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Abstract. The island size distribution, at thermodynamic equilibrium, of
interacting particles in a one-dimensional lattice-gas model is revisited. A
derivation for the exact island size distribution of nearest neighbor interacting
particles using the detailed balance principle is proposed and it is shown that it
agrees with the distribution obtained by Gambardella et al who resorted to the
minimization of the free energy (2006 Phys. Rev. B 73 245425). We find that
the island size distributions change from an exponential shape to one exhibiting a
maximum when repulsive interactions with distant neighbors are considered. In
this work we present an analytical model that successfully reproduces the island
size distribution obtained from Monte Carlo simulations for both interaction
schemes and any coverage.
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1. Introduction

Self-assembled nanostructures have important roles in several technological applications,
and are of particular interest for the formation of self-assembled nanowires on
semiconductor surfaces [1]. In particular, chains made of hydrogen, bismuth, gallium,
and also silicon have been experimentally observed on Si(100) [1]–[4]. Chainlike structures
decorating step edges have been additionally found when adatoms are deposited on vicinal
surfaces due to the higher binding energy at step sites [5]. It is therefore important to
have a theory that accounts for the key factors that determine the resulting structure.

Exact solutions when only first-neighbor interactions are included have been derived,
determining all possible configurations of the system [6]–[8]. In particular, Gambardella
et al [5] derived an analytical expression for the island size distribution of first-neighbor
interacting particles under thermodynamic equilibrium, calculating the island free energy
as a function of the island step energy, the adsorption energy, the chemical potential, and
the configurational entropy. This approach is very suitable to use to calculate island size
distributions from just the knowledge of the number of adsorbed particles and the number
of islands.

Here we present an alternative derivation of the theoretical equilibrium island size
distribution by means of the detailed balance principle. The advantage of following
this approach resides in the fact that the island size distribution can be easily obtained
from rates of transition between islands of different sizes, and these rates are determined
by particle interaction energies and the geometric constraints imposed by the transition
dynamics. A similar approach was used to derive the size distribution in the low coverage
limit [9]. Here, we apply this approach to carefully derive an exact analytical expression
valid for all coverages, where events of island breaking and coalescence play an important
role in determining the island size distribution.

We tested the validity of our model for a variety of energies against the outcomes
obtained using Monte Carlo simulations, and we found that the resulting island sizes
follow an exponential distribution when only first-neighbor interactions are considered
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regardless of the value taken by the particle interaction strength. Our model matches the
results previously found, validating all approaches [5]–[8]. However, many experimental
works found that the island size distribution show a maximum instead of an exponential
shape. Repulsive interactions beyond first neighbors have been proposed in order to
reproduce these findings [10, 11]. Taking the advantage of the simplicity of our model, we
extended it to include interactions of this type. Our model replicates Monte Carlo results.

2. Equilibrium island size distribution for nearest neighbor interacting particles

The statistical distribution of interacting particles in a one-dimensional substrate can be
derived using thermodynamic arguments. Under thermal equilibrium, the general reaction
can be expressed as

Nn = Nn−1 + N1. (1)

This equation accounts for the formation of a cluster of size n when a single particle
attaches to a cluster of size n − 1. Priester and Lannoo proposed applying the law of
mass action [9] and thus they derived a general expression. In particular, assuming an
attractive interaction ε between first-neighbor particles, we can write

cn

cn−1c1
= exp(ε/kT ), (2)

where c refers to concentrations (for example, cn = Nn/N with N being the number of
lattice sites). Equation (2) leads immediately to the following expression for the island
density:

cn = c1[c1 exp(ε/kT )]n−1. (3)

This equation provides the island size distribution dependence on ε and c1.
Using a different thermodynamic argument, an expression for the island size

distribution had been derived. Gambardella et al [5] expressed the free energy in terms
of the island boundary energy, the adsorption energy, the chemical potential, and the
entropy term. The minimization of the free energy leads to the island size distribution in
terms of the number of adsorbed particles M and the number of islands K (equation (12)
in [5]):

Nn = K2(M − K)n−1M−n. (4)

Other parameters enter into the model through M and K, allowing for a direct comparison
with experiments.

The distribution functions given by equations (3) and (4) are decreasing geometric
series. For any distribution of this type, say cn = c1x

n−1, the density of islands k and the
coverage θ can be determined as

k =
∑

n

cn =
c1

1 − x
(5)

θ =
∑

n

ncn =
c1

(1 − x)2
. (6)
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Thus, x = (θ − k)/θ and c1 = k2/θ and the distribution can be written as

cn =
k2

θ

(
θ − k

θ

)n−1

, (7)

which is equivalent to equation (4) since cn = Nn/N , k = K/N , and θ = M/N .
A similar derivation for the distribution function of empty sites or gaps between

islands gives

fn =
k2

1 − θ

(
1 − θ − k

1 − θ

)n−1

. (8)

Equation (7) is of general validity while equation (3) is only valid for the dilute limit
model (DLM). In order to test its limitations, we can compare it with the exact solution
for ε = 0, which is straightforward to derive. In this case, we consider that particles are
on the substrate at random. Therefore, the probability of having a single-particle island
as a function of coverage is given by θ(1 − θ)2. Similarly, the probability of having an
island formed by two particles is θ2(1− θ)2. This argument leads to the following general
form:

cn = θn(1 − θ)2 = c1θ
n−1. (9)

Monte Carlo simulations were carried out using an array of 10 000 sites simulating the
support on which particles are deposited. Particles are initially distributed at random
and periodic boundary conditions were used to avoid edge effects. The equilibrium
configuration for the system is obtained following the standard Metropolis method. Two
sites i (occupied) and j (unoccupied) are selected at random. The energy of the actual
configuration is calculated. A virtual transfer of a substrate particle i to site j is considered
and the energy for the new configuration is calculated and compared with the energy of the
initial configuration. If the system gains energy, the exchange is carried out. Otherwise,
the exchange is performed with a probability exp(−ΔE/kT ) where ΔE is now a loss
of energy (ΔE > 0). The system evolves with successive jumps until it approaches the
equilibrium configuration. We ensure that the system reaches equilibrium by monitoring
the island size distribution. The Monte Carlo results presented here are averaged over
100 samples.

In figure 1 we compare, for ε = 0 and a coverage θ = 0.3, the island size distribution
given by equation (3)—the diluted limit model (DLM)—the exact solution given by
equation (9), and the distribution obtained with a Monte Carlo simulation. Results show
that equation (3) is far from being a good approximation. In the inset of figure 1 we present
the average island size 〈n〉 as a function of coverage for ε = 0. Differences between the
〈n〉 exact values and those derived from the DLM rapidly diverge with coverage. It is
apparent that the DLM is, in general, only valid at very low coverages: for example, the
relative error in 〈n〉 for θ = 0.3 is ∼13%.

In what follows, on the basis of the detailed balance principle, we will introduce a
derivation for the exact distribution valid at any coverage, i.e. when clusters are not
distant.
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Figure 1. Island size distributions for non-interacting particles and a coverage
θ = 0.3. Small filled circles correspond to the exact distribution given by
equation (3), large filled circles correspond to the diluted limit model (DLM),
and open squares correspond to the distribution obtained with Monte Carlo
simulations. The inset shows the average island size as a function of coverage.

3. Derivation of the exact distribution for nearest neighbor interacting particles
and any island density

Under thermodynamic equilibrium, the rate of reaction in equation (1) from Nn to
Nn−1 + N1 must be the same as the inverse reaction rate. However, it is expected that,
as coverage increases, the attaching or detaching of a particle to or from an island of size
n will not always result in an island of size n + 1 or in a single-particle island. In order to
take into account these events in our model we rewrite equation (2) as follows:

αcn = βcn−1c1 exp(ε/kT ), (10)

where we have included two factors, α and β, which suitably incorporate the above
mentioned events. The factor α in the left side of equation (10) must take into account
that not all particles detaching from islands find empty sites to form single-particle islands.
On the other hand, the factor β in the right side of equation (10) must take into account
the fact that when a particle sticks to an island of size n−1, we do not always find that an
island of size n is formed (due to island coalescence). In the DLM, α and β are considered
equal to 1.

Since we are working within a lattice-gas framework, particles can only diffuse or
jump to an unoccupied site. It is also expected that, as the coverage increases, the
number of unoccupied sites at which a landing particle forms a single-particle island
decreases. Among these sites, those neighboring islands are not included because a
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particle incorporated at this type of site will become part of an already existing island.
Consistently, the factor α can be expressed as follows:

α = 1 − θ − 2k + f1, (11)

where f1 is the density of gaps of size 1. In principle, an island contributes by reducing α
by two sites, those neighboring its two ends. However, every gap of only one site implies
that we have counted the same site twice and thus the number of sites neighboring islands
is 2k − f1.

The factor β in the right side of equation (10) is a correction that takes into account
the incorporations into single-site gaps. Indeed, if a particle lands in a single-site gap,
two islands merge instead of incrementing by 1 the size of an island. The probability of
having a single-site gap neighboring a cluster is f1/k and then β takes the form

β = 1 − f1/k. (12)

From equations (10), (11), and (12), the following island size distribution can be
derived:

cn = c1

(
c1(1 − f1/k) exp(ε/kT )

1 − θ − 2k + f1

)n−1

. (13)

We know that c1 = k2/θ (see equation (7)) and f1 = k2/(1 − θ) (see equation (8)), so
equation (13) reduces to

cn = c1

(
k2 exp(ε/kT )

θ(1 − θ − k)

)n−1

. (14)

The form of equation (13) is a decreasing geometric series. Therefore, equations (5)–(7)
are valid with

x =
k2 exp(ε/kT )

θ(1 − θ − k)
. (15)

For given θ and ε, we can proceed by finding the value of k connecting equations (5),
(6), and (15):

k

θ
= 1 − x = 1 − k2 exp(ε/kT )

θ(1 − θ − k)
. (16)

This equation allows us to determine k. Once k is known, the rest of the relevant
parameters can be directly obtained. In the case already studied, corresponding to ε = 0
and θ = 0.3, equation (16) leads to k = 0.21; then c1 = 0.147 and x = 0.3. The resulting
island size distribution is the exact one. Interestingly, equation (16) can be arranged as

ε = kT ln

(
(θ − k)(1 − θ − k)

k2

)
. (17)

This is equivalent to equation (10) of [5] showing that the proposed derivation leads to
the exact solution.

We have tested this model for a variety of energies and we found that, regardless of
the strength of the attractive interaction, the resulting island size distribution is always a
monotonically decreasing distribution as predicted by equation (14), against what would
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Figure 2. Island size distributions for interacting particles with first-neighbor
interaction energy ε = 4kT and a coverage θ = 0.3. Small filled circles correspond
to the exact distribution given by equation (3), large filled circles correspond to
the diluted limit model (DLM), and open squares correspond to the distribution
obtained with Monte Carlo simulations.

be expected from the attractive nature of the interaction. Equation (14) is the exact
distribution for a substrate of infinite size. This implies that, as the attractive interaction
ε increases and then the size of the islands grows accordingly, the Monte Carlo simulation
could present finite size effects. In figure 2, we show results for an attractive interaction
ε = 4kT using a substrate of 10 000 sites in order to ensure that wider islands are small
compared with the substrate size.

4. Extending interactions beyond first neighbors

Experimental results obtained in [5] show a monomodal island size distribution instead
of the monotonic one predicted with equation (14). It has been argued that the origin
of this discrepancy can be explained if the epitaxial strain resulting from the mismatch
between the islands and the substrate is properly incorporated [10, 11]. As a consequence
of substrate stress, the energy for adding or removing a particle from an island depends
on its size. This dependence can be properly taken into account by including interactions
with all particles of the island. It is expected that each particle added to the island
would increase the strain, so the interactions beyond first neighbor must be of a repulsive
nature.

Exploiting the simplicity of the analytical derivation presented, we extended it to
include interactions beyond first neighbors to check the effects over the island size
distributions. Following [11] and for sake of simplicity, we will adopt a repulsive potential
of the form Q/r and test the model validity against Monte Carlo simulation results.
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Figure 3. Island size distributions including interactions beyond first neighbors
according to equation (18) with ε/kT = 7, Q/kT = 0.3 and (a) θ = 0.1, (b)
θ = 0.3, and (c) θ = 0.5. Filled circles correspond to the exact distribution given
by equation (20), open circles correspond to the diluted limit model (DLM),
and open squares correspond to the distribution obtained with Monte Carlo
simulations.

We can easily modify equation (14) to include the above mentioned potential
expressing the energy gained when a particle is incorporated into an island of size n
as follows:

En = ε −
n∑

i=2

Q/i. (18)

The second term on the right-hand side is the repulsive energy for a particle that is added
to an island of size n. A recursive equation for determining cn can be readily expressed
as

cn =
c1cn−1

1 − θ − k
exp(En−1/kT ). (19)
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Figure 4. Island size distributions including interactions beyond first neighbors
according to equation (20) for θ = 0.5. Distribution (b) was obtained with
ε/kTref = 7, Q/kTref = 0.3; (a) corresponds to T = 1.27Tref , (c) to T = 0.67Tref ,
(d) to T = 0.5Tref , and (e) to T = 0.25Tref . The inset shows the full width at
half-maximum of the distributions as a function of temperature.

With equations (18) and (19) a general form can be derived:

cn = c1

(
c1 exp[(ε + 2Q)/kT ]

1 − θ − k

)n−1

[exp[−(QHn−1)/kT ]n (20)

where Hn is the harmonic function given by

Hn =

n∑

i=1

1

i
= ln(n) + γ +

1

2n
, (21)

and γ is the Euler–Mascheroni constant (≈0.577).
Figure 3 shows results for island size distributions for ε/kT = 7 and Q/kT = 0.3

and three coverages. It is readily observed that the DLM can only be applied for low
coverages. As coverage increases, the distribution is very much affected and the DLM
is no longer a good approximation. In particular, for θ = 0.3 equation (20) shows
a maximum around 7 according to the results obtained before [5, 11]. Calculations of
the configurational energy differences in the Monte Carlo simulations involve adding the
attractive interactions to nearest neighbors and subtracting the repulsive ones between
particles beyond first neighbors as expressed in equation (18). In these calculations we
carefully took into account events in which a particle with two first neighbors is removed,
breaking the island into two pieces, and also the reverse process in which a particle is
added to a hole between two neighboring islands, merging them into a single large island.
Monte Carlo results confirm the correctness of the expression given by equation (20).
Following this method, closed forms for other potentials could be readily found.

Using our analytical expression for island size distribution, we check how distribution
shapes change with temperature. As can be seen in figure 4, distributions tend to a
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Gaussian shape and become sharper at low temperatures [8, 9]. As a final remark, we
stress that, although the width of the distribution tends to decrease with temperature, it
does not do it strictly monotonically [7], at least for the repulsive potential tested in this
work.

5. Conclusions

In this work we presented an analytical model based on the detailed balance principle that
successfully reproduces the island size distribution obtained with Monte Carlo simulations
for any coverage and nearest neighbor interacting particles in 1D. We found that in this
case our analytical expression agrees with the distribution obtained by Gambardella et
al that was found by minimizing the system free energy. We extended the interaction
scheme to more distant neighbors using a repulsive potential and we also derived the island
size distribution showing that it changes from an exponential shape to one exhibiting a
maximum, as experimentally observed. Again, our findings reproduce the results obtained
using Monte Carlo simulations.
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