an 
adaptive technique to correct the nodal concentration 
dynamically. 

Lagrangian cell methods are not adequate for 
describing flows undergoing large distortions, because 
cells may undergo severe deformations. 

The physical solution may present steep gradient of 
temperature, or species concentration, or heat release 
in different regions. Moreover, the localization of 
these regions is unknown at the beginning of the 
calculation, and they may be originated or not 
depending on chemical or nuclear reactions, shock 
fronts or any other condition. 

The adaptive method consists of shifting mesh 
vertices over the fluid in order to keep a reasonable 
mesh structure and increase the spatial resolution 
where the physical solution demands. 

Each vertex is shifted to a new location therefore 
exchanging mass, species, energy and momentum 
among the surrounding cells. The following procedure 
is applied. 

Step 1. Calculate the new coordinates and then 
calculate the volume exchange between cells 

Step 2. Associated with the volume exchanged 
there will also be a mass, species concentration and 
total energy exchange. The mass, concentration or 
energy per unit mass assigned to this volume can be 
computed in various ways. The use of a simple 
average of the quantities on either side of the lines 
leads to a computational instability, but a stable 
calculation can be obtained by weighting the average 

in favor of the value in the cell from which the 
quantity is subtracted. This is the upstream or donor 
cell convective flux approximation. 

Step 3. A shift in a vertex is accompanied by a 
momentum exchange between neighborhood vertices. 
A similar donor cell procedure is used for momentum 
exchange among vertices. 

Step 4. Once updated the conserved cell and vertex 
properties, the following quantities must be retrieved: 
a) cell volumes from the new vertex coordinates, b) 
new cell densities, c) new species concentration, d) 
vertex masses from cell masses by averaging among 
adjacent cells, and, e) vertex velocities from new 
momentum. 

EXAMPLES 

Double-base propellant combustion wave 

The double–base propellant is a solid energetic 
material commonly used for propulsion systems and 
gas generators. Because its relatively large stability 
under room conditions, an external heat source 
(igniter) must be provided to initiate the propellant 
burning. During the ignition process, heat is 
transported by conduction inside the solid. As 
consequence of the corresponding temperature 
increase, rate reactions of the degradation reactions 
begins to accelerate. This endothermic process of 
decomposition generates reactive species. 

As degradation evolves, the solid concentration 
drops down from one to zero, then the igniter is no 
longer required, and combustion could reach self–
sustained conditions. As a consequence of convection 
and mass conservation through the burning surface, a 
chemically reacting flow emerges from the interface 
toward the gas phase. 

The emerging molecules react each other in the gas 
phase, developing great amounts of heat in the flame 
zone. The heat release profile is not evenly distributed 
because of the difference between characteristic times 
of the reactions involved. This is the principal cause of 
the flame structure and the steep gradients in the 
temperature profile. 

Fig. 1 shows the flame structure of a double-base 
propellant. It can be qualitatively observed that the 
luminous flame approaches the burning surface and 
burning rate increases as pressure increases.5 

In order to increase spatial resolution where steep 
temperature gradients and high chemical heat release 
are produced the rezone velocity U with which 
vertices are moved over the fluid is calculated using a 
distribution function for vertex concentration 
according to6 

 

470

Downloaded 02 May 2007 to 157.92.4.151. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Δ

∂

∂
+

∂
∂

+= t
t

b
x
Tbcw Q

i   1
i

2
i

1

ε
 (13) 

 
where c is a normalization factor such that 
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is the chemical heat release per cell. 
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FIGURE 1. Flame structures of a double-base propellant. 
 
Then, new coordinates (x*,y*) for each vertex are 

calculated in such a way that the Lagrangian 
coordinate η, defined as  
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remains equidistributed. 

Then the velocity U for each vertex becomes: 
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where τ, is a time relaxation factor established to keep 
vertex shifts controlled without diminishing the time 
step. This calculation of U is 1D, where the coordinate 
x represents the path length following one 
computational direction. 

The flame fronts are efficiently captured by the 
mesh as soon as they appear or they move through the 
integration domain. Fig. 2 shows the steady state 
temperature profiles for different bulk pressures in the 
gas phase near the burning surface. This behavior is in 
agreement with the experimental results of Ref. 5. 
 

 

FIGURE 2. Calculated temperature profiles in the gas phase 
under different bulk pressures in steady conditions. 

 
The hydrodynamics is best tested in a 2D-plane 

channel, where the propellant lies at the inlet section. 
The calculation is able to deal with transonic flows as 
well as subsonic ones, as can be seen in Fig. 3.  

 

 

FIGURE 3. Density plot of the Mach number in steady 
state, showing the capability of the code to deal subsonic and 
supersonic regimes in the same integration domain. 

Thermonuclear detonation wave 

Fast implosions of annular current sheaths (fast Z 
pinches) have made important progress in reaching 
high energy densities. New possibilities for a broad 
spectrum of experiments, from X-ray generation to 
controlled thermonuclear fusion are devised. At the 
same time experiments have shown that a cylindrical 
liner can successfully confine a magnetized, hot 
plasma column. The technical parameters necessary 
for ICF applications being inaccessible so far, thus, 
numerical simulations provide an insight into the 
structure of both the liner and the plasma, giving the 
range of parameters required for ignition and 
detonation in such a liner-pinch system7. Spark 
ignition appears to be a more promising approach to 
ICF than volume ignition. The idea of spark ignition 
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by a hot spot in a Z-pinch is not new, coming out of a 
long and varied experience with Z-pinch necking 
(plasma focus, fiber pinch, gas puff, etc.). It seems that 
the logical way of using ignition in DT is that of 
amplifying the fusion energy in a conical channel to a 
level at which a detonation can be triggered in 
advanced fuels8. Fig. 4 shows a typical result, 
corresponding to physically feasible situations. Even 
the mesh suffers from large distortion, a fully 
Lagrangian calculation was used. 

 

 

FIGURE 4. Time evolution of the temperature plot of a DT 
thermonuclear detonation wave propagating in a cylindrical 
channel. 

Development of the KH instability 

As an example of a pure Eulerian calculation, a 3D 
numerical simulation of the large amplitude 
perturbations and waves at the duskside low latitude 
boundary layer of the magnetopause generated by an 
interplanetary tangential discontinuity is presented in 
this Conference9. In Fig. 5 temperature and magnetic 
lines plot show that the KH waves appear already after 
a few theoretical e-folding time, due to the great 
oscillations generated by the tangential discontinuity 
stress that has reduced the amplification time. See Ref. 
9 for more details. 

CONCLUSIONS 

The code was successfully applied to different 
problems. The sequential implementation resulted of 
practical use, because each physical process was 
treated with a different numerical method. 

The time step was restricted by efficiency 
considerations rather than stability conditions. When 
time step becomes larger, the calculation progress 
faster because fluid variables, transport properties, 
etc., are updated with less frequency. But the implicit 
stage (phase two) of the hydrodynamic advance 
requires more iterations to perform. An optimum time 
step for which computational effort is minimum has 
been used. 

ACKNOWLEDGMENTS 

Work partially supported by grants UBA-X206, 
CONICET 5291 (Argentina), and UAEMex (Mexico). 

 

FIGURE 5. Temperature and magnetic lines at t = 0 (upper) 
and after one e-folding time (lower). See Ref. 9. 
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