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ABSTRACT
In this paper, we present necessary and sufficient conditions for the
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1. Introduction

Let Cm×n be the set of m × n complex matrices. For A ∈ Cm×n, the symbols A∗, A−1,
rk(A), N (A), and R(A) will denote the conjugate transpose, the inverse (m = n), the
rank, the kernel, and the range space of A, respectively. Moreover, In will refer to the n × n
identity matrix.

Let A ∈ Cm×n. We recall that the unique matrix X ∈ Cn×m satisfying

AXA = A, XAX = X, (AX)∗ = AX, and (XA)∗ = XA

is called the Moore–Penrose inverse of A and is denoted by A†. A matrix X ∈ Cn×m that
satisfies the equality AXA=A is called an inner inverse or {1}-inverse of A, and a matrix
X ∈ Cn×m that satisfies the equalityXAX=X is called an outer inverse or {2}-inverse ofA.

For a given complex square matrix A, the index of A, denoted by Ind(A), is the smallest
nonnegative integer k such that R(Ak) = R(Ak+1). We observe that the index of a non-
singular matrix A is 0, and by convention, the index of the null matrix is 1. We also recall
that the Drazin inverse of A ∈ Cn×n is the unique matrix X ∈ Cn×n such that XAX = X,
AX = XA, and Ak+1X = Ak, where k = Ind(A), and is denoted by Ad. If A ∈ Cn×n satis-
fies Ind(A) ≤ 1, then theDrazin inverse ofA is called the group inverse ofA and is denoted
by A#.
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Politècnica de València, 46022 Valencia, Spain
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2 D. E. FERREYRA ET AL.

The core inverse was introduced by Baksalary and Trenkler in [1]. For a given matrix
A ∈ Cn×n, its core inverse is the unique matrix X ∈ Cn×n defined by the conditions AX =
PA andR(X) ⊆ R(A), where PA is the orthogonal projector onto the range ofA, i.e. PA =
AA†. In case that such a matrix X exists, it is denoted by A #©. Moreover, it was proved that
A is core invertible if and only if Ind(A) ≤ 1.

Two generalizations of the core inverse have been recently introduced for complex
square matrices. Recall, for a given matrix A ∈ Cn×n of index k, the unique matrix X ∈
Cn×n such that

XAX = X and R(X) = R(X∗) = R(Ak) (1)

is called the core EP inverse of A and is denoted by A †© [2]. The authors proved that the
core EP of a matrix A ∈ Cn×n is the unique solution of

XAk+1 = Ak, XAX = X, (AX)∗ = AX, and R(X) ⊆ R(Ak) (2)

[2, Lemma 3.3]. Notice that equations in (2) are equivalent to a new set of equations con-
taining the same first three and changing the inclusion R(X) ⊆ R(Ak) with the equality
R(X) = R(Ak). Secondly, the concept of DMP inverse of A was introduced in [3]. In this
case, the unique matrix X ∈ Cn×n satisfying

XAX = X, XA = AdA, and AkX = AkA†, (3)

is called the DMP inverse of A and is denoted by Ad,†. Moreover, it was proved that Ad,† =
AdAA†. The authors introduced also another outer inverse associated to a square matrix,
namely A†,d = A†AAd called dual DMP inverse of A.

Recently, a new generalized inverse was given in [4]. In this case, the matrix

Ac,† := QAAdPA, where QA = A†A (4)

is called the CMP inverse of A.
We recall that a matrix A ∈ Cn×n is EP if AA† = A†A. In [5] the authors introduced k-

EP matrices mimicking the idea of EP matrices, in this case for k>1. A matrix A ∈ Cn×n

of index k is called k-EP matrix if AkA† = A†Ak, that is,

C
k,†
n =

{
A ∈ C

n×n : AkA† = A†Ak
}
.

Let A ∈ Cn×n. Throughout all the paper we will assume that Ind(A) = k ≥ 1. In this
paper, we are going to study the class

C
k
n =

{
X ∈ C

n×n : AkX = XAk, XAX = X
}

and the stress will be put on a sort of inverse problems by considering the following classes
of matrices:

C
k, †©
n =

{
A ∈ C

n×n : AkA †© = A †©Ak
}
,

C
k,d†
n =

{
A ∈ C

n×n : AkAd,† = Ad,†Ak
}
,

C
k,†d
n =

{
A ∈ C

n×n : AkA†,d = A†,dAk
}
,

C
k,c†
n =

{
A ∈ C

n×n : AkAc,† = Ac,†Ak
}
,
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which lead us to new generalizations for EPmatrices. The matrices in these last classes will
be called k-core EP, k-DMP, dual k-DMP and k-CMP matrices, respectively.

This paper is organized as follows. In Section 2, a necessary and sufficient condition
characterizing the class matrices A such that AkX = XAk, for X being an outer inverse of
A, is given. Section 3 presents new representations of core EP inverse, DMP and dual DMP
inverses, and CMP inverse of a squarematrix as an outer inverse with prescribed range and
null space. For further investigations, we also derive representations for the Drazin inverse,
theMoore–Penrose inverse, the DMP inverse, the dual DMP inverse, and the CMP inverse
in terms of the core EP decomposition. In addition, we state new characterizations of k-EP
matrices by using the recent core EP decomposition given by Wang in [6]. Similarly, we
give characterizations of k-core EP matrices, k-DMP matrices, dual k-DMP matrices, and
k-CMPmatrices. As a consequence, we derive that the class k-EP is (properly) included in
both k-DMP and dual k-DMP classes. Finally, Section 4 provides characterizations of core
EP matrices by means of a new set of matrix equations. This new set reduces from four to
three the number of equations given by Prasad and Mohana in [2] showing that the first
equation in (2) is redundant.

2. The general class C
k
n

Related to the power of matrices commuting with generalized inverses, for a given A ∈
Cn×n of index at most 1, the problem of characterizing all matrices X ∈ Cn×n such that

AkXkAk = Ak and XkAkXk = Xk, for all k ∈ N (5)

was studied in Rao and Mitra’s book [7, p. 77]. Using the canonical form for index 1
matrices,

A = L
[
C 0
0 0

]
L−1

for C and L being nonsingular, the most general form of X’s satisfying both conditions
in (5) is given by

X = L
[
C−1 J
F FCJ

]
L−1

provided that F and J fulfil JF=0. Notice that both conditions in (5) are true for χ-
inverses and ρ-inverses [7, pp. 73 and 77].

LetA ∈ Cn×n and assume that Ind(A) = k ≥ 1. According to Theorem 2.2 in [6], every
matrix A ∈ Cn×n with Ind(A) = k can be represented in the form

A = A1 + A2, A1 := U
[
T S
0 0

]
U∗, A2 := U

[
0 0
0 N

]
U∗, (6)

where T is nonsingular with t := rk(T) = rk(Ak), N is nilpotent of index k, and U is
unitary. The representation of A given in (6) satisfies Ind(A1) ≤ 1, Ak

2 = 0, and A∗
1A2 =

A2A1 = 0 [6, Theorem 2.1]. Moreover, it is unique [6, Theorem 2.4] and is called the core
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EP decomposition of A. The notation

T̃ =
k−1∑
j=0

TjSNk−1−j (7)

will be used in the forthcoming results.
The symbol A{2} stands for the set of all {2}-inverses of A and A{5} denotes the set of

all matrices commuting with A. Next result completely describes the set Ck
n.

Theorem 2.1: Let A ∈ Cn×n written as in (6) and k ≥ 1 be the index of A. Then X ∈ Ck
n if

and only if

X = U
[
X1 T−k(X1T̃ − T̃X4)

0 X4

]
U∗,

where X1 ∈ T{2} ∩ Tk{5} and X4 ∈ N{2}.

Proof: From

A = U
[
T S
0 N

]
U∗

and using that A has index k and (7), it is clear that

Ak = U
[
Tk T̃
0 0

]
U∗.

We partition

X = U
[
X1 X2
X3 X4

]
U∗

accordingly to the sizes of the blocks of A. From AkX = XAk we obtain[
TkX1 + T̃X3 TkX2 + T̃X4

0 0

]
=

[
X1Tk X1T̃
X3Tk X3T̃

]

from where TkX1 = X1Tk, X3 = 0, and X2 = T−k(X1T̃ − T̃X4).
Now, using that XAX=X we arrive at X1TX1 = X1, X4NX4 = X4.
We observe that the equation

T−k(X1T̃ − T̃X4) = X1T−kT(X1T̃ − T̃X4) + X1SX4 + T−k(X1T̃ − T̃X4)NX4

is always true due to T−kX1 = X1T−k and because if we focus on the powers of the
expression of T̃, it is easy to show that T̃N − TT̃ = −TkS. The converse is evident. �

The rest of the paper is devoted to investigate all the square matrices A of index k ≥ 1
satisfying

AkX = XAk for X ∈ {A†,A †©,Ad,†,A†,d,Ac,†}.
In [8], Wang and Chen introduced the weak group inverse of a matrix A ∈ Cn×n of index
k as the unique matrix X ∈ Cn×n satisfying AX2 = X and AX = A †©A and it was denoted
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by X = Aw©. The authors shown that if A is written in the core EP decomposition (6) then

Aw© = U
[
T−1 T−2S
0 0

]
U∗. (8)

In spite of the weak group inverse, Aw© is not an outer inverse of A, we can state the
following result.

Lemma 2.2: Let A ∈ Cn×n with Ind(A) = k written as in (6). Then AkAw© = Aw©Ak if
and only if

∑k−2
j=0 TjSNk−1−j = 0.

Proof: It is a simple computation that follows from (6), (8), and using the nonsingularity
of T. �

3. Representations of core EP, DMP and dual DMP, and CMP inverses

Let A ∈ Cn×n a matrix of rank r. Let T be a subspace of Cn of dimension s ≤ r, and let
S be a subspace of Cn of dimension n − s. It is well known that A has a {2}-inverse X
such thatR(X) = T andN (X) = S if and only if AT ⊕ S = Cn, in which case X is unique
and is denoted by A(2)

T,S [9, Theorem 14, p. 72]. Moreover, if B ∈ Cn×n satisfiesR(B) = T,
N (B) = S and A has an inverse A(2)

T,S then Ind(AB) ≤ 1 and Ind(BA) ≤ 1. Furthermore,
we have A(2)

T,S = (BA)#B and A(2)
T,S = B(AB)# [10, Theorem 2.1].

Recall that the Moore–Penrose inverse, the Drazin inverse, and the group inverse are
{2}-inverses of A with prescribed range and null space satisfying

A† = A(2)
R(A∗),N (A∗), A# = A(2)

R(A),N (A), and Ad = A(2)
R(Ak),N (Ak)

. (9)

Also, it was proved in [11] that A #© = A(2)
R(A),N (A∗) holds. For similar results extended to

weighted inverses we refer the reader to [12,13].

Remark 3.1: We observe that if X is an outer inverse of A, then N (AX) ⊆ N (XAX) =
N (X) ⊆ N (AX) and R(XA) ⊆ R(X) = R(XAX) ⊆ R(XA), i.e. N (X) = N (AX) and
R(X) = R(XA). That is, the inverse A(2)

R(X),N (X) exists. Thus, C
n = AR(X) ⊕ N (X).

In the following result, we give new representations of core EP inverses, DMP inverses
and CMP inverses. From now on, the symbol Ac stands for the product AAdA, which
represents the core part of the core-nilpotent decomposition of the matrix A, that is
A(c) := AAdA.

Theorem 3.2: Let A ∈ Cn×n with Ind(A) = k. Then

(a) A †© = A(2)
R(Ak),N ((Ak)∗);

(b) Ad,† = A(2)
R(Ak),N (AkA†)

;

(c) Ac,† = A(2)
R(A†Ak),N (AkA†)

;

(d) A†,d = A(2)
R(A†Ak),N (Ak)

.
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Proof: Wefirst notice that, by definition, each ofA †©,Ad,†,Ac,†, andA†,d are outer inverses
of A.

(a)We recall thatR(A †©) = R(Ak). From [14, Theorem3.7] we know thatN (AA †©) =
N ((Ak)∗). From Remark 3.1 we have N (A †©) = N ((Ak)∗). Hence, by [9, Theorem 14,
p. 72] we obtain (3.2).

(b) From [3, Theorem 2.12] we know that R(Ad,†A) = R(Ak) and N (AAd,†) =
N (AdAA†). Since N (AdA) = N (Ak) it is clear that N (AdAA†) = N (AkA†). Now,
From Remark 3.1 we haveR(Ad,†) = R(Ak) andN (Ad,†) = N (AkA†). In consequence,
Remark 3.1 and [9, Theorem 14, p. 72] complete the proof.

(c) From Remark 3.1 and the definition of Ac,† we have N (Ac,†) = N (AAc,†) =
N (A(c)Ac,†). Since Ac,† = A†A(c)A† = A†AAdAA† then

N (Ac,†) = N (AAdAA†) = N (AAd,†) = N (Ad,†) = N (AkA†),

where the last equality follows from (3.2). On the other hand, by definition of
Ac,† and Remark 3.1 we also have R(Ac,†) = R(Ac,†A) = R(A†A(c)) = R(A†AAdA) =
R(A†,dA) = R(A†,d), where the last equality uses the fact that A†,d is a {2}-inverse of A.
Now, as R(A†,d) = A†R(AAd) and R(AAd) = R(Ak), we obtain R(Ac,†) = R(A†Ak).
Finally, (3.2) follows from Remark 3.1 and [9, Theorem 14, p. 72].

(d) As in the proof of (3.2) we have R(A†,d) = R(A†Ak). On the other hand, from
Remark 3.1, N (A†,d) = N (AA†,d) = N (AA†AAd) = N (AAd) = N (Ak). Therefore, we
arrive at (3.2) by using Remark 3.1 and [9, Theorem 14, p. 72]. �

Corollary 3.3: Let A ∈ Cn×n with Ind(A) = k. Then the following statements hold:

(a) Ac,† = A†,d if and only ifN (AkA†) = N (Ak);
(b) Ac,† = Ad,† if and only ifR(A†Ak) = R(Ak);
(c) A †© = Ad,† if and only ifN (AkA†) = N ((Ak)∗);
(d) A †© = A†,d if and only if Ak is EP andR(Ak) is A†-invariant.

Theorem 3.4: Let A ∈ Cn×n with Ind(A) = k. Then

A †© = (PAkA)#PAk = PAk(APAk)
#. (10)

Proof: Since PAk = Ak(Ak)† is an orthogonal projector onR(Ak), we have

R(A †©) = R(Ak) = R(PAk), (11)

From [6, Corollary 3.3] we obtain

N (PAk) = N (AA †©) ⊆ N (A †©AA †©) = N (A †©) ⊆ N (AA †©) = N (PAk). (12)

Consequently, (10) follows from (11), (12), Theorem 3.2, and [10, Theorem 2.1] with B =
PAk . �

Remark 3.5: When Ind(A) ≤ 1, from the representation given in (10), it is easy to verify
that A #© = A#PA [1, Theorem 1].
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Remark 3.6: It is easily verified that A †© = (A †©A)#A †© = A †©(AA †©)# by setting B =
A †© in the definition of A(2)

T,S and by using Theorem 3.2 (a). Observe the similarity of
formulae for A †© and A† by noting that A† = (A∗A)†A∗ = A∗(AA∗)†.

Wang [6, Theorem 13] also gave a representation for the core EP inverse.More precisely,
for a matrix A represented as in (6), its core EP inverse is given by

A †© = U
[
T−1 0
0 0

]
U∗. (13)

Now, we give a new representation for Drazin matrices by using the core EP
decomposition.

Theorem 3.7: Let A ∈ Cn×n be a matrix of index k written as in (6). Then

Ad = U
[
T−1 (Tk+1)−1T̃
0 0

]
U∗. (14)

Proof: If we write A as in (6) and recall (7) then

Ak = U
[
Tk T̃
0 0

]
U∗. (15)

As Ak+1 = AkA = AAk, a straightforward computation shows that

Ak+1 = U
[
Tk+1 TkS + T̃N
0 0

]
U∗ = U

[
Tk+1 TT̃
0 0

]
U∗.

Then,

TkS + T̃N = TT̃ or equivalently (Tk)−1T̃ = T−1S + (Tk+1)−1T̃N. (16)

Let

X = U
[
T−1 (Tk+1)−1T̃
0 0

]
U∗.

Now, we shall prove that the matrix X satisfies the system XAX = X, AX = XA, and
Ak+1X = Ak. In fact,

Ak+1X = U
[
Tk+1 TT̃
0 0

] [
T−1 (Tk+1)−1T̃
0 0

]
U∗ = U

[
Tk T̃
0 0

]
U∗ = Ak.

From (16) we get

AX = U
[
T S
0 N

] [
T−1 (Tk+1)−1T̃
0 0

]
U∗ = U

[
It (Tk)−1T̃
0 0

]
U∗

= U
[
It T−1S + (Tk+1)−1T̃N
0 0

]
U∗ = U

[
T−1 (Tk+1)−1T̃
0 0

] [
T S
0 N

]
U∗ = XA.
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Finally,

XAX = U
[
T−1 (Tk+1)−1T̃
0 0

] [
It (Tk)−1T̃
0 0

]
U∗ = U

[
T−1 (Tk+1)−1T̃
0 0

]
U∗ = X.

Since the Drazin inverse is unique, we conclude that X = Ad holds. �

Corollary 3.8: Let A ∈ Cn×n with Ind(A) = k. Then

A †© = AdPAk . (17)

Proof: Let A ∈ Cn×n be written as in (6). By [14, Lemma 2.5] we obtain

PAk = Ak(Ak)† = U
[
It 0
0 0

]
U∗. (18)

On the other hand, by [6, Theorem 3.2] we have that

A †© = U
[
T−1 0
0 0

]
U∗.

Hence, from Theorem 3.7 and (18) we obtain (17). �

In [15], the authors found the Moore–Penrose inverse of a linear operator for which its
matrix block representation is block (upper) triangular with some diagonal block being
nonsingular. The following result provides a representation for the Moore Penrose inverse
by using the core EP decomposition for a general matrix. The importance of this result
lies in the fact that it is valid with no extra restrictions to be assumed which highlight the
power of the core EP decomposition.

Theorem 3.9: Let A ∈ Cn×n be a matrix of index k written as in (6). Then

A† = U
[

T∗� −T∗�SN†

(In−t − N†N)S∗� N† − (In−t − N†N)S∗�SN†

]
U∗, (19)

where � = (TT∗ + S(In−t − N†N)S∗)−1.

Proof: The proof follows immediately from [9, Ex. 25, p. 49] and [15, Lemma 6]. �

Define the matrix[
R V
W Z

]
:=

[
T∗� −T∗�SN†

(In−t − N†N)S∗� N† − (In−t − N†N)S∗�SN†

]
(20)

in order to consider the central block obtained in (19).
Next, we establish a new geometrical characterization for k-EP matrices by using the

core EP decomposition. We recall that A is k-EP if and only if A ∈ C
k,†
n .
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Theorem 3.10: Let A ∈ Cn×n be a matrix of index k written as in (6). Then A ∈ C
k,†
n if and

only if the following conditions simultaneously hold:

(i) N (N) ⊆ N (S) (or equivalently S(In−t − N†N) = 0),
(ii) N (N∗) ⊆ N (T̃) (or equivalently T̃(In−t − NN†) = 0).

Proof: LetA ∈ Cn×m be written as in (6) and consider the expression forA† given in (19).
Assuming that A is k-EP, from (15) and (20) we have[

RTk RT̃
WTk WT̃

]
=

[
TkR + T̃W TkV + T̃Z

0 0

]
.

Since T is nonsingular,W=0. Also, since � is nonsingular, we have (In−t − N†N)S∗ = 0
or equivalently S(In−t − N†N) = 0 holds. Observe that this last equality holds if and
only if N (N) = N (N†N) = R(In−t − N†N) ⊆ N (S). So, from Theorem 3.9, we obtain
� = (T∗)−1T−1 and consequently R = T−1, V = −T−1SN†, Z = N†, and RT̃ = TkV +
T̃Z. Thus, T−1T̃ = −Tk−1SN† + T̃N† or equivalently T̃ = −TkSN† + TT̃N†. Accord-
ing to (16) we have T̃ = −TkSN† + (T̃N + TkS)N† = T̃NN†, which implies T̃(In−t −
NN†) = 0. Equivalently,N (N∗) = N (N†) = N (NN†) = R(In−t − NN†) ⊆ N (T̃).

Conversely, we suppose that S(In−t − N†N) = 0 and T̃(In−t − NN†) = 0 hold. Since
(In−t − N†N)S∗ = 0, from Theorem 3.9 we deduce that � = (T∗)−1T−1 and so

A† = U
[
T−1 −T−1SN†

0 N†

]
U∗.

From (16), it follows that −Tk−1SN† + T̃N† = −T−1TkSN† + T−1TT̃N† = T−1(TT̃ −
TkS)N† = T−1T̃NN† = T−1T̃. Therefore,

AkA† = U
[
Tk T̃
0 0

] [
T−1 −T−1SN†

0 N†

]
U∗ = U

[
Tk−1 −Tk−1SN† + T̃N†

0 0

]
U∗

= U
[
Tk−1 T−1T̃
0 0

]
U∗ = U

[
T−1 −T−1SN†

0 N†

] [
Tk T̃
0 0

]
U∗ = A†Ak,

i.e. A is a k-EP matrix. �

In order to obtain similar results for the sets C
k,d†
n and C

k,†d
n we need representations

for Ad,† and A†,d given by means of core EP factorization of A.

Theorem 3.11: Let A ∈ Cn×n be a matrix of index k written as in (6). Then

Ad,† = U
[
T−1 (Tk+1)−1T̃NN†

0 0

]
U∗ (21)

and

A†,d = U
[

T∗� T∗�T−kT̃
(In−t − N†N)S∗� (In−t − N†N)S∗�T−kT̃

]
U∗, (22)

where � is defined as in Theorem 3.9.
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Proof: From (6), (19), and using the expression of �, we have

AA† = U

⎡
⎣[TT∗ + S(In−t − N†N)S∗]� −TT∗�SN† + S[N† − (In−t

−N†N)S∗�SN†]
N(In−t − N†N)S∗� NN† − N(In−t − N†N)S∗�SN†

⎤
⎦U∗

= U
[
[TT∗ + S(In−t − N†N)S∗]� −[TT∗ + S(In−t − N†N)S∗]�SN† + SN†

0 NN†

]
U∗

= U
[
It 0
0 NN†

]
U∗,

and

A†A = U
[

T∗�T T∗�S(In−t − N†N)

(In−t − N†N)S∗�T N†N + (In−t − N†N)S∗�S(In−t − N†N)

]
U∗. (23)

Now, since Ad,† = AdAA† and A†,d = A†AAd, we have that (21) and (22) follow by
using (14) and simple computations. �

As a consequence, we derive a representation for CMP inverses.

Corollary 3.12: Let A ∈ Cn×n be a matrix of index k written as in (6). Then

Ac,† = U
[

T∗� T∗�(Tk)−1T̃NN†

(In−t − N†N)S∗� (In−t − N†N)S∗�(Tk)−1T̃NN†

]
U∗, (24)

where � is defined as in Theorem 3.9.

Proof: We observe that Ac,† = A†AAd,†. Now, (24) follows by a simple computation
from (21) and (23). �

The following result provides a necessary and sufficient condition for a matrix to be k-
DMP by using the core EP decomposition. As a consequence, it follows that the class C

k,†
n

is a subset of C
k,d†
n .

Theorem 3.13: Let A ∈ Cn×n be a matrix of index k written as in (6). Then A ∈ C
k,d†
n if

and only ifN (N∗) ⊆ N (T̃).

Proof: We suppose that A ∈ C
k,d†
n . By using (15) and (21) it is easy to see that Ad,†Ak =

AkAd,† if and only if T̃(In−t − NN†) = 0, which is equivalent toN (N∗) ⊆ N (T̃). �

Now, we establish another characterization for k-DMP matrices.

Theorem 3.14: Let A ∈ Cn×n be a matrix of index k. Then the following statements are
equivalent:

(a) A is a k-DMP matrix;
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(b) Ad,† = Ad;
(c) Ac,† = A†,d.

Proof: (a) ⇐⇒ (b) From (14) and (21) we have that Ad,† = Ad if and only if T̃(In−t −
NN†) = 0, which is equivalent to the fact that A is a k-DMP matrix by Theorem 3.13.

(b) ⇒ (c) Suppose that Ad,† = Ad holds. Then Ac,† = A†A(AdAA†) = A†AAd,† =
A†AAd = A†,d.

(c) ⇒ (b) Assume that Ac,† = A†,d is true. By Corollary 3.3 (a) we obtainN (AkA†) =
N (Ak). According to Theorem 3.2 (b) and (9) we have Ad,† = A(2)

R(Ak),N (Ak)
= Ad. �

Remark 3.15: The class C
k,†
n is a proper subset of C

k,d†
n . For example, if we take

A =

⎡
⎢⎢⎣
1 0 1 −1
0 1 1 −1
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ ,

we have that Ind(A) = 2,

A† =

⎡
⎢⎢⎣

2/3 −1/3 1/3 0
−1/3 2/3 1/3 0
1/3 1/3 2/3 0
0 0 1 0

⎤
⎥⎥⎦ , and Ad =

⎡
⎢⎢⎣
1 0 1 0
0 1 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

It is easy to see that A2Ad,† = Ad,†A2, but A2A† �= A†A2.

It can be derived from the following result that the class C
k,†
n is a subset of C

k,†d
n .

Theorem 3.16: Let A ∈ Cn×n be a matrix of index k written as in (6). Then A ∈ C
k,†d
n if

and only ifN (N) ⊆ N (S).

Proof: Assume that A ∈ C
k,†d
n is satisfied. By using (15) and (22) it is easy to see that

A†,dAk = AkA†,d if and only if the following conditions simultaneously hold:

(i) T∗�Tk = TkT∗� + T̃(In−t − N†N)S∗�,
(ii) (In−t − N†N)S∗�Tk = 0,
(iii) T∗�T̃ = TkT∗�T−kT̃ + T̃(In−t − N†N)S∗�T−kT̃,
(iv) (In−t − N†N)S∗�T̃ = 0.

Hence, (ii) implies that S(In−t − N†N) = 0 since T and� are nonsingular. So,N (N) ⊆
N (S).

Conversely, we have S(In−t − N†N) = 0.Now, it is easy to check that conditions (i) –(iv)
are valid. �

Our next result establishes another characterization for dual k-DMP matrices.
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Theorem 3.17: Let A ∈ Cn×n be a matrix of index k. Then the following statements are
equivalent:

(a) A is a dual k-DMP matrix;
(b) A†,d = Ad;
(c) Ac,† = Ad,†.

Proof: (a) ⇒ (b) Assume that A is a dual k-DMP matrix. By Theorem 3.16, S(In−t −
N†N) = 0. Therefore,

A† = U
[
T−1 −T−1SN†

0 N†

]

by (19). Now, from (14) we obtain A†,d = Ad.
(b) ⇒ (a) Let A† ∈ Cn×n be written as in (19). Since A†,d = Ad, from (14) and (22) we

get

U
[

T∗� T∗�T−kT̃
(In−t − N†N)S∗� (In−t − N†N)S∗�T−kT̃

]
U∗ = U

[
T−1 (Tk+1)−1T̃
0 0

]
U∗.

Hence (In−t − N†N)S∗ = 0, since� is nonsingular. Therefore S(In−t − N†N) = 0 and
Theorem 3.16 completes the proof.

(b) ⇒ (c) Since A†,d = Ad, we get Ac,† = (A†AAd)AA† = A†,dAA† = AdAA† = Ad,†.
(c) ⇒ (b) Assume that Ac,† = Ad,† holds. By Corollary 3.3 (b) we obtain R(A†Ak) =

R(Ak). According to Theorem 3.2 (3.2) and (9) we have A†,d = A(2)
R(Ak),N (Ak)

= Ad. �

In [4, Theorems 3.3, 3.5, and 3.6], it was proved that A is k-EP if and only if Ac,† = Ad if
and only if Ad,† = A†,d. Moreover, if A is a k-EP matrix, by Theorems 3.10 to 3.17 we have
that A is a dual k-DMP matrix and, moreover, A†,d = Ad and Ac,† = Ad,†. Thus, we have
the following result.

Corollary 3.18: Let A ∈ Cn×n be a matrix of index k. Then A is k-EP matrix if and only if
Ac,† = Ad,† = A†,d = Ad.

Remark 3.19: The class C
k,†
n is a proper subset of C

k,†d
n . For example, if we take

A =

⎡
⎢⎢⎣
1 0 1 2
0 1 1 2
0 0 2 4
0 0 −1 −2

⎤
⎥⎥⎦ ,

we have that Ind(A) = 2,

A† =

⎡
⎢⎢⎣
1 0 −2/5 1/5
0 1 −2/5 1/5
0 0 2/25 −1/25
0 0 4/25 −2/25

⎤
⎥⎥⎦ , and Ad =

⎡
⎢⎢⎣
1 0 1 2
0 1 1 2
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

It is easy to see that A2A†,d = A†,dA2, but A2A† �= A†A2.
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The following interesting result is a characterization for k-EP matrices and it can be
easily derived from Theorems 3.10, 3.13, and 3.16.

Theorem 3.20: C
k,†
n = C

k,d†
n ∩ C

k,†d
n .

Now, we give another characterization for k-EP matrices by using the CMP inverse.

Theorem 3.21: The classes of matrices k-EP and k-CMP are coincide.

Proof: Since Ac,† = QAAdPA, we observe that AkQA = PAAk = Ak. Then, AkAc,† =
AkQAAdPA = AkAdAA† = Ak+1AdA† = AkA†. Also, we have Ac,†Ak = QAAdPAAk =
A†AAdAk = A†Ak+1Ad = A†Ak. Therefore,AkAc,† = Ac,†Ak if and only ifAkA† = A†Ak,
i.e. Ck,†

n = C
k,c†
n . �

4. New characterizations for core EP inverses and extensions

According to [16], it is well known that X = A #© is equivalent to AXA=A, AX2 = X, and
(AX)∗ = AX. By exploiting the condition AX2 = X, we shall obtain a new necessary and
sufficient condition for a matrix to be the core EP inverse. Moreover, motivated by [2,
Lemma 3.3] we prove that the core EP inverse of a square matrix can be characterized
by two new sets of three equations each one. Before that, we present two auxiliary lemmas.

Lemma 4.1: Let A,X ∈ Cn×n with Ind(A) = k such that AX2 = X. ThenR(X) ⊆ R(Ak)

(and, consequently,N ((Ak)∗) ⊆ N (X∗)). If, in addition,XAk+1 = Ak thenR(X) = R(Ak)

(and, consequently,N (X∗) = N ((Ak)∗) and X is a {2}-inverse of A.

Proof: Since AX2 = X, by induction it then follows that

X = AX2 = AXX = A(AX2)X = A2XX2 = A2(AX2)X2 = · · · = Ak(AX2)Xk.

Thus,R(X) ⊆ R(Ak) and thenN ((Ak)∗) ⊆ N (X∗).
Now, we assume that XAk+1 = Ak is also fulfilled. It is clear that now R(X) = R(Ak)

and then N ((Ak)∗) = N (X∗). On the other hand, since R(X) ⊆ R(Ak) can be equiv-
alently expressed as PAkX = X, we conclude that XAX = XAPAkX = XAk+1(Ak)†X =
PAkX = X. �

In the following lemma, we prove that the equationXAk+1 = Ak in (2) is redundant and
then it can be dropped out as we establish in Theorem 4.3.

Lemma 4.2: Let A ∈ Cn×n with Ind(A) = k. Then the following statements are
equivalent:

(a) XAk+1 = Ak andR(X) ⊆ R(Ak);
(b) XAX=X andR(X) = R(Ak).
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Proof: (a) ⇒ (b) It is a direct consequence from the proof of Lemma 4.1. (b) ⇒ (a)
Notice that R(Ak) ⊆ R(X) can be equivalently expressed as PXAk = Ak. Postmultiply-
ing the equation XAX=X on the right-hand by X†Ak leads to XAPXAk = PXAk. So,
XAk+1 = Ak. �

Theorem 4.3: Let A,X ∈ Cn×n with Ind(A) = k. Then the following statements are
equivalent:

(a) X is the core EP of A;
(b) XAk+1 = Ak, AX2 = X, and (AX)∗ = AX;
(c) XAX = X, (AX)∗ = AX, andR(X) = R(Ak).

Proof: (a) ⇒ (b) We suppose that X is the core EP of A. From [6, Theorem 2.2 and 3.2],
it is not hard to see that AX2 = X. Therefore (4.3) holds from (2).

(b) ⇒ (a) We assume that (4.3) is true. By Lemma 4.1 we have XAX=X andR(X) =
R(Ak). Thus, (2) leads to (a).

(a) ⇐⇒ (c) The proof follows as a direct application of (2) and Lemma 4.2. �

We close this paper by providing some extensions valid for k-core EP matrices. In [1,
Theorem 3] the following equivalences were proved for at most index 1 matrices:

A is EP ⇐⇒ AA #© = A #©A ⇐⇒ A #© = A#. (25)

We will give a generalization of this assertion for k-core EP matrices.

Theorem 4.4: Let A ∈ Cn×n be a matrix of index k written as in (6). Then the following
statements are equivalent:

(a) A is a k-core EP matrix;
(b) T̃ = 0;
(c) A †© = Ad.

Moreover, in this case, A is a k-DMP matrix and Ad,† = A †© = Ad.

Proof: Let A ∈ Cn×n be written as in (6). By (13) – (15) it is obvious that A is a k-core EP
matrix, i.e. A †©Ak = AkA †©, if and only if T̃ = 0 if and only if A †© = Ad.

Now, item (b) implies T̃(In−t − NN†) = 0. Next, Theorem 3.13 implies that A is a k-
DMP matrix. Finally, from (13), (14), and (21) we have Ad,† = A †© = Ad. �

We observe that if Ind(A) ≤ 1, then A †© = A #© and Ad = A#, and in consequence,
the above theorem generalizes the result in (25). Moreover, Theorem 4.4 describes the
inclusion of the class C

k, †©
n into the class C

k,d†
n for k>1.
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Remark 4.5: Notice that the classC
k, †©
n is a proper subset ofCk,d†

n . For example, if we take

A =

⎡
⎢⎢⎣
1 −1 1 0
0 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ,

we have that Ind(A) = 3,

A† =

⎡
⎢⎢⎣
1 0 1 −1
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ , Ad =

⎡
⎢⎢⎣
1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,and A †© =

⎡
⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

It is easy to see that A3Ad,† = Ad,†A3, but A3A †© �= A †©A3.
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