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The fluoranthene degradation was predicted by the sorption/desorption process as its fungal 
transformation was in relationship with the bioavailabit. Toxicants availability is significant to assess 
as their bioremediation and persistence in the contaminated environment depended on the physical, 
chemical and textures of the polluted sediments that fixed the organic xenobiotics. In most of natural 
and man-made habitats, the aromatic hydrocarbons had been found sorbed to soil particles that 
inmobilized the compounds and diminished the microbial attack. Therefore, wild yeasts from 
hydrocarbon polluted areas were isolated, and their potential as fluoranthene degraders were 
evaluated in different texture soils and organic matter contents. Hansenula angusta and Rhodotorula 
minuta were isolated from industrial effluents and used in desorption experiments; the obtained Flu 
uptake parameters explained the efficiency of both yeasts to biotransform Flu sorbed to soil particles. 
H. angusta and R. minuta degraded Flu by bioemulsifiers production; evenmore, they were highly 
efficient to uptake fluoranthene in the biphasic cultures and were dominant in the sampled polluted 
sediments. The potential application of biosurfactants produce by indigenous yeasts in PAHs recovery 
from the polluted environments was demonstrated by the percentage of fluoranthene removal and by 
the stability of the surface tension.  
 
Keywords: Bioavailability, fluoranthene, Hansenula angusta, Rhodotorula minuta - desorption process, 
biosurfactants. 

 
 
INTRODUCTION 
 
Polycyclic aromatic hydrocarbons (PAHs) accumulate in 
nature because release rates from industrial effluents 
exceed the rates of dissipation, microbial and chemical 
degradation (Jacques et al., 2008; Coccia et al., 2009).   
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Abbreviations 
 
PAHs, polycyclic aromatic hydrocarbons; Flu, fluoranthene; OC, 
organic carbon; CEC, cation exchange capacity; MM, mineral 
medium; ST, surface tension. 

Low biodegradation had been attributed to diverse 
factors, such as surface and subsurface soil/effluents 
properties, chemical toxicity, high concentrations of the 
pollutants, limited bioavailability of the toxicant to the 
degrading species (O’Donnel et al., 2007; Wang et al., 
2008), and deleterious conditions of the areas for 
microbial survival or proliferation (Yong and Mulligan, 
2006; Nasr et al., 2009).  

Reliance on indigenous strains may be inappropriate; 
and an alternative approach would be inoculation of the 
polluted soils with filamentous fungi and yeasts 
possessing the appropriate metabolic, physiological and 
kinetic potential in conjunction with manipulation of the 
soil parameters, to enhance the survival, activity and 
proliferation of the degrading  species  (Tang et al., 1998;  
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Fen et al., 2000). Once more, the isolation, culture and 
potential activity determination of wild fungi able to 
degrade xenobiotics become conspicuos  (Al-Tahlan et 
al., 2000). The advantages of fungi as degrading species 
releace on the production of large biomass, special 
metabolic activities, exoenzymes production, wide 
adaptation to diverse environmental factors, resistance 
and longevity (Noordman et al., 1998; Romero, et al., 
2010). However, successful bioremediation was still 
dependent on achieving an acceptable rate and extent of 
the degradation, and they depended on the kinetic 
parameters of the inoculant strains in conjunction with the 
bioavailabilty of the toxicants, being this factor in relation 
with the physical state of the pollutant (Romero et al., 
2002; Mulligan, 2005). 

Microbial naturally produced biosurfactants or surface 
active compounds have similar properties but are less 
toxic, biodegradable, and can be produced in-situ at the 
contaminated site (Mulligan, 2009). For these reasons, 
biosurfactants have gained increased attention; 
moreover, they could be produced from cheap materials 
and were effective under extreme conditions (Nitschke 
and Costa 2007; Sànchez et al. 2009). Many micro 
organisms, including bacteria, yeasts and filamentous 
fungi, could produce extracellular or membrane-
associated surface-active compounds which were used 
to assist the enhancement of emulsification and 
dispersion of waterin-soluble toxicants. The 
bioemulsifiers could reduce surface tension at the air-
water interface and they could assemble into a wide 
variety of morphologically different structures. 

Otherwise, the interactions between microorganisms, 
contaminants and biosurfactants had been interpreted 
from a functional perspective, considering that the main 
natural role attributed to biosurfactants is their 
involvement in hydrocarbon uptake (Paria, 2008; 
Perfumo et al., 2010).  

Soil-sorbed PAHs had been considered unavailable for 
biotransformation without prior desorption (Park et al., 
2001; Park et al., 2003), therefore fungi must be able to 
uptake the sorbed molecules by direct uptake (Calvillo 
and Alexander, 1996; Tang et al., 1998), or to facilitate 
the desorption in some manner. While different bacterial 
species had been extensively reported as producing 
effective biosurfactants to remove PAHs (Rodrigues et 
al.,  2006; Obayori et al., 2009; Thavasi et al., 2009; Nasr 
et al., 2009), fungi had not been studied so far. By other 
hand, yeasts and filamentous fungi had been reported to 
be frequent organisms in heavily polluted habitats 
(Romero et al., 2005; Romero et al., 2009), so, they 
ought to develop mechanisms to survive in an 
advantageous ecosistems with the presence of organic 
pollutants.  

Few studies dealt with fungal transformation of soil-
sorbed PAHs, and the diverse factors that mediated the 
hydrocarbon availability. Therefore, our aims were to 
isolate  yeasts  from  oil  polluted  sediments,  to  quantify  
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their potential to degrade fluoranthene (Flu) and to 
examine the PAHs bioavailability in relation with the 
partitioning between soil solution and sorbed to soil-
particles. 
 
 
MATERIALS AND METHODS 
 
Sampled sites and chemical analysis. Composite 
samples of the surface sediments were taken from two 
different natural areas, Regatas Station, Zanjon Station 
and two artificial channels that received industrial 
effluents, Channel Este, Channel Oeste and drain to Rio 
de La Plata, La Plata, Argentina. The total organic carbon 
concentrations of the sediment were determined by CHN 
analyzer (Perkin-Elmer, Norwalk, CT.) and the Macro-
Kjeldahl method was employed to measure the amount of 
total organic nitrogen. The total PAHs concentrations 
were analized by a FTIR-Perkin-Elmer, by triplicate; the 
ultrasonic extraction was realized with Cl4C. A cell with 
BrK window, 0.35 mm thick, was employed for these 
determinations (APHA, 1992). 

Different types of sorbents were used, soil type I, II and 
III, with diverse organic carbon  (OC) contents, sand, silt 
and clay proportions, pH and cation exchange capacity 
(CEC, (Pageet et al., 1982). The sorbens were sterilized 
and suspended in sterile phosphate buffer (20 mM) at a 
ratio 1:40 to prepare the extracts; before each 
experiment, 0.1 g of each mix was placed on nutrient-
agar plate, incubated at 30ºC for 7 days to verife sterility.  

Isolation and identification of yeasts. Yeast species 
were isolated under selective conditions from dilution 
samples of the sediments, in a mineral medium 
supplemented with An and benzene, the first substrate 
was added to test the yeast tolerance to the pollutant and 
the second one as source of carbon and energy. The 
isolates were identified by colony, cell morphologies, 
assimilation and physiological differences, with additional 
tests, like D-glucuronate assimilation in liquid medium, 
and coenzyme Q-system determination by HPLC were 
also done (Kurtzman and Fell, 1998). In all the cases, the 
Yeast identification PC program were used to confirm the 
results. 

Fluoranthene  degradation. Yeasts were precultivated 
on 40 ml of liquid Sabouroud media, for 48h at 5g and 30 
ºC, for 2 days, till exponential growth to be sure to 
accumulate enough internal-C reserves. Then, 1 ml of 
this culture was incubated in 500-ml shake flasks with 
100 ml of a mineral medium (MM) containing, per liter, 
200 mg KH2PO4, 800 mg K2HPO4, 200 mg MgSO4 7 
H2O, 100 mg CaSO4, 5000 mg (NH4)2SO4, 1 mg (NH4)2 
MoO4 4 H2O, supplemented with 2 % glucose and 1 ml 
vitamin solution, and pH 5.4. After incubation for 3 days 
at 30 ºC and 180 rpm on a rotary shaker, cells were 
harvested by centrifugation (5000g, 5min), washed twice 
with sterile MM and the pellet was resuspended in MM to 
an optical density of 6 (600 nm). Different aliquots of Flu  
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Table 1: Sampled soil features, OC, CEC, pH and particle size distributions used in the Flu-degrading 
assays. 

 

                OC (%)      sand (%)     silt (%)       clay (%)         pH          CEC (cmol/kg) 

type I            1.30           59.1          32.1            8.8               5.3              7.10 

type II          3.28           54.6           24.0           21.4              6.8            24.40 

type III         7.80           64.2           20.7           15.1              6.0            43.00      

 
 
 
stock solution, 20, 40, 60, 80 and 100 µg, was added to 
100 ml MM with the yeast suspensions, and 2 ml added 
to the Flu-assays.  

Surface tension (ST) measurements were also 
evaluated as this characteristic affected uptake of soil-
sorbed Flu. ST allowed us to estimate whether 
biosurfactants were producing during the yeast cultures, 
and ST were determined by a DuNoüy tensiometer. By a 
simple capillary assay, yeast response to Flu levels of 5 
and 50 mg/l were determined (Al-Tahlan et al., 2000). 
Yeast cells harvested in late log phase were washed 
twice with 20 mM phosphate buffer, resuspended in 20 
mM phosphate buffer plus 10 µM EDTA and placed in a 
U-shaped tube to be observed by microscopy. 
Uninoculated tubes were used as controls, and all the 
measurements were made by triplicate. The yeast cells 
that went into the capillaries with Flu-solution after 1 h 
were enumerated by plate counts. 

Inoculum of yeasts without Flu in MM was used as 
controls, and the assays were made in triplicate. 
Periodically, 1 ml of each flask was sampled to estimate 
the Flu-levels by HPLC analysis (Hewlett-Packard, Bad 
Homburg, Germany), apparatus 1050 M equipped with a 
quaternary pump system, a diode array detector 1040 M 
series I, and an HP Chemstation. The separation was 
achieved with a LiChroCart 125-4 RP-18 end-capped (5 
mm) column (Merck, Darmstadt, Germany). The initial 
solvent composition was 30% CH3OH - 70% H3PO4 
(0.1%), reaching 100% methanol after 14 min at a flow 
rate of 1 ml/min. The UV-visible absoption spectra of 
degradation products were determinated in a diode array 
detector (Romero et al., 2005). The chemicals, 
fluoranthene and solvents were purchased by Aldrich-
Chemie, and were of the highest purity available. 

Fluoranthene bioavailability assays. To assess the 
availability of soil-sorbed Flu for the degrading yeasts, the 
assays were performed with soil extract controls and soil 
slurries. Two yeasts isolates able to grow on Flu as sole 
C source were used in this study. Inocula were prepared 
by culturing yeasts in liquid Flu-MM with 150 rpm 
shaking, at 27 ºC, and cell growth was monitored by 
measuring absorbance at 600 nm with an 
spectrophotometer. Yeasts in lag phase were 
centrifugated, washed twice with sterile phosphate buffer 
(20 nM, pH 7), and resuspended in the buffer, to obtain a 
final cell density of 10

8
 CFU/ml. Two mililiters of each 

yeast culture was used in the desorption experiments. 
The desorption assays were carried out in 50 ml tubes 

with 28 ml sterile soil type I, II or III, plus 5 ml sterile 
phosphate buffer plus 2 ml yeast culture; tubes were 
incubated at 20 rpm for 10 days in darkness. At the 10

th
 

day, each tube was centrifuged to separate soil from the 
supernatant; both were analized to determine Flu-final 
levels in sorbed and liquid phases by HPLC. Two control 
tubes were incubated in the same conditions, one without 
soil aliquots, and another with 30 ml soil suspension and 
then sterilized. Initial fixed Flu-concentrations were 
determined in the soil samples and in the control ones. 
Once a day, 1 ml subsamples were withdrawn from each 
tube to quantify Flu-levels and yeast densities.      

Data analysis: The experimental data were analyzed by 
ANOVA, and fitted to the model by Quasi-Newton 
Technique (Robinson, 1985) and SAS guide   (SAS, 
1985), and the regression analysis (R

2
) expressed the 

goodness of the results.  
 
 
RESULTS  
 
The yeasts Hansenula angusta and Rhodothorula minuta 
grew with Flu as sole C source and their uptake were 
significant in relation to the other species present in the 
Flu-agar plates. Besides, both yeasts had not been 
mentionated as PAHs degraders yet.  

The soil features, like OC, CEC and particle size 
distributions were evaluated in the Flu-degrading assays 
(Table 1).  Soil type III had more OC content and clay 
proportion than type I and II, therefore higher amount of 
organic pollutant could be sorbed to the soil particles. 
The Flu-sorption isotherms for the soil types showed that 
more Flu were found in the sorbed fraction in soil type III, 
than in the others (Figure 1). This fact confirmed the 
relationship between the OC content and soil texture with 
the availability of the organic compounds, and the posible 
bioremediation of the polluted sediments.  

Similar Flu desorption amounts was obtained in the 
assays with the isolated yeasts, being both species 
effective to remove Flu from the soil particles. All the 
same, small quantities of residual Flu were observed at 
the end of the experiments in relation with the soil type. 
The desorption Flu of soil type I were less than the Flu 
released from type II and III in both yeast cultures; and 
this fact was due to the Flu-amount sorbed to the 
particles, being significantly minor in the soil texture with 
more sand than clay material (Figure 2). 

Biphasic cultures, with two different physical states with  



International Research Journal of Microbiology (IRJM) (ISSN: 2141-5463) 

Romero et al.  233 
 
 
 

 
 

Figure 1: Flu-sorption isotherms for the different soil types 

 
 

 
 

Figure 2: Flu-desorption (%) during the desorption assays with H. angusta 

 
 

 
 

Figure 3: Flu biodegradation data by H. angusta Y. lipolytica and R. minuta in liquid phase. 

 
 
Flu fixed to particles and in liquid phase were 
implemented, as it was much more similar to natural 
habitat than the monophasic ones. 

The biphasic cultures were composed of equilibrium, 
nonequilibrium and nondesorption areas. Nondesorption 
sites were defined as those containing substrates that 
cannot be released to solution, nonequilibrium sites 

showed a proportional release rate in relation to 
concentration gradient between these sites and the liquid 
phase, and the equilibrium areas release the Flu to the 
liquid phase. The three-site desorption model fitted the 
experimental data, being the parameters and site 
fractions representative of the yeast uptakes (Figure 3).  

The Km values for H. angusta and R. minuta with  each  
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soil types fluctuated between 10.45 to 12.40 (R

2
 = 0.90-0-

95) and 9.59 to 11.90 (R
2 

 = 0.95-0.98) for each yeasts, 
respectively. The differences in ST between the controls 
and the H. angusta and R. minuta cultures indicated that 
biosurfactants were produced in both yeast experiments; 
6.0 and 9.0 dynes/cm were the ST data in the H. angusta 
and R. minuta assays, respectively.  

The total Flu concentration of the cultures was the sum 
of the equilibrium, nonequilibrium and nondesorption 
areas, represented by S = Seq + Sneq + Snd. Equilibrium 
partitioning was described by Seq = ƒeq  KF   Ce

n
; 

nondesorption responded to  Snd = ƒnd  KF   C
n
, and the 

release from nonequilibrium sites followed the 1rst. order:   
d  S neq  / dt  = α  (ƒneq  KF   C

n
 - Sneq), where KF  was 

the Freundlich sorption coefficient, n  was the isotherm 
curvature constant, C was the Flu liquid-phase 
concentration (mg/ l), Ce was the Flu liquid-phase 
concentration (mg/ l) in sorption equilibrium, t desorption 
time (min), α 1rst. order desorption rate coefficient (min

-1
) 

for nonequilibrium areas, ƒeq the equilibrium site fraction, 
ƒneq the nonequilibrium fraction, ƒnd the nondesorption 
fraction, and Seq, Sneq and Snd were the Flu-sorbed 
levels (mg/kg) in the solid equilibrium, nonequilibrium and 
nondesorption areas, respectively. The ƒnd were 
obtained from the sorption isotherm and represented the 
plateau of the desorption profile, while ƒneq, ƒeq and α 
were calculated by nonlinear regression analysis of the 
desorption experimental data. 

The Flu-equilibrium fraction, ƒeq, increased in relation 
with the OC content, ranging from 0.30, 0.62 and 0.70; 
the nonequilibrium Flu-fraction, ƒneq, was similar among 
soil types and nondesorption sites, ƒnd, decreased as 
OC content increased, ranging from 0.45, 0.27 and 0.15. 
So, desorption coefficients increased as the OC 
increased, being these observations consistents with the 
interactions between soil constituents and pollutant 
bioavailability.  

The degradation was limited to the dissolved Flu 
present initially, and to the desorbing Flu amount during 
the experiments. No direct uptake from Flu-sorbed 
particles was observed with H. angusta and R. minuta. 
The diverse degreess of availability were in relation to the 
association of Flu with soil matrix and OC content. The 
desorption rates of fluoranthene and soil constituents 
were negatively correlated with the kinetic parameters of 
H. angusta and R. minuta, this data seemed to 
dependent on the differences between the yeast 
biosurfactant production and in second order to soil 
texture and OC content of the habitats.  

Sorption experiments alone did not predict desorption 
responses, due to hysteresis and irreversibility of the 
process, the sorbed compounds fixed in to diverse 
compartments, each one with different dissociate and/or 
dissolution rates. So, desorption assays and comparison 
with controls cultures were implemented. Three types of 
desorption were confirmed; equilibrium was evidenced by 
high solution of Flu-levels at the  first  incubation  time  for  

 
 
 
 
the soil types. However, some Flu-nondesorbable 
fractions were observed, because a complete reversible 
desorption was not obtained.  
 
 
DISCUSSION 
 
The reported efficiency of PAHs biodegradation ranged 
from 6.0 to 82.0 % for soil fungi, and 0.2 to 50.0 % for soil 
bacteria (Das and Chandran, 2011). Different 
mechanisms were proposed to explain the PAHs 
bioavailability, like biosurfactants, extracellular enzymes 
production, fungal high substrate affinity and cell 
adhesion to particles (Cha et al., 2008; Ge et al., 2008). 
Direct uptake of pyrene, naphthalene and Flu at the 
aqueous/non-aqueous interface had been demonstrated 
by bacteria, besides enhanced bioavailability was 
obtained for hydrophobic compounds, i.e. Flu (Ghosh et 
al., 2001; Kumar et al., 2008); although this ability had 
not been extensively studied in fungi.  

Bioemulsifiers had great potential for stabilising 
emulsions between hydrocarbons with liquid and/or solid 
media, thus increasing the surface area available for 
biodegradation. Filamentous fungi and yeast had 
produced specific kind of surfactants (Kiran et al., 2009); 
besides biosurfactans had been reported in different 
Candida spp., namely, C. bombicola (Shah and 
Prabhune, 2007), C. spherical  (Sobrinho et al., 2008), C. 
lipolytica, R. mucilaginosa, Geotrichum spp., 
Trichosporon mucoides, Rhodothorula spp. (Luna et al., 
2009) and Lipomyces starkeyi (Sanino et al., 2010). 
Among bioemulsifiers, phospholipids, mannosylerythritol 
lipids, lipopolysaccharide and polyol-lipids were produced 
by yeasts (Pattanathu et al., 2008);  sophorolipids were 
obtained in C. bombicola, C. apicola, Centrolene 
petrophilum and R. bogoriensis cultures (Kim et al. 2002; 
Van Bogaert et al., 2007); and mannosylerythritol lipids 
were produced by Pseudozyma yeasts, P. aphidis, P. 
antarctica and P. rugulosa (Imura et al., 2007; Konishi et 
al. 2007a, b). The low-foaming sophorolipids from C. 
bombicola  was suitable due to their high detergency 
ability, low cytotoxicity and high biodegradability and 
general environmentally acceptable properties (Hirata et 
al., 2009).  

In accordance with our results, and their significant 
capacities to degrade aromatics were in relation to this 
enzimatic abilities (Sarubbo et al., 2007) 

 Therefore, we concluded that H. angusta and R. 
minuta degraded Flu by bioemulsifiers production; 
evenmore, they were highly efficient to uptake Flu in the 
biphasic cultures and were dominant in the sampled 
polluted sediments. 
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