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The emerging data promise a future scenario in which the selective
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in combination with other therapeutic regimens, will contribute to halt
tumor progression by counteracting tumor-immune escape. Here we
describe a selection of methods used to investigate the role of galectin-1
in tumor-immune escape.
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Chapter 16

Study of Galectins in Tumor Immunity: Strategies 
and Methods

Juan P. Cerliani, Tomas Dalotto-Moreno, Daniel Compagno, 
L. Sebastián Dergan-Dylon, Diego J. Laderach, Lucas Gentilini, 
Diego O. Croci, Santiago P. Méndez-Huergo, Marta A. Toscano, 
Mariana Salatino, and Gabriel A. Rabinovich

Abstract

During the past decade, a better understanding of the cellular and molecular mechanisms underlying 
tumor immunity has provided the appropriate framework for the development of therapeutic strategies for 
cancer immunotherapy. Under this complex scenario, galectins have emerged as promising molecular tar-
gets for cancer therapy responsible of creating immunosuppressive microenvironments at sites of tumor 
growth and metastasis. Galectins, expressed in tumor, stromal, and endothelial cells, contribute to thwart 
the development of immune responses by favoring the expansion of T regulatory cells and contributing to 
their immunosuppressive activity, driving the differentiation of tolerogenic dendritic cells, limiting T cell 
viability, and maintaining T cell anergy. The emerging data promise a future scenario in which the selective 
blockade of individual members of the galectin family, either alone or in combination with other therapeu-
tic regimens, will contribute to halt tumor progression by counteracting tumor-immune escape. Here we 
describe a selection of methods used to investigate the role of galectin-1 in tumor-immune escape.

Key words Galectin, Tumor immunity, Immunosuppressive, Tumor growth, Metastasis, T regulatory 
cells, Tolerogenic dendritic cells

1 Introduction

Despite major advances in understanding the mechanisms leading 
to tumor immunity, a number of obstacles hinder the successful 
translation of mechanistic insights into effective cancer immuno-
therapy [1]. Such obstacles include the ability of tumors to dis-
play multiple immunosuppressive mechanisms to avoid immune 
recognition or to disarm effector T cell function [2]. These 
mechanisms involve alterations of the antigen presentation 
machinery; secretion of immunosuppressive cytokines such as 
transforming growth factor-β (TGF-β) and interleukin-10 (IL-10); 
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expression of inhibitory molecules such as programmed death 
ligand-1 (PD-L1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), 
and indoleamine 2,3 dioxygenase (IDO); and specific recruit-
ment of regulatory cell populations including FoxP3+ T regula-
tory (Treg) cells, IL-10- producing type-1 T regulatory (Tr1) 
cells, tolerogenic dendritic cells (DCs), myeloid-derived suppres-
sor cells (MDSCs), and M2-type macrophages [2].

The prominent immunological phenotypes observed upon dis-
ruption of genes encoding components of the glycosylation 
machinery, including glycosyltransferases, glycosidases, and lectins, 
reflect the central role played by glycosylation in the control of 
immune tolerance and inflammation. In fact, glycosylation regu-
lates a variety of immune cell processes including immune cell acti-
vation, differentiation, homing, and survival [3, 4]. In addition, 
aberrant expression of glycans during the transition from normal 
to inflamed or neoplastic tissue provides a vast potential for infor-
mation display [5]. Although these alterations have been mostly 
documented in cancer cells during tumor progression, cell surface 
glycosylation is also dramatically altered in the tumor microenvi-
ronment, particularly in stromal and immune cell compartments. 
Endogenous glycan-binding proteins, including C-type lectins, 
siglecs, and galectins, can selectively recognize neo-glycoepitopes 
and convey this structural information into functional cellular 
responses, including the modulation of immunological and vascu-
lar signaling programs [6].

Galectins show prominent expression in inflammatory and 
tumor microenvironments [7]. Through regulation of cellular sig-
naling programs, galectin–glycan interactions provide “on-and- 
off” signals that control the decisions between immune cell 
responsiveness and tolerance. Particularly, galectin-1 suppresses 
chronic inflammation, blunts Th1 and Th17 responses, and skews 
the immune response toward a Th2 profile [8]. In addition, this 
lectin instructs DCs to become tolerogenic [9], induces alterna-
tively activated “M2-type” macrophages and microglia [10, 11], 
inhibits T cell trafficking [12, 13], and favors the expansion of 
FoxP3+ Treg and FoxP3(−) Tr1 cells [14, 15] further limiting the 
magnitude of an effective immune response.

Galectin-1 expression correlates with tumor burden and 
adverse clinical features in several tumor types including laryngeal 
squamous cell carcinoma [16], prostate adenocarcinoma [17], 
colon adenocarcinoma [18, 19], ovarian carcinoma [20, 21], 
breast carcinoma [14, 22], melanoma [23], Hodgkin lymphoma 
[24, 25], cervical cancer [26], T cell lymphoma [27], pancreatic 
ductal adenocarcinoma [28], neuroblastoma [29], hepatocellular 
carcinoma [30, 31], chronic lymphocytic leukemia [32], glioblas-
tomas [33, 34], MLL-rearranged B lymphoblastic leukemias [35], 
and thyroid carcinoma [36].

Through galectin-1-driven inhibitory mechanisms, cancer 
cells can evade and thwart immune attack [37]. In several tumors 
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galectin- 1 selectively blunts tumor-specific T cell responses through 
modulation of T cell apoptosis and skewing of the cytokine balance 
toward a Th2 profile [23, 28, 29, 38]. Furthermore, in breast ade-
nocarcinoma, this lectin favors the differentiation and recruitment 
of FoxP3+ Treg cells [14] or modulates the survival of effector 
T cells [38]. Moreover, galectin-1 promotes the differentiation of 
tolerogenic DCs in settings of melanoma, lung adenocarcinoma, 
and neuroblastoma [9, 29, 40]. Although we will focus here on 
galectin-1, it should be mentioned that other galectins, including 
galectin-3 and galectin-9, also influence tumor-immune escape 
mechanisms including T cell apoptosis, T cell anergy, NK cell acti-
vation, and expansion of myeloid-derived suppressor cells [41–44]. 
Thus, the spatiotemporal regulation of different galectins in 
conjunction with other immune escape mechanisms will dictate 
the decisions between immune cell responsiveness and tolerance 
in tumor microenvironments. Here we describe a selection of 
methods used to study the role of galectins, particularly galectin-1, 
in tumor immunity.

2 Materials

 1. 8- to 12-week-old Balb/c and C57Bl/6 tumor-bearing mice.
 2. RPMI 1640 (GIBCO).
 3. 1 ml syringe (Neojet).
 4. Sterile scissors.
 5. P60 Petri dishes (GBO).
 6. Sterile 70 μm filter (BD Pharmingen).
 7. Phosphate buffer saline (PBS): 136 mM NaCl, 8.2 mM 

Na2HPO4, 1.5 mM KH2PO4, 2.7 mM KCl, pH 7.4.
 8. Sterile red blood lysis buffer (ACK buffer): 150 mM NH4Cl, 

10 mM KHCO3, 0.1 mM EDTA in distilled H2O.
 9. Frosted microscope slides (BioTraza).
 10. 15 ml conical tubes (BD Pharmingen)
 11. FACS buffer I (PBS with 0.1 % BSA and 2 mM EDTA).

 1. Allophycocyanin (APC)-conjugated CD4 antibody (clone 
GK1.5), Alexa Fluor 488-conjugated CD25 antibody (clone 
PC61.5), Phycoerythrin (PE)-conjugated CD62L antibody 
(clone MEL-14), PE-conjugated Foxp3 antibody (clone FJK-
16s) (all from eBiosciences).

 2. Fix/Perm buffer (eBiosciences).
 3. Permeabilization Buffer 10× (eBiosciences).
 4. Dynal® Mouse CD4 Cell Negative Isolation Kit (Invitrogen).

2.1 Methods 
to Study 
the Regulatory T Cell 
Compartment 
in the Tumor 
Microenvironment

2.1.1 Collection of Tumor 
Tissue, Draining Lymph 
Nodes, and Spleen 
from Tumor-Bearing Mice

[AU1]

2.1.2 Staining 
and Purification of CD4+ 
Treg Cells, Naïve T Cells, 
and Responder T Cells
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 5. Heat-inactivated fetal bovine serum (Gibco, FBS).
 6. FACS buffer I: PBS with 0.1 % BSA and 2 mM EDTA.
 7. Sorted cells collection medium: RPMI 1640 supplemented 

with 20 % FBS.
 8. 15 ml conical tubes.
 9. PBS (136 mM NaCl, 8.2 mM Na2HPO4, 1.5 mM KH2PO4, 

2.7 mM KCl, pH 7.4).
 10. Mouse spleen.
 11. FACSaria sorter

 1. 96- and 24-well round bottom plates (GBO).
 2. Purified NA/LE hamster anti-mouse CD3ε monoclonal anti-

body (clone 145-2C11, BD Pharmingen).
 3. Phosphate buffer saline (PBS): 136 mM NaCl, 8.2 mM 

Na2HPO4, 1.5 mM KH2PO4, 2.7 mM KCl, pH 7.4.
 4. Humidified incubator at 37 °C.

 1. Recombinant TGF-β (R&D Systems) diluted in phosphate 
buffer saline (PBS), pH 7.4 (30 μg/ml).

 2. Incubator at 5 % CO2 and 37 °C.
 3. Recombinant IL-2 (R&D Systems) in PBS (10 μg/ml).
 4. RPMI 1640 supplemented with 50 μM β-mercaptoethanol 

and antibiotic-antimycotic (Invitrogen).
 5. Gal-1 wild type (WT) or Gal-1 knockdown (shRNA-Gal-1) 

tumor cells.
 6. P60 dishes (GBO).
 7. Twenty-four well plates (GBO).
 8. 0.22 μm syringe filter (Millipore).
 9. Naïve T cells.
 10. Purified NA/LE Hamster anti-mouse CD28 monoclonal anti-

body (clone 37.51, BD Pharmingen).
 11. Twenty-four well plates coated with anti-mouse CD3 mono-

clonal antibody (see Note 1).

 1. 8- to 12-week-old Balb/c and C57Bl/6 tumor-bearing and 
tumor-free mice.

 2. RPMI 1640 (GIBCO) supplemented with 20 % FBS.
 3. 5 ml polystyrene tubes.
 4. 15 ml conical tubes (BD Pharmingen).
 5. Allophycocyanin (APC)-conjugated CD4 antibody (clone 

GK1.5), Alexa Fluor 488- conjugated CD25 antibody (clone 
PC61.5), Phycoerythrin Cyanine-7 (PECy7)-conjugated FR4 

2.1.3 Coating of 24- 
and 96-Well Plates 
with Anti-CD3 Antibodies

2.1.4 Differentiation 
of Treg Cells In Vitro 
in the Presence 
of Conditioned Media

[AU2]

2.1.5 Purification 
of Tumor-Associated Treg 
Cells and CD3+ Responder 
T Cells (Tresp)
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antibody (clone eBio12A5), Fluorescein Isothiocyanate 
(FITC)-conjugated CD3 antibody (clone 145-2C11).

 6. Phosphate buffer saline (PBS): 136 mM NaCl, 8.2 mM 
Na2HPO4, 1.5 mM KH2PO4, 2.7 mM KCl, pH 7.4.

 7. FACS buffer I: PBS with 0.1 % BSA and 2 mM EDTA.
 8. FACSAria flow cytometer.

 1. Tregs and Tresp purified as described in Subheading 3.1.5.
 2. Ninety-six plates coated with anti-CD3 monoclonal antibody 

(as described in Subheading 2.1.3).
 3. Recombinant mIL-2 (R&D Systems) in PBS (10 μg/ml).
 4. Purified NA/LE Hamster anti-mouse CD28 monoclonal anti-

body (clone 37.51, BD Pharmingen).
 5. RPMI supplemented with 5 % FBS, 50 μM β-mercaptoethanol, 

and 1 μg/ml CD28 mAb.
 6. Incubator at 5 % CO2 and 37 °C.
 7. [3H]-thymidine solution (PerkinElmer).
 8. Direct β-counter.
 9. 1 ml syringe (Neojet).
 10. Cell harvester.
 11. Scintillation liquid (Perkin Elmer).
 12. Scintillation vials.
 13. Absorbent glass filter paper (3 M).

 1. Treg cells from the desired source.
 2. Phosphate buffer saline (PBS): 136 mM NaCl, 8.2 mM 

Na2HPO4, 1.5 mM KH2PO4, 2.7 mM KCl, pH 7.4.
 3. Mice.
 4. Anesthetic.
 5. Warm water.
 6. Sterile 27G needles.
 7. 1 ml syringe (Neojet).

 1. Tumor cell lines (B16, 4T1) as an antigenic source.
 2. Liquid nitrogen.
 3. 37 °C water bath.
 4. Phosphate buffer saline (PBS): 136 mM NaCl, 8.2 mM 

Na2HPO4, 1.5 mM KH2PO4, 2.7 mM KCl, pH 7.4.
 5. RPMI 1640, 10 % FBS supplemented with 50 μM 

β-mercaptoethanol and an antibiotics-antimycotics.
 6. Single cell suspension of mouse spleen and draining lymph nodes.

2.1.6 Assessment 
of the Suppressive Activity 
of Treg Cells

2.1.7 Adoptive Transfer 
of Treg Cells

2.1.8 Tumor Antigen- 
Specific T Cell Proliferation
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 7. 96-well round bottom plates.
 8. [3H]-thymidine solution (PerkinElmer).
 9. Direct β-counter.
 10. Scintillation liquid (Perkin Elmer).
 11. Scintillation vials.
 12. Absorbent glass filter paper (3 M).

 1. DuoSet ELISA Mouse IFN-γ (R&D).
 2. BD OptEIA™ Mouse IL-10 ELISA Set (BD Biosciences).
 3. BD OptEIA™ Mouse IL-5 ELISA Set (BD Biosciences).

 1. Complete RPMI (cRPMI): RMPI 1640 (Invitrogen) medium 
with 10 % heat inactivated fetal bovine serum (FBS) (GIBCO), 
40 μg/ml of gentamicin, 50 μM β-mercaptoethanol, 
2 mM l-glutamine, and 10 mM HEPES.

 2. Recombinant mouse GM-CSF (rGM-CSF) (R&D System).
 3. Recombinant human Gal-1 (rGal-1).
 4. 8- to 12-week-old C57BL/6 mice.
 5. P60 and P100 non-adherent Petri dishes (Greiner-GBO).
 6. Sterile red blood lysis buffer (ACK buffer): 150 mM NH4Cl, 

10 mM KHCO3, 0.1 mM EDTA in distilled H2O.
 7. rGal-1 (in-house production) as described [10].
 8. Phosphate buffer saline (PBS): 136 mM NaCl, 8.2 mM 

Na2HPO4, 1.5 mM KH2PO4, 2.7 mM KCl, pH 7.4.
 9. Sterile red blood lysis buffer (ACK buffer): 150 mM NH4Cl, 

10 mM KHCO3, 0.1 mM EDTA in distilled H2O.
 10. rGM-CSF (R&D System).
 11. 21- or 25-gauge needles (BD PrecisionGlide).
 12. Scissors and scalpel.
 13. 1 ml syringe (Neojet).

 1. FACS buffer II: PBS (136 mM NaCl, 8.2 mM Na2HPO4, 
1.5 mM KH2PO4, 2.7 mM KCl, pH 7.4) with 0.1 % FBS 
(Gibco).

 2. PE-conjugated anti-CD11c antibody (clone HL3), 
PE-conjugated anti-MHC II (I Ab) antibody (clone AF6-
120.1), FITC-conjugated anti-CD86 antibody (clone GL1), 
FITC-conjugated anti-CD45RB antibody (clone 16A).

 3. 1.5 ml tubes.

 1. ELISA for mouse IL-27 p28 (R&D).

2.1.9 Cytokine 
Determination by ELISA

2.2 Study 
of Galectins in DC 
Compartment

2.2.1 Differentiation 
of Bone Marrow-Derived 
Tolerogenic DCs

[AU3]

2.2.2 Determination 
of DC Markers by Flow 
Cytometry

2.2.3 Determination 
of IL-27 by ELISA
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 1. Dendritic cells.
 2. Protein Extraction Buffer (50 mM Tris, pH 7.5; 150 mM 

NaCl; 10 mM EDTA; 1 % v/v NP-40) with protease and 
phosphatase inhibitors (Pierce).

 3. Bradford reagent.
 4. 2× Laemmli sample buffer (BioRad).
 5. Amersham Hybond-ECL (GE Healthcare).
 6. Tris-buffered saline (TBS): 150 mM NaCl, 50 mM Tris, 

pH 7.4.
 7. tTBS (TBS with 0.05 % Tween 20).
 8. Blocking buffer: tTBS with 5 % nonfat milk or BSA (Sigma).
 9. Anti-phospho-STAT3 antibody (Santa Cruz Biotechnology, 

sc-8059).
 10. Horseradish peroxidase (HRP)-conjugated anti-rabbit IgG 

(Vector Labs).
 11. Immobilon chemiluminescent HRP substrate (WBKLS01-00, 

Millipore).
 12. G-Box.

 1. Rabbit anti-galectin-1 (H-45), anti-galectin-8 (H-80), anti-
galectin-3 (H-160), anti-galectin- 12 (H-166), and goat anti-
galectin-9 (C-20) (Santa Cruz Ref).

 2. Saponin (Sigma).
 3. PBS (136 mM NaCl, 8.2 mM Na2HPO4, 1.5 mM KH2PO4, 

2.7 mM KCl, pH 7.4).
 4. PBS-0.05 % w/v saponin.
 5. Ethanol (Cicarelli).
 6. Xylene (Cicarelli).
 7. Vectastain Universal Elite ABC Kit (Vector).
 8. Normal horse serum.
 9. Dako DAB + substrate system (Dako).
 10. Giemsa (Sigma).
 11. Dako Ultramount Aqueous Permanent Mounting medium 

(Dako).
 12. Cover Glass 24 × 40 mm.
 13. H2O2 30 % solution (Cicarelli) (stored at 4 ºC and protected 

from light).
 14. Wet chamber.
 15. ImmEdge Pen (Vector).
 16. HRP-Label anti-goat (Sigma).
 17. Humidified chamber.

2.2.4 Evaluation 
of STAT-3 Phosphorylation 
by Western Blot

[AU4]

2.3 Profiling Galectin 
Expression 
in the Tumor 
Microenvironment

2.3.1 Galectins 
Immunostaining in Paraffin 
Embedded Tissues
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 1. HEK 293 T cell line (ATCC).
 2. Vector—(pLVTHM-shRNA).
 3. Packaging plasmid—pMD2.G (Addgene).
 4. Envelope plasmid—pCMVR8.74 (Addgene).
 5. P100 Petri dishes (Greiner, GBO).
 6. PBS (136 mM NaCl, 8.2 mM Na2HPO4, 1.5 mM KH2PO4, 

2.7 mM KCl, pH 7.4).
 7. DMEM (Gibco) supplemented with 10 % heat-inactivated 

FBS (Gibco).
 8. 2× HBSS solution (for 500 ml final solution include 8 g NaCl; 

0.38 g KCl; 0.1 g Na2HPO4; 5 g HEPES; 1 g glucose in 
400 ml of bi-distilled water. pH: 7.05–7.12, complete to 
500 ml bi-distilled water) (see Note 3).

 9. 2.5 M CaCl2 (Sigma) (in bi-distilled water).
 10. Incubator at 5 % CO2 and 37 °C.
 11. Sterile RNAse-free DNAse (Invitrogen) in bi-distilled water.
 12. 15 ml conical tubes (BD Falcon).
 13. Syringe filters 0.45 μm (MilliPore).

 1. HEK 293 T cells.
 2. 24-well plates.
 3. DMEM (Gibco) supplemented with 10 % heat-inactivated 

FBS (Gibco).
 4. Polybrene (4 % solution).
 5. Thawed virus solution collected (Subheading 3.4.1).
 6. FACSAria flow cytometer.
 7. Snap lock 1.5 ml tubes (Axygen).

3 Methods

 1. Euthanize tumor-bearing mice and harvest spleen, draining 
lymph nodes, peripheral lymph nodes, and irrigated tumor 
tissue.

 2. Disrupt the spleen and draining lymph nodes (both axilar and 
inguinal) with the plunger of a 1 ml syringe against a 70 μm 
filter in a P60 Petri dish filled with 2 ml RPMI.

 3. Cut the tumor tissue with sterile scissors and grind it using the 
frosted sides of two microscope slides in a P60 Petri dish with 
2 ml of RPMI. Filter the suspension with a 70 μm filter. 
Centrifuge single cell suspensions in 15 ml conical tubes for 
8 min at no more than 300 × g.

2.4 Lentiviral- 
Mediated Silencing 
of Galectin Expression

2.4.1 Silencing Galectin 
Expression. Lentiviral 
Production (See Note 2)

[AU5]

2.4.2 Titration 
of Lentiviral Vectors 
and Transduction 
of Target Cells

[AU6]

3.1 Methods 
to Study 
the Regulatory T Cell 
Compartment 
in the Tumor 
Microenvironment

3.1.1 Collection of Tumor 
Tissue, Draining Lymph 
Nodes, and Spleen 
from Tumor-Bearing Mice
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 4. Resuspend splenocytes with 5 ml of ACK buffer and incubate 
for 5 min at RT. Dilute it with PBS and centrifuge for 8 min at 
no more than 300 × g.

 5. Resuspend the cell pellets in FACS buffer I or RPMI.

 1. Staining of CD4 and CD25 molecules is performed for 
30 min in the dark at 4 °C. For 2 × 106 cells, use 0.03 μg of 
APC-conjugated anti-CD4 antibody and 0.075 μg of Alexa 
Fluor 488-conjugated anti-CD25 antibody in 100 μl of FACS 
buffer I.

 2. Wash cells with PBS and centrifuge for 8 min at no more than 
300 × g. Fix and permeabilize cells using Fix & Perm buffer in 
100 μl for 30 min to 18 h in the dark at 4 °C.

 3. Wash cells with Permeabilization Buffer 1×. Foxp3 staining is 
performed in 100 μl Permeabilization Buffer 1× using 0.225 μg 
PE-conjugated anti-Foxp3 antibody for 1 h at 4 °C in the dark.

 4. Wash cells with Permeabilization buffer 1×, centrifuge for 
10 min at 300 × g, and resuspend in FACS buffer I.

 5. For flow cytometry analysis a two-laser cytometer must be 
used and five additional tubes containing the appropriate com-
pensation samples should be considered (see Note 4).

 6. For isolation of CD4+CD62L+ naïve T cells prepare a single 
cell suspension from mouse spleens.

 7. Purification of CD4+ T cells is performed by negative selection 
using Dynal® Mouse CD4 Cell Negative Isolation Kit 
(Invitrogen). This procedure is thoroughly detailed in the pro-
tocol provided by manufacturer (see Note 5). Protocol yield is 
usually 20–25 % of spleen cells.

 8. After purification of CD4+ T cells adjust the cell concentration 
to 4 × 107/ml in FACS buffer I and proceed to CD4 and 
CD62L surface immunostaining.

 9. Use 0.2 μg APC-conjugated anti-CD4 antibody and 0.3 μg 
PE-conjugated anti- CD62L antibody per 200 μl of lympho-
cyte suspension. Incubate for 30 min at 4 °C in the dark.

 10. Wash cells with FACS buffer I, centrifuge for 8 min at no more 
than 300 × g, and resuspend cell pellet at a concentration of 
3 × 107/ml.

 11. Using a FACSAria cell sorter proceed with the selection and 
sorting of the CD4+CD62Lhigh population (see Note 6).

 12. Use 15 ml conical tubes to collect sorted population with 
2.5 ml of collection medium. Prior to use, vortex the tubes 
(see Note 7).

 13. Keep the sorted population on ice.

3.1.2 Staining 
and Purification of CD4+ 
Treg Cells, Naïve T Cells, 
and Responder T Cells
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 1. Prepare a 5 μg/ml solution from the stock of CD3ε antibody 
(1 mg/ml) in sterile PBS and vortex. For 24-well and 96-well 
round bottom plates use 150 μl and 40 μl, respectively.

 2. Incubate at 37 °C in a humidified atmosphere for at least 2 h.
 3. Before use rinse wells with PBS and aspirate twice.

 1. For preparing conditioned media (CM) from wild-type or 
Gal-1 knockdown tumor cells, plate wild-type (WT) or Gal-1 
knockdown tumor cells in P60 dishes at 50 % confluence with 
2 ml of serum-free RPMI. Incubate for 18 h at 37 °C with 5 % 
CO2 and then collect CM. Filter with 0.22 μm syringe filter, 
aliquot, and store at −70 °C.

 2. The stimuli required for Treg cell differentiation in vitro are 
TGF-β and IL-2. To assess the role of Gal-1 in Treg cell dif-
ferentiation, it is important to use a limiting concentration of 
TGF-β. Adjust the number of naïve T cells to 1 × 106/ml in 
serum-free RPMI supplemented with 1–2 ng/ml hTGFβ, 
100 U/ml mIL-2, 1 μg/ml CD28 mAb, and a combination of 
antibiotic-antimycotic.

 3. Plate 1 ml of a suspension of naïve T cells per well in 24-well 
plates coated with anti- CD3 monoclonal antibody (obtained 
in Subheading 3.1.2).

 4. Add CM from WT or Gal-1 knockdown tumor cells (see Note 8).
 5. Incubate at 37 °C with 5 % CO2 for 4 days (see Note 9).
 6. Asses Treg cell frequency by flow cytometry after staining of 

CD4, CD25, and FoxP3.

 1. For Treg cell purification, prepare a lymphocyte suspension 
from the tumor, draining lymph nodes, or spleen collected 
from Balb/c or C57BL/6 tumor-bearing mice. Adjust lym-
phocyte number to 4 × 107/ml cells in FACS buffer I.

 2. Regulatory T cells are characterized by surface expression of 
CD4, CD25, and FR4high [45]. Use 0.2 μg of APC-conjugated 
anti-CD4 antibody, 0.5 μg of Alexa Fluor 488-conjugated 
anti-CD25 antibody and 0.4 μg of PECy7-conjugated anti-
FR4 antibody per 0.2 ml cells. Incubate for 30 min at 4 °C in 
the dark.

 3. Wash cells with FACS buffer I, centrifuge for 8 min at no more 
than 300 × g, and resuspend cell pellet at a concentration of 
3 × 107 cells/ml.

 4. Using a FACSAria cell sorter, select within the lymphocyte 
gate the CD4+CD25+FR4high population (see Note 10).

 5. Collect in 5 ml polystyrene round bottom tube containing 
2 ml collection medium. Vortex tube prior to use (see Note 7).

 6. Keep the sorted population on ice.

3.1.3 Coating of 24- 
and 96-Well Plates 
with Anti-CD3 Antibody

3.1.4 Differentiation 
of Treg Cells In Vitro 
in the Presence 
of Conditioned Media

3.1.5 Purification 
of Tumor-Associated Treg 
Cells and CD3+ Responder 
T Cells
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 7. For T responder cells, prepare a single cell suspension of mouse 
spleen from tumor-free mice as described (Subheading 3.1.1).

 8. Adjust splenocyte concentration to 4 × 107/ml with FACS buf-
fer I and stain for the CD3 surface marker using 0.2 μg of 
FITC-conjugated anti-CD3 antibody per 200 μl. Incubate for 
30 min at 4 °C in the dark.

 9. Wash cells and resuspend the cell pellet in FACS buffer I at a 
concentration of 3 × 107/ml.

 10. Using a FACSAria cell sorter select within the lymphocyte gate 
the CD3+ population (see Note 10).

 11. Collect cells in 15 ml conical tubes containing 2.5 ml of collec-
tion buffer. Vortex tubes prior to use (see Note 7).

 12. Keep the sorted population on ice.

 1. Purify Treg cells and T responder cells from the desired source.
 2. Count Treg and T responder cells and adjust to 5 × 105 cells/ml 

in RPMI 5 % FBS supplemented with 50 μM β-mercaptoethanol 
and 1 μg/ml anti-CD28 monoclonal antibody. Authors have 
reported that sorted Treg cells remain partially anergic after 
purification [46]. It is therefore recommended to supplement 
culture medium with 20 U/ml IL-2.

 3. In 96-well round bottom plates coated with anti-CD3 monoclo-
nal antibody, add Treg cells and prepare twofold serial dilutions 
of these cells. It is recommended that at least three serial dilutions 
are performed. Treg cell proliferation should be also evaluated.

 4. Add 50 μl of T responder cells to all the required wells. Make 
sure to evaluate proliferation of T responder cells in the absence 
of Treg cells. The Tresp:Treg ratio should be 1:1, 1:0.5, 
1:0.25, 1:0.125, etc.

 5. Incubate plates at 37 °C, 5 % CO2 for 4 days.
 6. Pulse plates with 1 μCi [3H]-thymidine per well 18 h prior to 

completion of the experiment. Since proliferation by 
[3H]-thymidine incorporation is often variable, wells must be 
processed in triplicate.

 7. Harvest cultures with a commercial cell harvester and deter-
mine counts per minute (cpm) with a direct β-counter.

 8. Data are reported as cpm or percent of suppression consider-
ing T responder cells alone as 100 % of proliferation.

 1. Purify Treg cells from the desired source and resuspend cells in 
sterile PBS at a concentration of 6 × 106/ml.

 2. Anesthetize mice and gently warm the tail vein that is located 
laterally.

 3. Inoculate 50 μl of Treg cells intravenously with 27G needles 
using a 1 ml syringe.

3.1.6 Assessment 
of the Suppressive Activity 
of Treg Cells

3.1.7 Adoptive Transfer 
of Treg Cells
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 1. Prepare cell lysates from cultured tumor cell lines (B16, 4T1) 
as an antigenic source by four freeze-thaw cycles (liquid nitro-
gen and 37 °C water bath) at a concentration of 2 × 107 cells/
ml in PBS.

 2. For ex vivo antigen stimulation prepare a working solution by 
diluting the tumor lysates 1:400 in RPMI 1640, 10 % FBS 
supplemented with 50 μM β-mercaptoethanol and a mixture 
of antibiotics-antimycotics.

 3. Prepare a single cell suspension of mouse spleen and draining 
lymph nodes as described in Subheading 3.1.5.

 4. Adjust cells concentration to 2 × 106/ml in RPMI 10 % FBS 
supplemented with 50 μM β-mercaptoethanol and 
antibiotic-antimycotic.

 5. In 96-well round bottom plates add 50 μl of cells and 50 μl of 
the working dilution of tumor antigen or 50 μl of RPMI as a 
control. Calculate three wells for proliferation and two wells 
for determination of each cytokine by ELISA.

 6. For proliferation assay, incubate plates at 37 °C, 5 % CO2 for 4 
days and pulse plates with 1 μCi [3H]-thymidine per well for 
18 h.

 7. For cytokine determination, incubate plates at 37 °C, 5 % CO2 
for 24–48 h, harvest culture supernatants in 100 μl aliquots, 
and keep at −70 °C until use.

 1. ELISAs for mouse IFN-γ, IL-10, IL-5 were performed accord-
ing to the manufacturer’s instructions.

 1. Remove both femurs and tibias from C57Bl/6 mice and place 
them in a P60 Petri dish with cRPMI.

 2. Remove excess muscle with forceps and scalpel. Cut bone’s 
epiphysis.

 3. Load 1 ml syringe with cRPMI.
 4. Insert 21- or 25G needle into the bone marrow cavity. Flush 

the bone cavity with 2 ml cRPMI until the cavity is emptied.
 5. Homogenize marrow suspension vigorously to disaggregate 

clusters that may be present in the suspension with a 21G 
needle.

 6. Centrifuge cells for 10 min at 200 × g.
 7. Discard supernatant. Resuspend cells with 5 ml ACK lysis buf-

fer and incubate for 10 min. Dilute with 20 ml PBS.
 8. Centrifuge cells for 10 min at 200 × g.
 9. Discard supernatant and resuspend cells (106 cells/ml) in 

10 ml cRPMI medium supplemented with 20 ng/ml rGM-
CSF and 3 μM rGal-1 in P100 petri dish.

3.1.8 Tumor Antigen- 
Specific Proliferation

3.1.9 Cytokine 
Determination by ELISA

3.2 Study of the Role 
of Galectins in the DC 
Compartment

3.2.1 Differentiation 
of Bone Marrow-Derived 
Tolerogenic DCs
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 10. Feed cultures on days 2, 5, and 7 without discarding any cells: 
swirl plates and aspirate 75 % of the medium. Add fresh medium 
containing rGM-CSF and rGal-1.

 11. After 8–9 days purify the non-adherent bone marrow-derived 
cells obtained in the supernatant.

 1. Add cell suspension (5 × 105 cells) to a 1.5 ml tube. An isotype 
control antibody for each marker should be included.

 2. Centrifuge cells at 200 × g for 10 min at 4 ºC and discard the 
supernatant.

 3. Wash cells with 1 ml FACS buffer II.
 4. Centrifuge cells at 200 × g for 10 min at 4 ºC and discard the 

supernatant.
 5. Resuspend cells in 100 μl FACS buffer II and add 10 μl of a 

cocktail of antibodies (MHC II, CD11c, CD86, CD45RB). 
All the antibodies must be diluted with FACS buffer II 
(0.2 μg/tube).

 6. Incubate for 30 min at 4 ºC.
 7. Wash cells with 1 ml FACS buffer II.
 8. Centrifuge at 200 × g for 10 min at 4 ºC; discard the superna-

tant and resuspend the stained cells pellet in 500 μl PBS.
 9. Analyze the sample(s) using a flow cytometer.

 1. IL-27 p28 ELISA protocol is thoroughly detailed in the data 
sheet provided by the manufacturer (see Note 12).

 1. To prepare cell lysates, centrifuge DCs (1 × 107) at 200 × g for 
10 min at 4 ºC. Discard the supernatant.

 2. Resuspend cells in 200 μl ice-cold protein extraction buffer 
(200 μl per 107 cells).

 3. Keep stirring for 30 min at 4 °C.
 4. Centrifuge at 16,000 × g for 20 min in a 4 °C pre-cooled 

centrifuge.
 5. Transfer the supernatant to a fresh tube on ice and discard the 

pellet.
 6. Remove a small volume (10 μl) of cell lysate to perform 

Bradford assay.
 7. Determine the protein concentration for each cell lysate.
 8. Prepare 30 μg of total protein from cell lysate with 2× Laemmli 

Sample Buffer.
 9. Incubate each cell lysate at 100 °C for 5 min.
 10. Load samples on an SDS-PAGE gel.
 11. Run the gel for 1–2 h at 100 V.

3.2.2 Determination 
of DC Markers by Flow 
Cytometry (See Note 11)

3.2.3 Determination 
of IL-27 by ELISA

3.2.4 Evaluation 
of STAT-3 Phosphorylation 
by Western Blot
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 12. Transfer proteins from the gel to a nitrocellulose or PVDF 
membrane.

 13. Block the membrane for 1 h at room temperature using block-
ing buffer.

 14. Incubate the membrane with the anti-phospho-STAT3 pri-
mary antibody (0.2 μg/ml) in blocking solution overnight 
at 4 ºC.

 15. Wash the membrane with tTBS for 5 min three times.
 16. Incubate the membrane with the HRP-conjugated anti-rabbit 

IgG diluted 1/3,000 in tTBS at RT for 1 h.
 17. Wash the membrane with tTBS for 5 min three times.
 18. Incubate with Immobilon chemiluminescent HRP substrate 

and capture the luminescent image in a GBOX incubator.

Deparaffinization of tissue sections

 1. 30 min in xylene at RT.
 2. 10 min in 100 % ethanol at RT.
 3. 10 min in 95 % ethanol at RT.
 4. 10 min in 75 % ethanol at RT.
 5. 5 min in distilled H2O three times.

Quenching of endogenous peroxidase activity

 6. 10 min in 1 % H2O2 in H2O.

Blocking and antigen retrieval

 7. Incubate tissue samples with normal horse serum (2 drops in 
40 ml PBS 0.05 % saponin) overnight at 4 ºC.

 8. Circumscribe the tissue section with the ImmEdge Pen.
 9. Incubate with antibody dilutions for 1 h at RT in a humidified 

atmosphere. Antibodies are diluted 1:100 in PBS-saponin (in 
the case of the anti-galectin-9 antibody, dilution should be 
1:50). Volume = 100 μl/condition. Antibodies should be cen-
trifuged for 2 min at 10,000 rpm before use.

 10. Wash twice in PBS-0.05 % saponin (5 min each).
 11. Incubate with biotinylated antibodies (1 drop/1 ml in PBS-

saponin) for 1 h at RT in a humidified chamber. Volume = 100 μl/
condition. Biotinylated antibodies (anti- rabbit or anti-mouse 
are used). In case of galectin-9 staining, use HRP-labeled anti-
goat dilution 1/100. Incubate for 1 h at RT in a humidified 
atmosphere.

 12. Wash twice in PBS-0.05 % saponin for 5 min.

3.3 Profiling Galectin 
Expression in Tumor 
Microenvironments

3.3.1 Galectins 
Immunostaining 
in Paraffin-Embedded 
Tissues
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Amplification reaction: Avidin-Peroxidase-Biotyn system

 13. Incubate with ABC reagent for 1 h at RT in a humidified 
atmosphere (1 drop of reagent A in 1 ml PBS-0.05 % saponin, 
incubate for 5 min. Add 1 drop of reagent B, vortex, and incu-
bate for 5 min). Volume = 100 μl/condition.

 14. Wash twice in PBS-0.05 % saponin for 5 min.
 15. Add 100 μl/condition of DAKO substrate system. Prepare 

substrate adding 2 drops of chromogen in 2 ml buffer. Incubate 
for 5 min at RT (see Note 13).

 16. Stop reaction by rinsing with distilled H2O.
 17. Incubate with Giemsa for 30 min at RT (30 drops in 10 ml of 

distilled H2O).
 18. Mount by using Dako Ultramount aqueous mounting medium 

(see Note 13).

Day 1: Plate 2–2.5 × 106 of HEK 293T cells (low passage) per 
P100 Petri dish in 10 ml of DMEM medium supplemented with 
10 % FBS.
Day 2: Transfection

 1. Change culture medium at least 2 h before transfection.
 2. Prepare calcium-phosphate precipitate (1 ml/P100 Petri dish):

(a) Transfer vector—(pLVTHM-shRNA): 20 μg [47].
(b) Packaging plasmid pMD2.G (Addgene #12259) (plasmid 

encoding capsid and polymerase genes) 15 μg.
(c) Envelope plasmid—pCMVR8.74 (Addgene #22036) 

(plasmid encoding amphotropic envelop VSVG) 6 μg.
(d) Complete to 500 μl with bi-distilled water, and then add 

50 μl of 2.5 M CaCl2 (prepared in bi-distilled water). Add 
dropwise 500 μl of 2× HBSS while gently vortexing. 
Incubate at RT for 15–25 min.

(e) Add dropwise on a plate and mix gently with culture 
medium.

 3. After 6–8 h of culture in CO2-controlled incubator at 37 °C, 
change medium; wash cells two times with pre-warmed PBS 
and add 6 ml/plate of fresh complete medium (see Note 14).

 4. At day 4 collect medium containing virus particles in 15 ml 
conical tubes.

 5. Spin at 200 × g for 5 min at RT to remove all cells and 
contamination.

 6. Filter supernatant with a 0.45 μm syringe filter. Virus can then 
be used for transduction or stored at −70 °C until use.

3.4 Lentiviral- 
Mediated Silencing 
of Galectin Expression

3.4.1 Silencing Galectin 
Expression. Lentiviral 
Production (See Note 2)
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 1. Day 1: Plate 30,000 HEK 293T cells in 24-well plates in 1 ml 
of complete DMEM.

 2. Day 2:
(a) Count cells: To count cells, evaluate the cell number in 

one well to evaluate the number of cells at the day of infec-
tion. In typical culture conditions, this number should be 
around 60,000–80,000 cells.

(b) Infection cells: The infection of cells should be performed 
in DMEM complete medium—4 % of polybrene solution 
(250 μl final volume) with six serial dilutions of virus solu-
tion; use for example 10–200 μl of thawed virus solution 
and complete to 250 μl of DMEM complete medium in 
1.5 snap lock tubes.

 3. Day 3: Add 1 ml of complete DMEM.
 4. Day 4: Split cells and assess transduction efficiency as the per-

centage of green fluorescent protein (GFP)+ cells (transfer vec-
tor contains a GFP-coding sequence as a marker of viral 
integration) and analyze fluorescence by FACS. Read the per-
centage from linear values (usually 5–10 % to no more than 
20 % of GFP+ cells is considered as linear values) (see Note 16).

 5. To infect your target cells with a ratio cells/virus between 1 
and 10, follow the steps in step 2, and then wait two passages 
of transduced cells before analyzing the transduction efficiency 
(see Note 17).

 6. Transduced cells should be amplified to allow purification of 
GFP+ cells by FACS (see Note 18).

4 Notes

 1. Store antibodies in aliquots at −70 °C. Avoid repeated freeze- 
thaw cycles as it may lead to loss of activity.

 2. WARNING! Production of lentivirus is not a simple and 100 % 
safe procedure. You should always keep in mind that the pro-
duction process allows you to produce high titers of mammal’s 
unreplicative but infectious virus solutions. Thus, viral produc-
tion should be done following safety instructions, in autho-
rized locations. It is essential to follow safety and security 
guidelines of your institution.

 3. As transfection efficiency depends on the cell type, solutions at 
different pH should be tested to optimize transfection 
efficiency).

 4. For three-color flow cytometry including APC, FITC, and PE 
staining, three individual additional tubes (each with a differ-
ent fluorochrome-conjugated antibody) are needed in order to 
properly compensate the experiment. This is because FITC 

3.4.2 Titration 
of Lentiviral Vectors 
and Transduction of Target 
Cells (See Note 15)
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usually bleeds considerably into PE channel. For FoxP3 staining 
as well as for detection of intracellular cytokines it is highly 
recommended to add a FM1 tube. Briefly cells are only stained 
with surface antibodies. After fixation and permeabilization 
add PE-conjugated isotype antibody (corresponding to 
PE-conjugated Foxp3 antibody) in permeabilization buffer 
1×. This allows the correct definition of Foxp3− populations. It 
is highly recommended to exclude cell doublets using FSC-H 
vs. FSC-W and SSC-H vs. SSC-W dot plots.

 5. Invitrogen’s protocol is detailed for 1 × 107 leukocytes in 
100 μl. Both antibody mix and Dynabeads yield up to three 
times the values that are specified. It is therefore recommended 
to use one-third of the reagent’s volume corresponding to 
1 × 107 leukocytes. Then, for a mouse spleen (usually around 
10 × 107 leukocytes) one should use 70 μl antibody mix and 
700 μl Dynabeads.

 6. Exclude cell doublets using FSC-H vs. FSC-W and SSC-H vs. 
SSC-W dot plots. Percent of total cells should range between 
60 and 70 % for Balb/c mice and 50–60 % for C57Bl/6 mice. 
Flow rate is recommended to be adjusted to around 1–3. Sort 
precision could be set to “yield.”

 7. Vortexing tubes will ensure that the tube will be covered by a 
thin layer of fluid to avoid cell death when cells are deflected to 
the tube.

 8. It is advised to perform a dose-dependent curve using CM at 
different dilutions. Dilutions ranging from 1:10 to 1:100 are 
recommended.

 9. Incubation beyond 4 days will only result in increased cell death.
 10. Percentage of total cells depends on the tumor model and the 

time of tumor burden. Sort precision should be set to “purity” 
and flow rate around 1–3.

 11. Surface markers of tolerogenic DCs are evaluated by flow 
cytometry. The typical markers are CD11c, MHC II (I-Ab), 
CD86, and CD45RB.

 12. Use this approach to evaluate the secretion of IL-27 by tolero-
genic vs. immunogenic DCs.

 13. Avoid using buffers and solutions with sodium azide since this 
compound inhibits peroxidase activity.

 14. All material used after transfection of HEK 293T cells should 
be washed twice in 2 % bleach solution to avoid viral contami-
nation and prevent subsequent health risk for the personnel 
and the environment.

 15. As transduction of cells lines with lentivirus is a rather efficient 
technique and allows integration of high number of copies of 
viral genome, target cells should be infected with low number 
of virus particles to ensure no more than two or three copies of 
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integrated shRNA cassette. There are important reasons for 
this. First, less of the target cell’s genome will be modified, 
fewer side effects will be caused by virus integration, and fewer 
shRNA molecules will be produced to ensure no saturation of 
the miRNA natural program.

 16. Titer corresponds to the percentage of cells (GFP+ cells) trans-
duced by a given virus suspension volume used on day 2, e.g., 
50 μl of a dilution 5 leads to 10 % of positive cells, and the 
number of cells on day 2 is 70,000, then the titer of the viral 
solution is 5,000 TU/μl > 1.4 × 105 TU/ml.

 17. Avoiding more than 10 % of infection allows one to keep the 
line heterogeneity, and no more than 15 % ensures minimum 
high copy integration number and thus genome integrity.

 18. In this chapter we detail some of the strategies used to study the 
role of galectins, particularly galectin-1 in tumor immunity, 
including the study of the differentiation and frequency of Treg 
cells and tolerogenic DCs, the profile of galectin expression in 
the tumor microenvironment, and the production of lentiviral 
vectors to manipulate galectin expression selectively in different 
cell types (tumor, stromal, and immune compartments). Other 
methods including promotion of T cell apoptosis, cytokine 
detection, and T cell trafficking are described in detail in recent 
papers and excellent review articles [8–14, 17]. During the past 
decade, a better understanding of the cellular and molecular 
mechanisms underlying tumor immunity has provided the 
appropriate framework for the development of novel therapeu-
tic strategies in cancer. Under this complex scenario, galectins 
and their glycosylated ligands have emerged as promising 
molecular targets and galectin antagonists have the potential to 
be used as anti-tumor and anti-metastatic agents in those cases 
in which galectins are up-regulated in tumor microenviron-
ments. The emerging data promise a future scenario in which 
the selective blockade of galectin-1, either alone or in combina-
tion with other therapeutic regimens, will contribute to halt 
tumor progression by counteracting cancer immunosuppres-
sion [48, 49]. Blockade of galectin-1–glycan interactions may 
also influence the efficacy of tumor vaccines, and other immu-
notherapeutic approaches. We hope that the strategies and 
methods described here will facilitate and encourage scientists 
to further evaluate the role of galectins in tumor immunity.
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