Applying dimensional analysis to wave dispersion
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L. INTRODUCTION

The purpose of this paper is to highlight the usefulness of
dimensional analysis, which does not always receive the at-
tention it deserves in introductory physics courses. Dimen-
sional analysis can be a very useful pedagogical tool because
it focuses attention on the physics of the phenomenon and
not on the mathematics required by its description.l’2 We will
show that by using dimensional analysis it is possible to
predict the existence of the dispersion of waves without hav-
ing to derive differential equations and use other sophisti-
cated mathematical tools. Next we show by means of two
examples that with the help of simple physical arguments, it
is possible to derive the main characteristics of the disper-
sion. We focus our attention on mechanical waves, but simi-
lar considerations can be made for other kinds of waves,
such as waves in plasmas.

We consider a perturbation of the form ¢= ¢y®(kx—wi),
where @ is a periodic function (we disregard a constant
phase because it is not relevant for our purposes). Here ¢
represents the quantity that propagates (for example, the den-
sity perturbation of an acoustic wave), ¢, is the amplitude, k
is the wavenumber, and w is the angular frequency of the
wave. Dispersion occurs when the phase velocity c=w/k of
the wave depends on k, so that

¢ = c(k) # const. (1)

The dispersive properties of the wave are determined by the
dispersion relation w=w(k). Because w(k)=kc(k), the func-
tion c(k) determines the dispersion relation. In this paper we
shall discuss the dispersion in terms of c(k). For example,

acoustic waves are nondispersive, because c(k)= \/Fp,
where « is the compressibility of the medium and p its den-
sity.

This example illustrates a general property of mechanical
waves; namely, the phase velocity of an elementary (sinu-
soidal) wave is always given by

R

where R is a quantity related to the restoring force and 7 is
related to inertia. This property is important in the present
context because it places restrictions on how c(k) depends on
the parameters of the system.
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II. DIMENSIONAL ANALYSIS OF THE DISPERSION
RELATION

The properties of a wave depend on the parameters ¢ and
k that characterize the perturbation (we assume small ampli-
tude waves so that ¢, is not a relevant parameter) and on
risra,...,,, Which describe the relevant properties of the
medium and the relevant forces. If we assume three funda-
mental dimensions (such as length, mass, and time as is
usual in mechanics), then according to the Pi theorem it is
possible to obtain n—1 independent dimensionless quantities

from these n+2 parameters.3 Any physically meaningful re-
lation concerning the system of interest can be expressed in
terms of these n—1 invariants, one of which must necessarily
involve c. Let us call II, this invariant, which can be chosen
without loss of generality as

c

= 3
krBry... ®)
The remaining n—2 invariants II; with i=1,...,n—2 can al-

ways be chosen to be independent of c:
I0; = keirfirdi .. . (4)

The expression for c(k) is derived by observing that II,
=V(Il,,...,II,_,), from which we obtain

5 Hn—2) . (5)

Clearly, if a=a;=0 (i=1,...,n—-2), then ¢ does not depend
on k, which is the necessary and sufficient condition for the
wave to be nondispersive. Note that =0 implies that there is
a combination of r(,...,r, whose dimensions are that of ve-
locity, thus defining a characteristic velocity cy(ry, ...,r,) of
the medium. In contrast, «;=0 for i=1,...,n—2 implies that
there does not exist a combination of r(, ... ,r, whose dimen-
sion is a length, which means that the medium has no char-
acteristic length.4

We conclude that the wave is not dispersive if and only if
two conditions are fulfilled: there is a characteristic velocity
of the medium and there is no characteristic length. If at least
one or both of these conditions are not satisfied, that is, if the
medium has no characteristic velocity or if it has a charac-
teristic length, the wave is dispersive. Note that the disper-
sion that occurs when the medium has no characteristic ve-
locity is present for any k. On the other hand, the dispersion
due to a characteristic length €, affects a limited region of
the spectrum, because it occurs only when k€,=1 as the

c=krB) WL, ...
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corresponding I1; drops out of Eq. (5) for k€;— 0, «. In the
following we shall illustrate these results by two examples.

ITII. A CHAIN OF MASSES AND SPRINGS

We consider a linear infinite chain of identical objects of
mass m joined by identical springs with elastic constant x
and equilibrium length €. This simple model describes some
of the features of the propagation of longitudinal waves in a
crystal (see, for example, Ref. 5). Let x be the coordinate
along the chain and &x,, be the displacement of the nth object
with respect to its equilibrium position x,,. It is well known
that this system can sustain longitudinal waves of the form

Ox, =A cos(kn € — wt), (6)

where A is a constant. We shall be concerned with the inter-
val —7r/ € < k=< /€ because only the values of the displace-
ment at x=n{ are physically meaningful. Then k and k’'=k
+2sar/€ (s integer) in Eq. (6) represent the same perturba-
tion. The characteristic parameters of the chain are m, «, and
€. From these parameters we can form a characteristic fre-
quency and a characteristic velocity given by wy=1x/m and
co="{ wy. According to the results of Sec. II the waves are
dispersive and

c=clk)=coV(kt), (7)
or equivalently
w=wyUk{). (8)

We expect that the dispersion is important only for k€ =1,
and that c= ¢ for k€ —0. Because ¢ cannot depend on the
sign of k, we conjecture that for k€ <1,

c=coll +alk€)*+ -], )

where a is a constant. In the same domain (k€ <1) we have
w=k{ w. If k increases from 0 to 27/¢, the frequency in-
creases from 0 to a maximum w,,,, and then decreases again
to 0. This behavior means that w is bounded from above and
no perturbations with w> w,,,, can propagate. Because the
natural frequency scale is w, we must have w,,=bw
where b is a constant of the order of unity. As w— w,,,, the
group velocity dw/dk goes to zero. We conclude that the
dispersion that occurs for k€ = 1is related to the existence of
the cutoff frequency w,,-
The exact result is
sin (k€ /2) L
from which it can be verified that the conclusions obtained

from our simple arguments are correct and that a=—2—14 and
b=2.

IV. WAVES ON THE SURFACE OF A LIQUID

The waves that propagate on the surface of a water pond
are a familiar phenomenon. We neglect viscosity and con-
sider small amplitude surface waves propagating in one di-
mension. The parameters in this case are c, k, the accelera-
tion of gravity g, the surface tension 7, the depth of the
liquid A, and its density p. Because there are only three fun-
damental dimensions (length, time, and mass), we can form
6—-3=3 independent dimensionless quantities from the six
parameters. These three quantities can be chosen as
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m,=—,

C
Cx

II,=kh, II,=k\, (11)

where the characteristic velocity ¢, =(yg/p)“=1g\, and

N=\y/pg is the capillary length. From these considerations
we can write

c=c\W(kh,k\). (12)

Equation (12) shows that these waves are dispersive because
¢ depends on k. Note that there are two characteristic lengths
(h and \) as well as two characteristic velocities (¢, and ¢,
=gh) so that Eq. (12) is not unique.

Various important limiting cases can be obtained from Eq.
(12). The invariant k\=\pg/yk?* is related to the ratio be-
tween the restoring forces due to gravity (proportional to pg)
and to surface tension (proportional to yk?). The invariant kA
is related to the mass of the fluid perturbed by the wave. If
the depth of the fluid is infinite, the surface perturbations
affect a layer of fluid whose thickness ¢ is of the order of
1/k. Then kh=h/ 6 gives a measure of the effect of the depth
of the fluid layer on the phenomenon.

Let us derive the consequences of these facts. We first
consider the invariant IT,=kN. If kN <1, gravity provides the
dominant restoring force so that ¢ does not depend on . In
this limit we obtain pure gravity waves for which ¥
— (kN)~'2®(kh), and thus

Coray = \/%D(kh), (13)

which determines the dispersion relation for pure gravity
waves.

If kN> 1, surface tension provides the relevant restoring
force, and ¢ does not depend on g. This case corresponds to
pure capillary waves. In this limit W — (k\)"2®(kh), and
thus we obtain for pure capillary waves:

Cep = \/%db(kh). (14)

Note that we used the same function ®(kh) in Egs. (13) and
(14). We did so because ®(kh) describes the effect of the
finite depth of the fluid layer, which does not depend on the
nature of the forces involved.

Now we examine the invariant kh. If the liquid layer is
shallow so that kh—0, cgpy cannot depend on k, which
means that in this limit ® — Vkh. We then obtain from Eq.

(13)
Cgrav,shallow = \“"gh . (15)

In the same limit we obtain from Eq. (14)

Y
Ccap,shallow = k ? . (16)

In the limit of a deep layer (kh— o), the speed of the
wave cannot depend on /& and we must have ® — const. If we
use this result in Eqgs. (13) and (14), we obtain

8
Cgrav,deep — \/; (17)

and
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| vk
Ccap,deep = ? . (18)

In Egs. (15)-(18) we have omitted numerical factors that
cannot be found by means of dimensional arguments. Our

results can be compared with the exact result®’

1
c2=c}2\(a+k)\> tanh (kh), (19)

from which it can be verified that all the numerical factors
are 1.

If we use I1)=c/c, instead of I, the previous analysis of
the limiting cases cannot be easily carried to the end, because
the dependency of ¢y, and c,, on A appears in ¢, and in
@' (kh), and not in the single factor ®(kh) as occurs in Egs.
(13) and (14). It is legitimate to employ any combination of
the parameters having the dimensions of velocity in place of
¢ or ¢, to define a new II. For example, we can use Vg/k;
the same arguments as before can be carried through, and we
obtain the same results as in Egs. (13)—(18). Thus, the choice
of the velocity scale is a matter of convenience and taste. We
prefer the choice (11) because ¢, is a natural velocity scale
for the surface waves and depends on both restoring forces
involved.

V. COMMENTS

By using dimensional analysis, we can determine whether
a wave is dispersive or not. The main result is that a wave
system is not dispersive if and only if there is a characteristic
velocity and no characteristic length. Once this important
result has been derived, it can be used in the classroom with-
out further recourse to the Pi theorem.

In some instances it is possible to go farther and derive the
correct dispersion relations in various limiting cases, up to
numerical factors. All these results can be obtained quickly
and easily and with very simple mathematics. As C. F. Bo-
hren has aptly stated, the aim of physics is physical under-
standing, not solving differential equations.” Dimensional
analysis lets us achieve this end, and consequently it is a
valuable pedagogical tool.
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APPENDIX: SUGGESTED PROBLEMS

We suggest two problems to develop students’ skill with
the application of dimensional analysis.

(1) Consider an infinite chain of masses linked by springs as
in Sec. III, but now each mass hangs from a pendulum of
length L. Apply dimensional analysis to discuss the dis-
persion properties of the low frequency, long wavelength
waves of the chain.

(2) Apply dimensional analysis to investigate the dispersion
properties of electromagnetic waves travelling in a per-
fectly conducting rectangular waveguide.
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