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We performed a predictive analysis based on quantitative structure–activity relationships (QSAR) of an
important property of flavonoids, which is the inhibition (IC50) of aldose reductase (AR). The importance
of AR inhibition is that it prevents cataract formation in diabetic patients. The best linear model con-
structed from 55 molecular structures incorporated six molecular descriptors, selected from more than
a thousand geometrical, topological, quantum-mechanical, and electronic types of descriptors. As a prac-
tical application, we used the obtained QSAR model to predict the AR inhibitory effect of newly synthe-
sized flavonoids that present 2-, 7-substitutions in the benzopyrane backbone.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Diabetic patients normally suffer from complications such as
cataract, peripheral neuropathy, and vascular disease particularly
of the retina, kidney, and heart. Increased activity of sorbitol path-
way of glucose metabolism has been implicated in the pathogene-
sis of these complications.1 The sorbitol pathway contains two
enzymes aldose reductase (AR) (EC 1.1.1.21) and sorbitol dehydro-
genase (EC 1.1.1.14).

AR normally reduces glucose to sorbitol using nicotinamide-
adeninedinucleotide phosphate (NADPH) as a cofactor; at the same
time another sorbitol dehydrogenase oxidizes sorbitol to fructose.
However, in diabetis conditions, glucose level in this pathway is in-
creased and sorbitol is produced faster than being oxidized to
fructose.2

The accumulation of sorbitol in lens, nerve, or retina results in
hyperosmotic effect, which leads to lens swelling and subsequent
cataract formation as well as the pathologic changes in other tis-
sues.3 The inhibition of AR is a possible prevention or treatment
of these effects.4
ll rights reserved.
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Several flavonoids and flavonoid derivatives have been reported
to have inhibitory activity against AR enzyme.5–7

AR being a relevant area of research, selectivity of AR against
other reductases is not a minor topic, however, aldehyde reductase
inhibition IC50 values are not available for the set of flavones used
in this work. Nevertheless, scarce data were located in literature,
for example, isoaffinetin (5,7,30,40,50-pentahydroxyflavone-6-C-glu-
coside) is a potent inhibitor of AR (rat lens, porcine lens, and re-
combinant human) with no inhibition against aldehyde reductase.8

Flavonoids (phenyl-benzopyranes) are low molecular weight
plant products, that are abundant, relatively simple to synthesize
and present several interesting biological activity profiles in enzy-
matic systems, consequently their study is greatly interesting in
many research fields.

Clearly, it is of great interest to be able to predict the IC50 of
compounds that have no experimental values yet, as well as
attempting to determine the structural parameters that the AR
inhibition depends on. A generally accepted remedy for overcom-
ing the lack of experimental data in complex chemical phenomena
is the analysis based on quantitative structure–activity relation-
ships (QSAR).9

A recent QSAR study on a data set of inhibitory activities against
AR enzyme of 75 flavonoids was reported using multilinear regres-
sion analysis with classical and quantum chemical descriptors.10

This model lacked statistical significance showing low correlation
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coefficients and no predictive ability. A second study used the
same data set for multilinear regression analysis selecting the
models by a genetic algorithm, followed by artificial networks to
further improve the linear models and the predictive power of
the correlations in a small extent.11

In the present study, we investigate a QSAR model for the inhi-
bition of AR enzyme that could serve as a guide for the rational de-
sign of further potent and selective inhibitors having the flavone
(Fig. 1) or cromone backbone (Fig. 2); the latter being basically a
flavone without the phenyl group in position 2.

A great number of structural molecular descriptors including
definitions of all classes were searched using the replacement
method (RM)12–15 and further refined using the recently proposed
enhanced replacement method (ERM)16 for the optimal variable
subset selection. We compare our results with those provided by
the widely applied genetic algorithm (GA)17 that provides suitable
benchmark data. Our main interest is to apply the new QSAR model
to estimate the activity of a group of newly synthesized flavonoids
that present 2-, 7-substitutions in the benzopyrane backbone,18

since they do not have experimentally measured inhibitory effects
on AR at the present time. Up to now, few attempts have been car-
ried out to synthesize flavonoids with substitutions of that type.
There are few biological characterizations for this sort of newly
synthesized molecules, and in this way we expect to provide more
knowledge on the above-mentioned phenomena.

2. Methods

2.1. Data set

In the present study, we choose a training set of 56 flavonoid
derivatives for which their activities are reported in the literature
by Štefanič-Petek et al.10 We first try to use all 75 molecules from
that paper, but a further revision of the references containing the
experimental data to clarify some doubts on the structures6,19 re-
vealed some important errors in the representation of some of
them. For this reason the number of flavones was reduced to just
56 reliable structures. More precisely, that reduction was due to
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Figure 1. Molecular structure of flavone.
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Figure 2. Molecular structure of cromone.
the fact that some molecules either did not exhibit the desired fla-
vone backbone or because their exact structure was not found in
the references.

The experimentally inhibitory effects on AR enzyme of the se-
lected molecules were measured spectrophotometrically; the reac-
tion was initiated by addition of the flavonoid derivatives and the
rate of NADPH oxidation was determined by monitoring the de-
crease in absorbance at 340 nm. AR was obtained from the lenses
of the eyes of rats of the Wistar strain weighting 200–250 g6,19

and purified according to the method of Inagaki et al.20 IC50 refers
to the micromolar concentration of the compound required for 50%
inhibition of the enzyme and was determined by the method of Ka-
dor et al.21

In addition to it, a set of four flavones with the desired back-
bone22 was chosen to test the prediction ability of the new model.
In this case all the experimental conditions were almost identical
to those of the training set, with the difference that the AR was ob-
tained from the lenses of the eyes of Sprague–Dawley rats weight-
ing 250–280 g.22 It is expected that such difference will not affect
significantly the measurement.

Table 1 summarizes the molecular structures, numbering of the
substituents, and experimental �logIC50 of the above-mentioned
flavonoid derivatives.

2.2. Molecular descriptors

The structures of the compounds are first pre-optimized with
the molecular mechanics force field (MM+) procedure included in
the Hyperchem 6.03 package,23 and the resulting geometries are
further refined by means of the semiempirical method PM3 (Para-
metric Method-3) using the Polak-Ribiere algorithm and a gradient
norm limit of 0.01 kcal Å�1. We computed the molecular descrip-
tors using the software Dragon 5.0,24 including parameters of all
types such as constitutional, topological, geometrical, charge, GET-
AWAY (Geometry, Topology, and Atoms-Weighted AssemblY),
WHIM (weighted holistic invariant molecular descriptors),
3D-MoRSE (3D-molecular representation of structure based on
electron diffraction), molecular walk counts, BCUT descriptors,
2D-autocorrelations, aromaticity indices, Randic molecular pro-
files, radial distribution functions, functional groups, atom-cen-
tered fragments, and empirical properties.25 We enlarged that
pool by the addition of 18 constitutional and 4 quantum-chemical
descriptors (molecular dipole moments, total energies, homo–
lumo energies) not provided by the program Dragon. The resulting
total pool thus consists of D = 1233 descriptors.
2.3. Model search

It is our purpose to search the set D, containing D descriptors,
for an optimal subset d of d� D ones with minimum standard
deviation S

S ¼ 1
ðN � d� 1Þ

XN

i¼1

res2
i ð1Þ

by means of the multivariable linear regression (MLR) technique. In
this equation, N is the number of molecules in the training set, and
resi is the residual for molecule i, the difference between the exper-
imental property (p) and predicted property (ppred). More precisely,
we want to obtain the global minimum of S(d), where d is a point in
a space of D!/[d!(D � d)!] ones. A full search (FS) of optimal vari-
ables is impractical because it requires D!/[d!(D � d)!] linear
regressions. Some time ago, we proposed the replacement method
(RM)12–15 and more recently the enhanced replacement method
(ERM),16 both approaches produce linear regression QSPR–QSAR
models that are quite close to the FS ones with much less



Table 1
Experimental and predicted (Eq. 4) �log IC50

No. Substituents �logIC50 Exp. �logIC50 Pred.

Training set
1 5,7,30 ,40-OH; 3,6-OCH3 7.553 7.374
2 30 ,40-OH; 5,6,7,8-OCH3 7.490 6.922
3 6,30 ,40-OH; 5,7,8-OCH3 7.456 7.170
4 5,7,30 ,40-OH; 6-OCH3; 8-CH2Ph 7.470 7.654
5 5,30 ,40-OH; 6,7,8-OCH3 7.410 7.014
6 30 ,40-OH; 5,7,8-OCH3 7.350 6.568
7 5,6,7,30 ,40-OH; 3-OCH3 7.240 7.518
8 5,6,30 ,40-OH; 7,8-OCH3 7.190 7.333
9 7,30 ,40-OH; 5,8-OCH3 7.130 7.078
10 5,30 ,40-OH; 7,8-OCH3 7.110 7.117
11 30 ,40-OH; 5,6,7-OCH3 7.040 7.187
12 5,6,7,30 ,40-OH; 8-OCH3 6.920 6.585
13 6,30 ,40-OH; 5,7-OCH3 6.850 6.509
14 40-OH; 5,6,7,8-OCH3 6.796 6.558
15 8,30 ,40-OH; 5,7-OCH3 6.790 6.508
16 30 ,40-OH; 3,5,7,8-OCH3 6.770 6.689
17 5,6,7,30 ,40-OH 6.690 6.598
18 5,30 ,40-OH; 6,7-OCH3 6.770 6.995
19 5,8,30 ,40-OH; 7-OCH3 6.640 7.167
20 5,7,30 ,40-OH; 3,8-OCH3 6.620 6.697
21 6,40-OH; 5,7,8-OCH3 6.600 6.631
22 30 ,40-OH; 3,5,6,7-OCH3 6.570 6.853
23 5,7,30 ,40-OH; 8-OCH3 6.550 6.667
24 7,30 ,40-OH; 3,5,8-OCH3 6.550 6.367
25 8-OCH3; 5,6,7,30 ,40-OCOCH3 6.520 6.336
26 5,6,30 ,40-OH; 7-OCH3 6.520 6.467
27 6,30 ,40-OH; 3,5,7-OCH3 6.520 6.830
28 5,30 ,40-OH; 3,6,7-OCH3 6.458 6.267
29 5,7,40-OH; 6,8-OCH3 6.390 6.402
30 5,40-OH; 6,7,8-OCH3 6.270 6.394
31 5,6,30 ,40-OH; 3,7-OCH3 6.090 6.668
32 5,6,40-OH; 7,8-OCH3 6.070 6.679
33 5,6,7,40-OH; 8-OCH3 5.920 5.782
34 5,6,7,40-OH; 8,30-OCH3 5.920 5.207
35 5,40-OH; 6,7-OCH3 5.850 5.475
36 5,7,30 ,40-OH; 3-O-Rh 5.933 5.966
37 5,7,40-OH; 6,8,30-OCH3 5.350 5.276
38 6,40-OH; 5,7,8,30-OCH3 5.200 5.118
39 5,40-OH; 6,7,30-OCH3 5.170 5.284
40 5,7-OH; 6,8,40-OCH3 5.140 4.824
41 5,6,7-OH; 8-OCH3 5.090 4.964
42 5,6-OH; 7,8-OCH3 5.076 5.155
43 30 ,40-OH; 5,6,7-OCH3; 3-COCH3 5.050 4.581
44 5,30-OH; 6,7-OCH3; 40-O-Glc 5.086 4.689
45 5-OH; 6,7,30-OCH3; 40-O-Glc 4.880 4.900
46 5-OH; 6,7-OCH3; 40-O-Glc 4.790 4.477
47 5,7-OH; 6,8,30-OCH3; 40-O-Glc 4.740 4.521
48 40-OH; 5,6,7,8,30-OCH3 4.730 5.406
49 5,40-OH; 6,8,30-OCH3; 7-O-Glc 4.680 5.185
50 5,7-OH; 6,8,30 ,40-OCH3 4.530 4.783
51 5,40-OH; 6,7,8,30-OCH3 4.340 5.323
52 5,6,40-OH; 7,8,30-OCH3 3.960 4.748
53 6-OH; 5,7,8-OCH3 3.540 —
54 5,50-OH; 7,20 ,40-OCH3 3.500 3.591
55 7-OH; 5-OCH3 3.000 2.977
56 5,40-OH; 7,20 ,50-OCH3 3.000 3.291

Test set
57 7-OH; 20-OH 5.780 6.206
58 7-OH; 20 40-OH 5.640 5.254
59 6-OH; 40-OH 5.280 10.33
60 7-OH; 20 ,40-OH 6.456 5.592

Note: Substituents indication is based on a flavone backbone (Fig. 1).
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computational work. These alternative techniques approach the
minimum of S by judiciously taking into account the relative errors
of the coefficients of the least-squares model given by a set of d
descriptors d={X1,X2, . . . ,Xd}. The RM gives models with better sta-
tistical parameters than the forward stepwise regression proce-
dure26 and similar ones to the more elaborated genetic
algorithms,17 and the ERM leads to even better statistical
parameters.16
A genetic algorithm is a search technique based on natural evo-
lution, where variables play the role of genes (in this case a set of
descriptors) in an individual of the species. An initial group of ran-
dom individuals (population) evolve according to a fitness function
(in this case the standard deviation) that determines the survival of
the individuals. The algorithm searches for those individuals that
lead to better values of the fitness function through a selection,
mutation, and crossover genetic operation. The selection operators
guarantee the propagation of individuals with better fitness in fu-
ture populations. The GAs explore the solution space combining
genes from two individuals (parents) using the crossover operator
to form two new individuals (children) and also by randomly
mutating individuals using the mutation operator. The GAs offer
a combination of hill-climbing ability (natural selection) and a sto-
chastic method (crossover and mutation) and explore many solu-
tions in parallel processing information in a very efficient
manner. The practical application of GAs requires the tuning of
some parameters such as population size, generation gap, cross-
over rate, and mutation rate. These parameters typically interact
among themselves nonlinearly and cannot be optimized one at a
time. There is considerable discussion about parameter settings
and approaches to parameter adaptation in the evolutionary com-
putation literature; however, there does not seem to be conclusive
results on which may be the best.27

The Kubinyi function (FIT) is a statistical parameter that closely
relates to the Fisher ratio (F), but avoids the main disadvantage of
the latter that is too sensitive to changes in small d values, and
poorly sensitive to changes in large d values. The FIT(d) criterion
has a low sensitivity to changes in small d values and a substan-
tially increasing sensitivity for large d values. The greater the FIT
value the better the linear equation; it is given by

FIT ¼ RðdÞ2ðN � d� 1Þ
ðN þ d2Þð1� RðdÞ2Þ

ð2Þ

where R(d) is the correlation coefficient for a model with d descrip-
tors. In this paper, we determine the optimal number of molecular
descriptors (dopt) in the linear regression equation from the plot of
FIT versus d. Assuming that the Kubinyi function exhibits a maxi-
mum at dmax, we choose dopt in the following way:

(a) if dmax < 7, then dopt = dmax.
(b) if dmax > 7, we define d1 ¼ dmax

2

� �
þ 1, where [x] denotes the

integer part of x. Then if the slope of FIT at d1 is greater than
at d1 + 1, then dopt = d1, otherwise, dopt = d1 + 1.

We believe that the value of dopt obtained in this way reflects a
‘breaking point’ beyond which the FIT improvement can be consid-
ered negligible.

We resort to the less time-consuming RM to determine dopt, and
finally apply the new ERM16 to find the best model for dopt

descriptors.
As a theoretical validation of all the models, we choose the well-

known leave-one-out (loo) and the leave-more-out cross-valida-
tion procedures (l-n%-o),28 where n% represents the number of
molecules removed from the training set. We generated
5,000,000 cases of random data removal for l-n%-o, where
n% = 30% (16 flavonoids).
3. Results and discussion

We first established different predictive relationships to link the
molecular structure of flavonoids with their inhibitory activities by
means of linear regression models with 1–10 parameters (d) that
were searched from the pool of 1233 (D) descriptors. The applica-
tion of the RM to the training set of 56 flavone derivatives sug-
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gested that molecule 53 was an outlier in most resulting models.
More precisely, it was the molecule with highest error in 110 out
of 143 models tested, and in the best six-parameter model this
molecule had an absolute error equal to 2.97S. Surprisingly, the
structure of this molecule does not present significant differences
with the rest of the molecules belonging to the training set. Since
prediction from any QSAR model cannot be intrinsically better
than the experimental data employed to develop the model, and
the quality of the input data will greatly influence the performance
of the QSAR model,29 molecule 53 was taken out of the training set.
The RM and this resulting 55-molecule training set were then used
to calculate the best QSAR models with 1 6 d 6 13. Figure 3 shows
that the maximum of the FIT function appears at dmax = 12, and
according to the criterion outlined in Section 2.3 we conclude that
the optimal model should have dopt = 6 descriptors. More precisely,
the best QSAR model provided by the RM is

� log IC50 ¼ 4:8501ð�1:7Þ þ 12:773ð�1:4ÞBELp4

� 4:950ð�0:7ÞGGI8� 12:191ð�0:9ÞMATS4e

þ 0:905ð�0:2ÞMor22e� 16:422ð�2:1ÞE1p

� 16:844ð�1:7ÞR4v ð3Þ

N ¼ 55; R ¼ 0:9362; S ¼ 0:4364; FIT ¼ 3:744; p < 10�4

Rloo ¼ 0:914; Sloo ¼ 0:507; Rl-30%-o ¼ 0:763; Sl-30%-o ¼ 0:891
RMSETest Set ¼ 3:9059

Here, the absolute errors of the regression coefficients are given
in parentheses, p is the significance of the model, and RMSETest Set

stands for root mean squared errors of the test set. In our calcula-
tions we employ the computer system Matlab 5.0.30

We then used ERM16 to search for an improved model with
dopt = 6 descriptors which in this case is given by

� log IC50 ¼ �85:5375ð�10Þ � 10:882ð�1:4ÞE1u

� 15:398ð�0:9ÞMATS4eþ 55:920ð�5:35ÞBELm2

þ 7:7606ð�0:9ÞHATS6e� 2:6755ð�0:5ÞDISPe

� 18:253ð�1:1ÞR4p ð4Þ

N ¼ 55; R ¼ 0:9523; S ¼ 0:3789; FIT ¼ 5:14; p < 10�5

Rloo ¼ 0:934; Sloo ¼ 0:447; Rl-30%-o ¼ 0:803; Sl-30%-o ¼ 0:886
RMSETest Set ¼ 2:9127

As a benchmark, we let a GA to select an optimal model with
dopt = 6 descriptors. To this end we optimized the GA parameters
for this particular problem by means of several trials and thus ar-
Figure 3. FIT parameter as a function of the number of descriptors for the training
set.
rived at the following convenient settings: number of individuals,
250; generation gap, 0.9; single point crossover probability, 0.6;
mutation probability, 0.7/d. We decided to stop the evolution pro-
cess when one individual occupied more than 90% of the popula-
tion or when the number of generations reached 2500.

From the optimal GA model

� log IC50 ¼ 12:2967ð�1:5Þ � 0:1898ð�0:02ÞTIC0

� 15:6392ð�1ÞMATS4eþ 1:7611ð�0:4ÞH7e

� 10:0425ð�1:6ÞE1uþ 16:6513ð�1:9ÞBELe4

� 14::0207ð�1:5ÞR3v ð5Þ

N ¼ 55; R ¼ 0:9374; S ¼ 0:4325; FIT ¼ 3:822; p < 10�4

Rloo ¼ 0:917; Sloo ¼ 0:499; Rl-30%-o ¼ 0:7739; Sl-30%-o ¼ 1:106
RMSETest Set ¼ 4:1607

All the linear models have acceptable predictive quality and
present two- and three-dimensional descriptors. Each equation
presents different descriptors because their particular combination
is optimal to predict the IC50 activity. For instance, in Eq. 4 a
descriptor of one kind (R4p) may represent the dependence of
the polarizability on the IC50 and in Eq. 3 this dependence could
be represented by a different kind of descriptor (BELp4) that en-
codes polarizability in combination with a third descriptor (E1p).

By examining the statistical parameters calculated from the
training and test sets we conclude that the ERM produces better re-
sults than both the GA and RM when exploring large sets of
descriptors. Table 2 shows a summary of the linear models with
1 to dopt + 1 parameters for RM and dopt parameters for ERM and
GA. The details of the molecular descriptors of Table 2 are pre-
sented in Table 3. Because of this the rest of the analysis will be
performed on Eq. 4.

With the purpose of demonstrating that Eq. 4 does not result
from happenstance, we resort to a widely used approach to estab-
lish the model robustness: the so-called y-randomization.31 It con-
sists of scrambling the experimental property p in such a way that
activities do not correspond to the respective compounds. After
analyzing 1,000,000 cases of y-randomization, the smallest value
S = 0.8254 obtained from this process resulted to be considerably
greater than the one corresponding to the true calibration
S = 0.3789. This result suggests that the model is robust, that the
calibration is not a fortuitous correlation, and that we have derived
a reliable structure–activity relationship.

The plot of predicted versus experimental �logIC50 shown in
Figure 4 suggests that the 55 flavone derivatives follow a
straight line. Table 1 shows the predicted inhibitory potencies
given by Eq. 4 for the training and test sets. The behavior of
the residuals in terms of the predictions illustrated in Figure 5
shows a normal distributions for both sets. This figure omits
molecule 59, which exhibits a residual exceeding 3S = 1.14. This
deviation may be either a statistical defect of our model or a
physical consequence of the measurement. Although it is not
possible to answer this question by means of present QSAR anal-
ysis, it is worth taking into consideration that this molecule pre-
sents a residual of the same order and sign in the rest of the
models used to determine dopt, which suggests that there may
be an error in the corresponding data. We revised the optimiza-
tion of molecule 59 and the calculation of its descriptors without
finding any anomalies. A possible explanation may be the lack of
other molecules in the training set with only two hydroxyls as it
is the case of molecule 59. However, molecule 57 in the test set
exhibits a similar structure without presenting the same discrep-
ancy. A conclusive investigation on this point requires a revision
of the empirical data not available at present.



Table 2
Linear QSAR models for the training set of �logIC50 (N = 55)

Model Descriptors used R S FIT

M1 LUMO 0.616 0.931 0.579
M2 DISPp, C-027 0.739 0.804 1.059
M3 Mor32m, H-048, >0.2 0.826 0.679 1.715
M4 MATS4e, E1u, HATS6e, R4m 0.878 0.582 2.379
M5 GATS4e, DISPe, E1u, HATS5m, R4m 0.900 0.536 2.607
M6 BELp4, GGI8, MATS4e, Mor22e, E1p, R4v (Eq. 3) 0.936 0.436 3.744
M7 SPP, DISPe, RDF140m, E1p, H4m, Dipole Moment, LUMO 0.950 0.392 4.181
M6B E1u, MATS4e, BELm2, HATS6e, DISPe, R4p (Eq. 4) 0.952 0.379 5.140
M6C TIC0, MATS4e, H7e, E1u, BELe4, R3v (Eq. 5) 0.937 0.433 3.822

The best relationship appears in bold.

Table 3
Symbols for molecular descriptors involved in different models

Molecular descriptor Type Description

LUMO Quantum-chemical Lowest unoccupied molecular orbital energy (eV)
DISPp Geometrical d COMMA2 value/weighted by atomic polarizabilities
C-027 Atom-centred fragments C-027 corresponds to: R–CH–X
Mor32m 3D-MoRSE 3D-MoRSE � signal 32/weighted by atomic masses
H-048 Atom-centred fragments H attached to C2(sp3)/C1(sp2)/C0(sp)
>0.2 Topological Number of atoms with charge higher than 0.2
MATS4e 2D Autocorrelations Moran autocorrelation � lag 4/weighted by atomic Sanderson electronegativities
E1u WHIM 1st component accessibility directional WHIM index/unweighted
HATS6e GETAWAY Leverage-weighted autocorrelation of lag 6/weighted by atomic Sanderson electronegativities
R4m GETAWAY R Autocorrelation of lag 4/weighted by atomic masses
GATS4e 2D Autocorrelations Geary autocorrelation � lag 4/weighted by atomic Sanderson electronegativities
DISPe Geometrical d COMMA2 value/weighted by atomic Sanderson electronegativities
HATS5m GETAWAY leverage-weighted autocorrelation of lag 5/weighted by atomic masses
BELp4 BCUT Lowest eigenvalue n. 4 of Burden matrix/weighted by atomic polarizabilities
GGI8 Topological Topological charge index of order 8
Mor22e 3D-MoRSE 3D-MoRSE � signal 22/weighted by atomic Sanderson electronegativities
E1p WHIM 1st component accessibility directional WHIM index/weighted by atomic polarizabilities
R4v GETAWAY R Autocorrelation of lag 4/weighted by atomic van der Waals volumes
SPP Charge Subpolarity parameter
RDF140m Radial distribution function Radial distribution function � 14.0/weighted by atomic masses
H4m GETAWAY H Autocorrelation of lag 4/weighted by atomic masses
Dipole moment Quantum-chemical Total molecular dipole moment (Debyes)
BELm2 BCUT lowest eigenvalue n. 2 of Burden matrix/weighted by atomic masses
R4p GETAWAY R Autocorrelation of lag 4/weighted by atomic polarizabilities
TIC0 Topological total information content index (neighborhood symmetry of 0-order)
H7e GETAWAY H Autocorrelation of lag 7/weighted by atomic Sanderson electronegativities
BELe4 BCUT lowest eigenvalue n. 4 of Burden matrix/weighted by atomic Sanderson electronegativities
R3v GETAWAY R Autocorrelation of lag 3/weighted by atomic van der Waals volumes

Figure 4. Predicted (Eq. 4) versus experimental �logIC50 for the training (rhombus)
and test (triangles) sets.

Figure 5. Dispersion plot of the residuals for the training and test sets according to
Eq. 4.
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Table 4
Correlation matrix for descriptors of Eq. 4 (N = 55)

E1u MATS4e BELm2 HATS6e DISPe R4p

E1u 1 0.1226 0.2569 0.3177 0.0431 0.1928
MATS4e 1 0.2742 0.3455 0.0274 0.0674
BELm2 1 0.0482 0.3041 0.5992
HATS6e 1 0.0137 0.0578
DISPe 1 0.259
R4p 1
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The correlation matrix shown in Table 4 reveals that the
descriptors of the linear model are not seriously inter-correlated
(Rij < 0.599), which justifies the appearance of all the parameters
in the equation. The predictive power of the linear model is satis-
factory as revealed by its stability upon the inclusion or exclusion
of compounds, measured by the statistical parameters Rloo = 0.934
and l-n%-o Rl-30%-o = 0.803. According to the literature, Rl-n%-o must
be greater than 0.71 in order to have a validated model.32

As pointed out earlier, we cannot compare our model with pre-
viously reported ones because they are based on data with errors
in the structure of the molecules.

The molecular descriptors appearing in the linear Eq. 4 merge
two- and three-dimensional aspects of the molecular structure,
and can be classified as follows: (i) a WHIM descriptor: E1u, 1st
component accessibility directional WHIM index/unweighted; (ii)
a 2D autocorrelation: MATS4e, Moran autocorrelation � lag 4/
weighted by atomic Sanderson electronegativities; (iii) a BCUT
descriptor: BELm2, lowest eigenvalue n. 2 of Burden matrix/
weighted by atomic masses; (iv) two GETAWAY descriptors:
HATS6e, leverage-weighted autocorrelation of lag 6/weighted by
atomic Sanderson electronegativities, and R4p, R autocorrelation
of lag 4/weighted by atomic polarizabilities; and finally, a geomet-
rical descriptor: DISPe, d COMMA2 value/weighted by atomic San-
derson electronegativities.

WHIM (weighted holistic invariant molecular descriptors)
descriptors are based on statistical indices calculated on the pro-
jections of atoms along principal axes.33 The aim is to capture 3D
information regarding size, shape, symmetry, and atom distribu-
tions with respect to invariant reference frames. To calculate them
a weighted covariance matrix is obtained from different weighting
schemes for the atoms: the unweighted case, atomic mass, van der
Waals volume, Sanderson atomic electronegativity, atomic polariz-
ability, and electrotopological state indices. Depending on the
weighting scheme different covariances matrices and hence differ-
ent principal axes are obtained. Essentially the WHIM descriptors
provide a variety of principal axes with respect to a defined atomic
property. For each weighting scheme, a set of statistical indices are
calculated on the atoms projected onto the principal axes (i.e.,
principal components). Descriptor E1u is a first component acces-
sibility directional WHIM descriptor, which is univariate statistical
index calculated on the scores of the individual principal
components.

Different structural variables introduced by Broto, Moreau, and
Geary34,35 correspond to bi-dimensional autocorrelations between
pairs of atoms in the molecule, and were defined in order to reflect
the contribution of a considered atomic property to the experimen-
tal observations under investigation (�logIC50). The atomic prop-
erties that can be adopted to differentiate the nature of atoms
are the mass (m), polarizability (p), electronegativity (e), or the vol-
ume (v). These indices can be readily calculated, that is, by sum-
ming products of atomic weights (employing atomic properties
such as atomic polarizabilities, and molecular volumes) of the ter-
minal atoms of all the paths of a prescribed length. For the case of
MATS4e, the path connecting a pair of atoms has length 4 and in-
volves the atomic Sanderson electronegativities as weighting
scheme to distinguish their nature.
BCUT descriptors are the eigenvalues of a modified connectivity
matrix, the Burden matrix (B).36,37 The matrix is an H depleted
molecular graph defined as follows: diagonal elements are atomic
numbers of the elements (Zi); off-diagonal elements (Bij), repre-
senting bonded atoms i and j are equal to p* � 10�1, where p* is
the conventional bond order (i.e., 1, 2, 3, 1.5 for single, double, tri-
ple, and aromatic bonds, respectively); off-diagonal elements cor-
responding to terminal bonds are increased by 0.01 and all other
matrix elements are set to 0.001. The ordered sequence of the n
smallest eigenvalues of B was proposed as a molecular descriptor
based on the assumption that the lowest eigenvalues contain con-
tributions from all the atoms and thus reflects topology of the mol-
ecule. The BCUT descriptors are an extension of the Burden
eigenvalues and consider three classes of matrices whose diagonal
elements correspond to atomic charge related values, atomic
polarizability related values, and atomic H bond abilities. A variety
of definitions have been used for the off-diagonal terms and both
2D and 3D approaches are considered. The highest and lowest
eigenvalues of these matrices have been shown to be discriminat-
ing descriptors. BELm2 is the second lowest eigenvalue of B involv-
ing the atomic masses as weighting scheme.

The GETAWAY (GEometry, Topology, and Atom-Weights
AssemblY) type of descriptors38 were designed with the main
purpose of matching the 3D-molecular geometry. These numeri-
cal variables are derived from the elements hij of the molecular
influence matrix (H), obtained through the values of atomic
cartesian coordinates. The diagonal elements of H (hii) are called
leverages, and are considered to represent the influence of each
molecule atom in determining the whole shape of the molecule.
For instance, the mantle atoms always have higher hii values
than atoms near the molecule center, while each off-diagonal
element hij represents the degree of accessibility of the jth atom
to interactions with the ith atom. The influence/distance matrix
(R) involves a combination of the elements of H matrix with
those of the geometric matrix (G). Descriptor R4p involved in
Eq. 4 is of the R-GETAWAY type, and represents an R index of
maximal contribution to the autocorrelation in lag 4 (topological
distance) and involves the atomic polarizabilities as weighting
scheme to distinguish their nature. Descriptor HATS6e is a 3D-
autocorrelation in lag 6 obtained from the Molecular influence
Matrix involving the atomic Sanderson electronegativities as
weighting scheme.

Geometrical descriptors are different kinds of conformationally
dependent descriptors based on the molecular geometry. Compar-
ative molecular moment analysis (CoMMA)39 utilizes moments of
the molecular mass and charge distributions up to and including
second order in the development of molecular similarity descrip-
tors. As a consequence, two Cartesian reference frames are then de-
fined with respect to each molecular structure. One frame is the
principal inertial axes calculated with respect to the center-of-
mass. For neutrally charged molecular species, the other reference
frame is the principal quadrupolar axes calculated with respect to
the molecular ‘center-of-dipole’.

The standardization of the regression coefficients of Eq. 4 allows
assigning greater importance to the molecular descriptors that ex-
hibit larger absolute standardized coefficients.26 In our case we
have

MATS4eð1:11Þ > R4pð0:83Þ > BELm2ð0:62Þ > HATS6eð0:59Þ
> E1uð0:37Þ > DISPeð0:24Þ ð6Þ

where the standardized coefficients are shown in parentheses. The
ranking of contributions given by Eq. 6 suggest that the bi-dimen-
sional autocorrelations MATS4e and the GETAWAY descriptor R4p
are the most relevant variables for present set of flavonoids.
MATS4e indicates that the activity could have a significant depen-



Table 5
Predicted (Eq. 4) �logIC50 of new 2-, 7-substituted benzopyranes

No. Substituents �logIC50 Pred.

Estimation set (flavones, Fig. 1)
61 7-OCH3 7.566
62 7-Cl 6.873
63 7-Br 6.570

Estimation set (cromones, Fig. 2)
64 2-(2-furyl) �2.184
65 2-(b-naphtyl) 11.064
66 2-(a-naphtyl) 9.455
67 7-Br, 2-(b-naphtyl) 7.031
68 7-Cl, 2-(a-naphtyl) 5.881
69 7-CH3, 2-(a-naphtyl) 8.828
70 7-Br, 2-(a-naphtyl) 5.405
71 7-OCH3, 2-(b-naphtyl) 8.440
72 7-OCH3, 2-(a-naphtyl) 6.259
73 7-Cl, 2-(b-naphtyl) 7.415
74 7-Cl, 2-(2-furyl) �4.220
75 7-F, 2-(a-naphtyl) 6.883
76 7-CH3, 2-(b-naphtyl) 10.415

Note: Substituents indication on structures 61–63 are based on a flavone backbone
(Fig. 1) and structures 64–76 on a cromone backbone (Fig. 2).
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dence on the electronegativity of the atoms that form the molecule.
The most relevant 3D-descriptor R4p is expected to have great
dependence on conformational changes, since it encodes informa-
tion on pairs of atoms considerably far from each other (lag of 4).
For this reason, it is possible to argue that the affinity constants
for present set of flavone derivatives have great dependence on con-
formational changes.

By means of the QSAR Eq. 4 we estimated the aldose reduc-
tase inhibition activity �logIC50 of our synthesized derivatives,
the results are shown in Table 5. Our calculation suggests that
those flavonoids with a naphtyl group may exhibit great activ-
ity and are, consequently, good candidates for further study. On
the other hand, molecules with a furanyl group may probably
exhibit low activity and could in principle be rejected as
candidates.

4. Conclusions

In this paper, we constructed a predictive QSAR model of
inhibitory activity against AR enzyme for 55 flavonoids using
six molecular descriptors that take into account 2D- and 3D-as-
pects of the molecular structure. By means of this QSAR model,
we estimated the AR inhibitory activity of some recently synthe-
sized flavonoids displaying 2-, 7-substitutions in the benzopyra-
ne backbone, whose activity has not yet been obtained
experimentally. The main result of our investigation is that the
presence of a naphtyl group substituting the benzopyrane nu-
cleus greatly increases that activity, while the presence of a fura-
nyl group manifestly decreases it.
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