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a b s t r a c t

The percolation problem of interacting particles on square lattices with two kinds of
energetically different sites is studied. Square lattices formed by collections of either
randomly or orderly distributed sites are generated. The system is characterized by
two parameters, namely, the interaction between adjacent particles, ω, and the energy
difference between the two kinds of sites, 1E. Particles are adsorbed at equilibrium on
the lattice. By means of Monte Carlo simulations and finite-size scaling analysis the critical
coverage is determined. The percolative behavior of the system is presented and discussed
in terms of the mentioned parameters, ω and1E.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Percolation theory has attracted a great deal of interest in the past few decades and the activity in the field is still growing
[1–12]. This is mainly because some aspects of the percolation process such as the geometrical phase transitions occurring
in the system have gained a particular impetus due to the introduction of techniques such as Monte Carlo (MC) simulations
and series expansions [7,12]. However, the problem is far from being exhausted.
In fact, most of the studies are devoted to the percolation of particles that are irreversibly deposited. In part this is due

to the fact that the deposition (or irreversible adsorption) of particles on solid surfaces is a subject of considerable practical
importance. In many experiments on adhesion of colloidal particles and proteins on solid substrates, the relaxation time
scales are much longer than the times of the formation of the deposit. In such processes, the temperature of the system
does not play any relevant role and it is not considered. However, in numerous systems of both theoretical and practical
importance, where the adsorbed particles are in thermodynamic equilibrium, the spatial distribution of the adsorbate
might be characterized by using the percolation model [13,14]. In previous work [15,16], it has been presented a model
to investigate the process of reversible adsorption of interacting particles on different lattices and studied the percolating
properties of the adsorbed phase. In Refs. [15,16], the particles are always adsorbed on a homogeneous surface. This means
that all the adsorption sites are considered to have the same adsorption properties as they are ‘‘seen’’ by the incoming
particles.
By means of experimental evidence, it has been shown that even single crystal surfaces are not perfect and contain

structural and energetic heterogeneities which clearly indicate the necessity to develop more refined atomistic models
for describing heterogeneous surfaces and for studying the processes taken place on them as well. These models should
be capable of including the characteristics of the adsorptive energy surface. The role of surface heterogeneity in many
elementary processes such as adsorption, diffusion and reaction is a subject of great interest in several fields of science
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and engineering. Most materials have complex heterogeneous surfaces and all of these elementary processes are affected
by surface structure.
Physical adsorption of gases has been widely used to obtain valuable information concerning to adsorptive energy

distribution from experimental isotherms [17–20]. It is well known that, in addition to an adsorptive energy distribution,
the adsorptive energy topography must be considered as well in order to obtain a proper characterization of surface
heterogeneity. Amongst the simplest models describing surface energy topographies are the patchwise heterogeneous
surface model and the independent sites model. In the former model, proposed by Ross and Olivier [21], the surface is
thought as a collection of homogeneous patches, in such a way that every site within a given patch has the same adsorptive
energy but different patches have different adsorption energies. In the independent sites model, after Hill [22], each
adsorption site has a randomly distributed energy. In spite of simplicity, thesemodels have allowed practical interpretations
of experimental data for adsorption on a great variety of real surfaces.
In this context, it has been studied the percolation problem of interacting adsorbed particles at equilibrium on

homogeneous surfaces. From this starting point, different complexities has been added to the problem in order to describe
more realistic experimental situations. In Ref. [16], the influence of multisite occupancy (adsorbates occupying more than
one site) has been considered. In fact, the percolation properties of an adsorbate phase of dimers was discussed. Later, the
influence of surface heterogeneities on the percolation features of non-interacting particles adsorbed at equilibrium on
such surfaces was presented in Ref. [23]. The present contribution goes a step further, by investigating the mutual influence
of surface heterogeneities and adsorbate–adsorbate interactions on the percolation properties of the adsorbed phase. It
starts by considering interacting particles adsorbed on simple heterogeneous surface in order to characterize the possible
competition between these two factors. A detailed comprehension of this competition could be helpful for the evaluation of
experimental studies on heterogeneous surfaces. However, it is important to note that we consider a highly idealizedmodel
here, which is not meant to reproduce a particular experimental system. Most of the problems dealing with heterogeneities
attempt to characterize the surface by using a geometric parameter which gives a better idea of the behavior of surface
phenomena occurring in such a surface. In this line of thinking, by knowing some of the considered parameters of themodel
it is possible to determine the remaining one by using as calibration curves the ones given in the paper. Thus, the model
considered could help to identify the behavior of an experimentally studied system in base to the results obtained here.
This paper is organized as follows: in Section 2 we describe the lattice-gas model and the Monte Carlo simulation

technique used to obtain the desired quantities for describing the percolation phase transition. Results are presented and
discussed in Section 3. Finally, some conclusions are drawn in Section 4.

2. Model and calculation method

Let us consider the substrate is represented by a two-dimensional square lattice of M = L × L adsorption sites with
periodic boundary conditions. In order to describe the system of N monomers adsorbed on M sites at a given temperature
T , let us introduce the occupation variable ci which can take the following values:

ci =
{
1, if site i is occupied
0, if site i is vacant. (1)

Particles can be adsorbed on the substrate with the restriction of at most one particle per site and we consider nearest-
neighbor (NN) interaction energy ω among them. If εi is the adsorption energy associated to one given surface site, the
Hamiltonian of the system is given by

H =
M∑
i

εici + ω
∑
〈i,j〉

cicj. (2)

where 〈i, j〉means summation over NN pairs of sites.
Now, we describe the model used for introducing the surface heterogeneities. Let us consider the lattice-gas model

introduced above as a board divided in shallow (S) and deep (D) sites and adsorption energies εS and εD, respectively. We
assume that the number of S sites is the same as the number of D sites. S and D sites can be put in order onto a square lattice,
in such a way that any S(D) site has four nearest-neighbor D(S) sites, so the resulting structure will be a perfect chessboard
lattice or regular patchwise lattice. But if the places in a chessboard are randomly occupied by S orD sites, we have a random
distributed lattice. These lattices can be easily simulated on the computer.
For fixed values of surface coverage, θ = N/M , adsorption energies, εS and εD, and interaction energy between adjacent

particles, ω, the thermodynamic equilibrium is reached in the canonical ensemble by using a standard Kawasaki algorithm
[24]. The procedure is the following. An initial arbitrary configuration of N adsorbed monomers with the desired surface
coverage is generated. Two sites are randomly selected, and their position are established. Then, if their occupation states
are different, an attempt is made to interchange them with probability given by the Metropolis rule [25]:

P = min {1, exp (−1H/kBT )} (3)

where 1H = Hf − Hi is the difference between the Hamiltonians at the final and initial states and kB is the Boltzmann
constant.
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A Monte Carlo Step (MCS) is achieved when M pair of sites have been tested to exchange its occupancy state. The
equilibrium state can be well reproduced after discarding the first n′ MCS. Then, a set of n samples in thermal equilibrium
is generated by taking configurations separated from each other by a few MCS in order to avoid memory effects. We have
taken n′ = 103 and n = 2× 104 for the case of ordered sites. For random site distribution, we have generated 102 different
random configurations for the surface and we have taken n′ = 103 and n = 103 for each case, given an average over 105
configurations for each coverage degree.
The central idea of the percolation theory is based on finding the minimum coverage degree θ for which at least a cluster

(a group of occupied sites in such a way that each one of them has at least one occupied nearest-neighbor site) extends from
one side to the opposite one of the system compatible with the periodic boundary conditions present in the problem. This
particular value of the coverage degree is named critical concentration or percolation threshold, θc , and determines a phase
transition in the system. By means of Monte Carlo simulations Hoshen, Kopelman and Monberg [26] have found the values
of the effective percolation threshold with a periodic boundary conditions have been equal (within numerical errors) to the
values with a free boundary condition for site (bond) process on square lattices [27–29].
As the scaling theory predicts [12], the larger the system size to study, the more accurate the values of the threshold

obtained therefrom. Thus, the finite-size scaling theory give us the basis to achieve the percolation threshold and the critical
exponents of a system with a reasonable accuracy. For this purpose, the probability R = RXL (θ) that a lattice composed of
L × L sites percolates at concentration θ can be defined [2,30,31]. Here, the following definitions can be given according
to the meaning of X: (a) RIL(θ) = the probability that we find a cluster which percolates both in a rightward and in a
downward direction; (b) RUL (θ) = the probability of finding either a rightward or a downward percolating cluster and (c)
RAL (θ) ≡

1
2

[
RIL(θ)+ R

U
L (θ)

]
.

The first step for determining the percolation threshold consists in evaluating the effective threshold θXc (L) for a lattice
of finite size L. Once the energy difference between the two kinds of sites (1E ≡ εS − εD), the temperature, T and the
interaction energy between nearest neighbors particles ω are fixed, the next procedure is followed: (a) the construction of
n samples (or 102×n, for the case of random distribution) for a given coverage (according to the schemementioned before)
and (b) the cluster analysis by using the Hoshen and Kopelman algorithm [32]. n runs of such two steps are carried out for
obtaining the numbermX of them for which a percolating cluster of the desired criterion X is found. Then, RXL (θ) = m

X/n is
defined and the procedure is repeated for different values of θ .
We repeat this procedure for different lattice sizes, L, and then we extrapolate θXc (L) towards the limit L→∞ by using

the finite-size scaling theory:

θXc (L) = θc(∞)+ A
XL−

1
ν (4)

where AX is a non-universal constant and the critical exponent ν is analytically shown to be equal to ν = 4/3 in the case
of random percolation [2,5,7]. The maximum of the differences between |θ Ic(∞)− θ

A
c (∞)| and |θ

U
c (∞)− θ

A
c (∞)| gives the

error bar for each determination of θc . The interested reader is invited to see Ref. [15,30,31] for a more detailed discussion
of the method for determining the critical threshold and the critical exponents.

3. Results and discussion

The present percolation study involves interacting adsorbed particles on heterogeneous surfaces under equilibrium
conditions. In our calculations we have used L = 32, 64, 128 and 160 and considered εS = 0 without losing generality.
The adsorptive energy is then characterized by the parameter1E = −εD.

3.1. Adsorption isotherms

If lateral interactions are absent, the problem can be analytically solved. Let us define θS and θD as the fraction of occupied
shallow and deep sites, respectively. Since the number of both types of sites is equal, the total adsorbate coverage θ is given
by

θ =
1
2
(θS + θD). (5)

Eq. (5) does not explicitly depend on the geometrical distribution of the adsorptive sites.
The chemical potentials of adsorbed particles on the shallow and deep sites are given by

µS = µo − εS + kBT ln
[

θS

1− θS

]
(6)

and

µD = µo − εD + kBT ln
[

θD

1− θD

]
. (7)
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a b

Fig. 1. (a) Site specific coverages, θS (filled symbols) and θD (empty symbols) versus total coverage, θ and (b) Adsorption isotherms, θ vs µ/kBT . Results
are shown for three characteristic temperatures, expressed in terms of (εS − εD)/kBT , as indicated. Symbols denote Monte Carlo results, while solid lines
represent thermodynamical calculations according to Eqs. (5) and (8). The figure shows the case when no ad–ad interactions are present.

a b

Fig. 2. (a) Site specific coverage, θS (filled symbols), θD (empty symbols) versus total coverage θ and (b) adsorption isotherms, θ vs µ/kBT for three
characteristic temperatures, expressed in terms of (εS − εD)/kBT as indicated. The figure shows the case when repulsive ad–ad interactions are also
present.

Here µo is the chemical potential of an ideal Langmuir gas. In the case of thermodynamical equilibrium we have µS = µD,
and thus

ln
[
θD(1− θS)
θS(1− θD)

]
=

(
εD − εS

kBT

)
. (8)

It is important to note that Eqs. (5)–(8) do not depend on the surface topography, i.e. on the distribution of deep and shallow
sites.
Solving Eqs. (5) and (8) we obtain the coverage dependencies of the site specific surface coverages, θS(θ) and θD(θ); see

Fig. 1a. As is intuitively expected, for a given total coverage θ , the partial coverage of deep sites, θD, is always larger than the
partial coverage of shallows sites, θS ; and is also evident that the effect of surface heterogeneities is more important at high
values of1E/kBT .
Solving Eqs. (5)–(7) allows the calculation of adsorption isotherms such as shown in Fig. 1b. At high1E/kBT the sequential

occupation of deep and shallow sites is observed, and a step occurs after saturation of the deep sites.
Now, it is interesting to know how the adatoms are distributed over the deep and shallow sites when lateral interactions

are present in the system.
For this case we have to distinguish two very different behaviors according to whether the heterogeneities in the system

are ordered or randomly distributed. In the former case, the qualitative behavior is quite similar to the non-interacting
case. The incoming particles prefer to be adsorbed in one of the two interpenetrated lattices of the system (formed by the
deep sites) and an ordered phase is formed. Upon increasing the ad–ad repulsive interactions and/or the interaction energy
between NN particles the preference for the deep-site lattice is enhanced. The plots of the partial coverages θS and θD and
the adsorption isotherms are quite similar to those shown in Fig. 1.
A more interesting case is when the deep sites are randomly distributed. In Fig. 2a θS(θ) and θD(θ) are shown for three

representative values of the ratio1E/kBT . In the figure, all calculations are performed assuming1E/kBT = |ω|/kBT , i.e. the
energy difference between both types of sites is numerically equal to the absolute value of the nearest-neighbor repulsion.
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a b

Fig. 3. (a) Percolation probability as a function of the coverage degree for several lattice sizes (L = 32, L = 64 and L = 160) and the three criteria (X = I ,
X = A and X = U). (b) Percolation threshold as a function of the lattice size for the three criteria (X = I , X = A and X = U). The intersection of the lines
with the y-axis represents the extrapolation for L = ∞. We have taken the case of ordered sites with1E = 10 and ω = −3 as an example.

At the lowest value of 1E/kBT considered in this work, 1E/kBT = 1.20 the curves are very similar with respect to the
corresponding ones of the non-interacting case. At such temperature θD is always larger than θS , indicating the preferential
occupation of deep sites even if repulsive interactions are present.
Upon increasing1E/kBT , the influence of the heterogeneity becomes more pronounced and the differences between θD

and θS are enhanced. This is intuitively expected. However, it is quite interesting to realize that, if θ approaches half coverage,
(i) θD goes through a relative minimum and (ii) θS goes through a relative maximum. In order to explain these peculiarities
we note that the NN repulsive interactions induce long-range c(2× 2) ordering around half coverage. We conclude that in
a small range of coverages around θ ≈ 0.5 the behavior of θS and θD is dominated by the NN repulsive interactions and the
c(2×2) ordering. However, for total coverages far away from half coverage the behavior is largely controlled by the surface
heterogeneity.
These ideas are reinforced by studies of adsorption isotherms (Fig. 2b) which were obtained by using the Monte Carlo

algorithm in the grand-canonical ensemble. The figure shows the adsorption isotherms for several representative values
of the ratio 1E/kBT . There are strong deviations from Langmuir behavior (non-interacting lattice gas on a homogeneous
surface) especially at low temperature where the influence of surface heterogeneities and ad–ad interactions becomes
important. The corresponding adsorption isotherms exhibit characteristic plateaus, which are most pronounced at highest
values of 1E/kBT . The first plateau is considered as a consequence of the preferential adsorption of deep sites. As the
concentration of the deep sites is equal to 0.5, the probability for a deep site to be located in the direct vicinity of another
deep site is quite large. Representative snapshots of lattice-gas configurations show clusters of adjacent deep sites on the
surface. Thus, the effect of the NN repulsive interactions prevents the occupation of deep sites in such clusters (causing
frustration) and, as a consequence, the first step is established at θ < 0.5. After this first plateau, the fraction of adatoms
on shallow sites increases. Close to half coverage θD is significantly reduced due to the formation of a long-range ordered
c(2 × 2) structure, and this corresponds to the second plateau of the adsorption isotherm. Sharply above half coverage
the empty deep sites are occupied, and this corresponds to the third plateau of the isotherms. Upon further increasing the
chemical potential the saturation of the shallow sites occurs, and this corresponds to the final plateau; see Fig. 2b.

3.2. Finite-size scaling treatment

As it was explained above, for a given value of L, ω/kBT and 1E/kBT , a curve of RXL as a function of θ is obtained for the
three different criteria X = A, X = I and X = U . Fig. 3a shows the curves for the three mentioned criteria and three system
sizes (L) for the case of1E/kBT = 10 and ω/kBT = −3. As L increases, the transition between RXL = 0 and R

X
L = 1, becomes

more abrupt and the limit case (for L = ∞) would be a step function with a well-defined θc (with RX = 0 for θ < θc and
RX = 1 for θ > θc).
In order to find the percolation threshold θc for L = ∞, it is necessary to make an extrapolation based on Eq. (4). Fig. 3b

shows the curves of θc as a function of L−1/ν for the three criteria (X = A, I andU) in the considered example. The value of the
exponent ν is calculated also by finite-size scaling for each case (see Refs. [15,16,23,30,31] formore details). The intersection
of the lines with the y-axes represents the value of θc for L = ∞. The difference of the extrapolated values employing the
three criteria gives an estimation of the uncertainty in the calculated percolation threshold.

3.3. Phase diagrams

The percolation threshold, θc , is plotted in Figs. 4 and 5 (6 and 7) as a function of 1E/kBT and ω/kBT for the case of
ordered (random) distribution of deep sites, respectively. Each curve represents a phase diagram separating a percolating
from a non-percolating region.
Fig. 4 shows θc as a function of 1E/kBT for four values of ω/kBT in the case of ordered sites. The case with ω/kBT = 0

corresponds to non-interacting particles and has been studied in previous work [23].
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Fig. 4. Percolation threshold (θc ) as a function of1E/kBT for several values of ω/kBT in the case of ordered sites.

Fig. 5. Percolation threshold (θc ) as a function of ω/kBT for several values of1E/kBT , in the case of ordered sites.

It is possible to observe that attractive interactions (ω/kBT = −1) between particles result in a curve below the
non-interacting case (ω/kBT = 0). That means that the percolation threshold is minor and the system percolates more
easily. It can be understood by taking into account that attractive interactions produce a more compact structure and favor
coalescence of particles and clusters.
On the other hand, repulsive interactions result in an increment of the percolation threshold. We can notice the limiting

value θc ≈ 0.7. This value can be understood in terms of effective neighbors (see Refs. [23,33]). A brief explanation would
be that for θ = 0.5, a perfect chessboard structure is obtained. When new particles are added, they can be seen as disposed
in an effective lattice in which each empty site has eight effective NN . The percolation threshold for a lattice with this
coordination number (a square lattice with connections between nearest and next-nearest neighbors) is θ = 0.41 [5]. As
these sites represent a half of the whole lattice, this coverage added to the number of particles already adsorbed in the
chessboard (θ = 0.5), gives the observed saturation value of θ = 0.7. A larger value of ω/kBT together with a high1E/kBT
enhance the described effect.
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Fig. 6. Percolation threshold (θc ) as a function of1E/kBT for several values of ω/kBT in the case of random distribution of sites.

Fig. 7. Percolation threshold (θc ) as a function of ω/kBT for several values of1E/kBT in the case of random distribution of sites.

Fig. 5 shows θc as a function of ω/kBT for five values of1E/kBT in the case of ordered sites. The case with1E/kBT = 0
corresponds to a homogeneous surface and has been studied in previous work [15,16]. One can see that for each value
of 1E/kBT , θc increases with the increment of ω/kBT (increasing repulsion between particles), until the limiting value of
θc ≈ 0.7 (except for 1E/kBT = 0), as it has been analyzed before. It means that even for small values of 1E/kBT , the
repulsion between particles produces the chessboard structure and the effect of effective neighbors can be observed. We
also can notice that upon increasing1E/kBT the critical curve θc(1E/kBT ) is raised.
Fig. 6 shows θc as a function of 1E/kBT for seven values of ω/kBT in the case of random distribution of deep sites.

The case of ω/kBT = 0 corresponds to non-interacting particles and θc is independent of 1E/kBT . This particular case
has been discussed in previous work [23]. Like in the ordered case, attractive values of ω/kBT produce minor values of
θc and vice versa. In general, for each value of ω/kBT , θc does not depend very much on 1E/kBT . Nevertheless, there is a
general tendency: as 1E/kBT increases, θc approaches to the non-interacting case. This can be understood by considering
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a b

Fig. 8. Three-dimensional plots where 1E/kBT , ω/kBT and θc are considered in the axes, for (a) ordered and (b) disordered lattices, respectively. The
surface shown in the figures divide the percolation from the non-percolation regions according to the values of the parameters.

that random distribution of deep sites, together with high energy differences between sites, favors a random distribution of
particles and lowers the effect of the lateral interaction between them.
Fig. 7 shows θc as a function of ω/kBT for five values of 1E/kBT in the case of random distribution of deep sites. Again,

the case with1E/kBT = 0 corresponds to an homogeneous surface [15,16]. For small values of1E/kBT , the curves are very
similar to the homogeneous case. Only for values of1E/kBT = 5 or 10we can appreciate a departure of the curves especially
for negative values ofω/kBT (attractive interactions). This situation can be understood considering that randomdistribution
of deep sites with great energy differences alters the coalescence of the compact islands and increases the value of θc .
The complete scenario is a three-dimensional plot where1E/kBT ,ω/kBT and θc are considered. Fig. 8a and b show these

three-dimensional graphics for ordered and disordered lattices, respectively. The surface shown in the figures divide the
percolation from the non-percolation regions according to the values of the parameters.

4. Conclusions

In the present paper we have studied the percolation behavior of the adsorbed monolayer composed by interacting
particles on a simple heterogeneous surface. In the framework of this model, the surface was assumed to be formed by
two kinds of different adsorption sites. Each kind of adsorption site is characterized by an adsorption energy, εS or εD. We
call them shallow and deep sites, respectively, which are (i) arranged in a chessboard-like ordered structure or (ii) randomly
located. For simplicitywe assume that thenumber of deep adsorption sites is equal to thenumber of shallowadsorption sites.
We have used the Monte Carlo technique in order to determine the equilibrium conditions of the system. The

thermodynamic equilibrium is reached in the canonical ensemble by using a standard Kawasaki algorithm [24]. Once the
equilibrium is established, then we consider each independent state in order to analyze the percolation transition. The
numerical schemeused for that is based on theHoshen andKopelman algorithm [32]. Finally, the determination of θc(1E, ω)
is done by using extensively the finite-size scaling analysis.
We conclude this work remarking the distinctive qualities of the site percolation problem on simple heterogeneous

lattices. θc(1E) for fixed values of ω/kBT shows a different behavior according the heterogeneity in the surface is ordered
or randomly generated. In the former case, θc(1E) slowly grows up to a saturation value as the energy difference between
shallow and deep patches increases. The limiting value, θc ≈ 0.7 can be understood in terms of effective neighbors. A larger
value of ω/kBT together with a high 1E/kBT enhance the described effect. For attractive interactions, θc(1E) results in a
curve below the non-interacting case (ω/kBT = 0) which means that the percolation threshold is minor. Thus, attractive
interactions produce a more compact structure and the system percolates more easily. For a random distribution of deep
sites, attractive values of ω/kBT produce minor values of θc . For each value of ω/kBT , θc does not depend very much on
1E/kBT . However, a general tendency can be drawn: as 1E/kBT increases, θc approaches to the non-interacting case. This
can be understood by considering that random distribution of deep sites, together with high energy differences between
sites, favors a random distribution of particles and lowers the effect of lateral interaction between them.
θc(ω) increases with the increment of ω/kBT until the limiting value of θc ≈ 0.7 for ordered distribution of deep

sites. Even for small values of 1E/kBT , the repulsion between particles produces the chessboard structure and the effect
of effective neighbors can be observed. For random distribution of deep sites, it is important to emphasize that a high value
of1E/kBT alters the coalescence of the compact islands and increases the value of θc .
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