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Aim:Orexin A and orexin B (hypocretins) are neuropeptides synthesizedmainly by neurons located in the lateral
hypothalamus and projections throughout the brain. They are agonists at both the orexin 1 and orexin 2 G
protein-coupled receptors. They have been related to arousal, sleep and feeding, autonomic and neuroendocrine
functions. Their role in the brain control of gonadotropins secretion was postulated in rodents and humans. Pre-
viously, we demonstrated the participation of the orexinergic system in attaining successful reproduction in
in vivo studies.
Methods: We studied in vitro the effects of both neuropeptides, in the presence or absence of selective antago-
nists, on the mRNA expression of orexin 1 and orexin 2 receptors in anterior pituitary cells of proestrous rats,
as well as the direct effects on FSH and LH secretion.
Results: Both orexinA and orexin B increased FSH and LH secretion; these effects were suppressed by the orexin 1
receptor blocking agent SB-334867 and the orexin 2 receptor antagonists JNJ-10397049. Orexin A and orexin B

decreased OX1 receptor mRNA expression and this effect was modified only when both blocking agents were
present. Neither orexin A nor the blocking drugs by themselvesmodifiedOX2 receptormRNA expression. Orexin
B treatment increased the mRNA expression of OX2 receptor. The effect was abolished only by the OX2 receptor
antagonist.
Conclusion: In an in vitromodel, we demonstrated a direct effect of orexins on gonadotropins release and orexins
receptors expression, underlining the hypothesis that orexins participate in the brain control of pituitary
functions.
© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Orexin A (OXA) and Orexin B (OXB), also referred to as hypocretins
A and B, are neuropeptides derived by proteolytic cleavage from a 130
amino acid precursor, prepro-orexin (PPO), which was isolated from
the rat hypothalamus [1–3]. They are synthesized mainly by neurons
with their soma located in the lateral hypothalamus and projections
throughout the brain, including gonadotropin-releasing hormone neu-
rons in the rat and ovine hypothalamus [4–7]. Their effects aremediated
by Orexin 1 (OX1-R) and Orexin 2 (OX2-R) G protein-coupled recep-
tors. OX1-R and OX2-R are widely expressed within the rodent brain,
with some differences in their distribution; furthermore, differential
roles for OX1 and OX2 receptors have been suggested [8–19].

Functionally, orexins have been related to arousal and alertness, reg-
ulation of sleep and appetite, food intake and feeding behavior and au-
tonomic and neuroendocrine functions, including reproduction
[20–23]. Their participation on the brain control of the pituitary secre-
tion, including gonadotropins secretion, was postulated in rodents and
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humans [6,14,24–27]. In previous works, we demonstrated the partici-
pation of the orexinergic system in the development of the neuroendo-
crine events necessary for attaining successful reproduction. Specific
antagonists of OX1-R and OX2-R, SB-334867-A and JNJ-10397049 re-
spectively, alone or combined, decreased preovulatory serum gonado-
tropins surges, and reduced ova number the following morning, in
addition to inducing ovarian structural changes [28–31].

Following this line of research, here we studied the in vitro effects of
both OXA and OXB, in the presence or absence of their selective antag-
onists, on the expression of mRNA OX1-R and OX2-R in anterior pitui-
tary cells of proestrous rats, as well as the direct effects of the
neuropeptides on FSH and LH secretion.

2. Material and methods

2.1. Animals

Adult female virgin Sprague–Dawley rats (200–250 g) from the
Instituto de Biología y Medicina Experimental colony were housed in
groups in an air-conditioned room, with lights on from 07:00 to
19:00 h. They were given free access to laboratory chow and tap
water. All studies on animals were performed according to protocols
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for animal use, approved by the Institutional Animal Care and Use Com-
mittee which follows the National Institute of Health (NIH) guidelines.
The stage of the estrous cycle was determined by vaginal smears for fif-
teen consecutive days. Regular cycles were defined as the occurrence of
three consecutive 4–5 day cycles. Cycling rats were sacrificed by decap-
itation at 09:00–10:00 on the day of proestrus.

2.2. Anterior pituitary cultures

Cells were obtained as described [32,33]. Briefly, anterior pituitaries
were rapidly removed and placed in freshly prepared Krebs–Ringer bi-
carbonate buffer without Ca2+ or Mg2+. Pituitaries were cut into
small pieces and incubated in 0.2% trypsin for 30 min. After addition
of DNase and lima bean trypsin inhibitor, the fragments were dispersed
into individual cells and filtered through Nytex mesh (Nytex 50; Nytex,
Geneva, Switzerland). Pituitary cells were plated (700.000 cells/well, in
a 24 well plate) in DMEM with low glucose, supplemented with 10%
horse serum, 2.5% fetal calf serum, 1% minimum essential medium
Eagle nonessential amino acids, fungizone, and gentamicin. Cells were
maintained in the incubator for 3 days with medium (control) or OXA
(10-9 M, Sigma–Aldrich) or OXB (10-9 M, Sigma–Aldrich), in the ab-
sence or presence of the selective antagonists. SB-334867-A (OX1R
ant; N-(2-methyl-6-benzoxazolyl)-N″-1, 5-naphtyridin-4-yl urea hy-
drochloride; 1 M, Tocris Bioscience; MO; USA) is a non-peptide OX1 se-
lective receptor antagonist [34]. Selective OX2 antagonist JNJ-10397049
[35] (OX2R ant; 9,1-(2,4-dibromo-phenyl)-3-((4S, 5S)-2,2-dimethyl-4-
phenyl-[1,3]dioxan-5-yl)-urea, 1 M) was provided by Johnson & John-
son Pharmaceutical Research & Development, LLC, S. Diego, USA.
Drugs concentrations used were determined by preliminary studies
and the literature [7,11,13,16,36–38].

Expression of mRNAs for OX1-R and OX2-R determinations was an-
alyzed in cells, andmediawere stored (−20 °C) for FSH and LH analysis
by RIA. The experimentswere performed in quadruplicate and repeated
7–8 times. Incubations were done during 72 h, with renewal of stimuli
each 24 h. Expressions of mRNAs for OX1-R and OX2-R were deter-
mined by quantitative RT-PCR.

2.3. Total RNA preparation and cDNA synthesis

At the end of the experiment media were collected, cells were
washed with PBS and 300 μl/well of TRIzol reagent was added for
total RNA isolation as previously described [29]. The RNA concentration
was determined based on absorbance at 260 nm and its purity was
evaluated by the ratio of absorbance at 260 nm/280 nm (N1.8). RNAs
were kept frozen at −70 °C until analyzed. After digestion of genomic
DNA by treatment with deoxyribonuclease I (Ambion, Austin, TX),
first-strand cDNA was synthesized from 1 μg of total RNA, in the pres-
ence of 10 mM MgCl2, 50 mM Tris–HCl (pH 8.6), 75 mM KCl, 0.5 mM
deoxy-NTPs, 1 mM DTT, 1 U/μl RnaseOUT (Invitrogen, Buenos Aires,
Argentina), 0.5 μg oligo-(deoxythymidine) 15 primer (Biodynamics,
Buenos Aires, Argentina), and 20 U MMLV Reverse Transcriptase
(Epicentre, Madison, WI). To validate successful deoxyribonuclease I
treatment, the reverse transcriptase was omitted in control reactions.
The absence of PCR-amplified DNA fragments in these samples indicat-
ed the isolation of RNA free of genomic DNA.

2.4. Quantitative real-time PCR

Sense and antisense oligonucleotide primers were designed based
on the published cDNA OX1-R and OX2-R, and cyclophilin sequences
using the PrimerExpress software (Applied Biosystems, Foster City,
CA), as published [9]. Briefly, oligonucleotides were obtained from
Invitrogen. The sequences of the primers were as follows: OX1-R
sense GCCTGCCAGCCTGTTAGTG, OX1-R antisense CAAGGCATGGCCGA
AGAG, OX2-R sense GAAAGAATATGAGTGGGTCCTGATC, OX2-R anti-
sense CAGGACGTTCCCGATGAGA, cyclophilin sense GTGGCAAGATCG
AAGTGGAGA AAC, cyclophilin antisense TAAAAATCAGGCCTGTGGAAT
GTG.

Quantitative measurements of OX1-R, OX2-R and cyclophilin cDNA
were performed by kinetic PCR using SYBR green I as fluorescent dye
(Invitrogen). PCR reactions consisted of 100 ng cDNA, 0.4 μM primers,
10 mM Tris–HCl, 50 mM KCl, 3 mM MgCl2, 0.2 mM deoxy-NTPs, and
1.25 U Taq Polymerase (Invitrogen) in a final volume of 25 μl. After
denaturizing at 95 °C for 5 min, the cDNA products were amplified
with 40 cycles, each cycle consisting of denaturizing at 95 °C for 15 s,
annealing at 62 °C for 40 s and extension at 72 °C for 40 s. The accumu-
lating DNA products were monitored by the ABI7500 sequence detec-
tion system (Applied Biosystems), and data were stored continuously
during the reaction. The results were validated based on the quality of
dissociation curves, generated at the end of the PCR runs by ramping
the temperature of the samples from 60 °C to 95 °C, while continuously
collecting fluorescence data. Product purity was confirmed by poly-
acrylamide gel electrophoresis. Each sample was analyzed in duplicate
along with specific standards and no template controls to monitor con-
taminating DNA. The calculations of the initial mRNA copy numbers in
each sample were made according to the cycle threshold (Ct) method.
The CT for each sample was calculated at a fluorescence threshold
(Rn) using the ABI7500 sequence detection system softwarewith an au-
tomatic baseline setting. For all designed primer sets, linearity of real-
time RT-PCR signalingwas determinedwith wide-range serial dilutions
of reference cDNA that covered the amount of target mRNA expected in
the experimental samples, and clear linear correlations were found be-
tween the amount of cDNA and the Ct for the duration of at least 40 real-
time RT-PCR rounds.

For the target gene, the relative gene expression was normalized to
that of the cyclophilin housekeeping gene by use of the standard
curvemethod, as described by themanufacturer (User bulletin # 2). Re-
sults are expressed as arbitrary units (AU) for comparison among sam-
ples. AU is defined as the expression level relative to a control sample
(calibrator sample).
2.5. Hormone determinations

Medium FSH and LH were determined by RIA using kits obtained
through NHPP, NIDDK and Dr. A. Parlow. Results were expressed in
terms of RP3 (reference preparation 3) rat LH and FSH standards.
Assay sensitivities were 0.015 ng/ml for LH, and 0.1175 ng/ml for FSH.
Intra- and inter-assay coefficients of variation for LH were 7.2% and
11.4%, respectively, for FSH 8.0% and 13.2%, respectively.
2.6. Statistics

Data are presented as mean ± SEM. Cultures were repeated 7–8
times, stimuli in duplicates or quadruplicates. Differences between
treatments groups were estimated by one-way variance analysis for re-
peated measures (ANOVA) followed by Tukey's post-test using the
Statistica Software. P b 0.05 indicated statistically significant differences.
3. Results

3.1. Gonadotropins secretion into culture media of anterior pituitary cells
incubated with OXA and OXB; effects of selective antagonists

OXA increased FSH (Fig. 1, upper) and LH (Fig. 1, lower) secretion.
The effects of the neuropeptide on FSH and LH were suppressed by
the blocking agents, OX1R antagonist SB-334867 and OX2R antagonist
JNJ-10397049, when used alone or combined.

OXB shows a similar effect (Fig. 2). The blockingdrugs by themselves
had no actions on gonadotropins release into the culture medium (not
shown).
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Fig. 1. Effects of OXA on FSH (upper) and LH (lower) secretion into culturemedia of anterior pituitary cells. OXA increased the release of both gonadotropins; this effect was blunted by the
blocking agents. In this and following figures:Mean ± SEM is shown. * p b 0.05: different from control. OXA: orexin A. OXB: orexin B. OX1-R: Orexin 1 receptor. OX2-R: Orexin 2 receptor
OX1-R ant: OX1-R antagonist. OX2-R ant: OX2-R antagonist. The blocking drugs had no actions by themselves (not shown).
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Fig. 2. Effects of OXB on FSH (upper) and LH (lower) secretion into culturemedia of anterior pituitary cells. OXB increased the release of both gonadotropins; this effectwas blunted by the
blocking agents.
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3.2. OX1-R and OX2-R mRNA expression in anterior pituitary cells treated
with OXA and OXB

OXA (Fig. 3 upper panel) and OXB (Fig. 3 lower panel) treatment de-
creased the mRNA expression of OX1-R. The effect on OX1-R was not
modified by either blocking agentwhen used alone, but it was abolished
when both antagonists were present. The blocking drugs alone did not
modify expression (not shown).

Neither OXA nor the blocking drugs, alone or combined, modified
OX2-R mRNA expression (Fig. 4 upper panel). OXB increased OX2-R
mRNA expression and only OX2R antagonist blocked this effects
(Fig. 4 lower panel).

4. Discussion

In previous in vivo studies, we found that OX1-R and OX2-R expres-
sion increased in hypothalamus and anterior pituitary, during the late
afternoon and night of proestrus, without variations in other stages of
the estrous cycle, or in males. PPO, the precursor of OXA and OXB, also
increased in hypothalamus only during proestrus while no PPOwas de-
tected in adenohypophysis. Since the changes in OX1-R, OX2-R and PPO
observed bared no relationship to the light–dark cycle or to food intake
[28,29] we postulated that they were cycle-related events associated to
the neuroendocrine status of proestrus and gonadotropins release. Fur-
thermore, we suggested that changes in the reproductive state are able
to influence the orexinergic system by different mechanisms in hypo-
thalamus and in anterior pituitary [29]. Previous works explored the
actions of orexins on gonadotropin secretions in rodents in vivo,
but controversy remained regarding the effects observed, probably
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Fig. 3. Effect of OXA (upper) andOXB (lower) on OX1-RmRNA expression in anterior pituitary c
by the blocking agents when used alone, but it was abolished when both antagonists were pre
due to the different and more complex experimental models used
[14,25–27,39–42].

In order to clarify this situation, in the present study we used a pri-
mary pituitary cell culture in which the neuropeptides OXA and OXB
act directly on pituitary cells to determinewhether these neuropeptides
have effects on FSH and LH release aswell as on themRNA expression of
their cognate receptors OX1-R and OX2-R.

We found that both OXA and OXB induced gonadotropins release by
a mechanism responding to the receptor blocking agents tested, dem-
onstrating specific effects. In addition, the mRNA expression of OX1-R
was decreased by OXA and OXB, and the presence of both, OX1R antag-
onist and OX2R antagonist, was necessary to suppress this action, sug-
gesting that both receptors are involved indicating an additive effect.
In addition, the peptide-induced decrease of the expression of their
own receptor suggests a possible inhibitory loop on orexins' actions.
In contrast, the mRNA expression of OX2-R was differentially modulat-
ed by each orexin. OXA did not alter OX2-R expression while it was sig-
nificantly increased by OXB, an effect that was abolished only by the
OX2R antagonist JNJ-10397049. Thus, both neuropeptides are active di-
rectly at the anterior pituitary, increasing FSH and LH release and mod-
ifying OX1-R and OX2-R mRNA expression.

The hormonal effects of OXA and OXB, sensitive to both receptor
blocking agents, suggest that the increased expression of PPO in the
proestrous hypothalamus [28,29] and the increased OXA and OXB pres-
ence in themedian eminence at this stage of the estrous cycle [14], may
have a physiological role by participating in the induction of the preovu-
latory gonadotropin surges. These results build up on previous informa-
tion regarding the direct effects of orexins in the pituitary. Chen et al.
demonstrated that orexins stimulate GH secretion either alone or in
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Fig. 4. Effect of OXA (upper) and OXB (lower) on OX2-RmRNA expression in anterior pituitary cells culture. OXA had no effect on OX2-RmRNA expression. OXB increased OX2-R expres-
sion and only OX2-R antagonist alone or combined with OX1-R antagonist blocked this affect.
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combinationwith GHRH [43]. Our results on LH and FSH reinforce a role
for orexins in the regulation of pituitary physiology. Conversely, orexin-
induced changes in the expressions of OX1-R and OX2-R mRNAs seem
to be more complex. OXA and OXB decreased OXR-1 expression, an ef-
fect that was reversed by the sum of both blocking agents. OXB, but not
OXA, increased the expression of OXR-2 and this action could be im-
paired only by JNJ-10397049. It was postulated that OXA and OXB are
agonists at both the OX1-R and OX2-R; OXA is a more selective ligand
for OX1-R; OX2-R binds both OXA and OXB [8,13,16,36]. Here we
found an effect that was exclusive of OXB by binding to the OX2 recep-
tor: the increase in OX2-R expression. Exclusive effects triggered by the
OX2-R have been previously described as is the case of presence of nar-
colepsy in OX2-R knockoutmice [44] vs. absence of this characteristic in
OX1-R knock-outmice [45,46].Whether the effects of orexins on orexin
receptor expression are also seen at the protein level remains to be
established in order to propose a functional role for this regulation.

Different mechanisms could explain the relationship between the
effects of orexins on hormones output (stimulation) and orexin recep-
tors mRNA expression (inhibition). One possibility is that the inhibition
of the receptor OXR-1 could be acting by an inhibition of an intracellular
mechanism, that in turn, suppresses gonadotropins' release, thus the
final results will be an increase in gonadotropins output; new studies
are under way to explore this possibility. Furthermore, these neuropep-
tides could be acting not only on gonadotrophs, since all pituitary cells
are present in primary pituitary cultures. In humans, orexins A and B
were detected in specific human pituitary cell types by immunofluores-
cence: orexin A was present mainly in lactotrophs and also, to a lesser
extent, in thyrotrophs, somatotrophs, and gonadotrophs, but absent
in corticotrophs; conversely orexin B was found in virtually all
corticotroph cells of the human anterior pituitary [24]. In rats, the
presence of OXA and OXB was described in the median eminence, ade-
nohypophysis, and neurohypophysis [47], though there was no pitui-
tary expression of PPO, as observed by us [28] and others [48].
Therefore, pituitary orexins must originate probably in the hypothala-
mus and arrive by portal or general circulation [47]. The possibility
that orexinsmay originate from outside the pituitary and arrive by gen-
eral or portal circulation is in line with the fact that immunoreactive
Orexin A has been described in human and rat plasma [49,50]. Further-
more, fluctuations of both orexins in hypothalamus during the estrous
cycle were reported; hypothalamic OXA and OXB concentrations were
informed to be higher in proestrus than in diestrus in young cycling an-
imals and the greatest OXA release from hypothalamus was suggested
to occur on proestrus [14]. In the anterior lobe OXR-1 was more mark-
edly expressed than the OXR-2 [47], in agreement with our previous
[28] and other's results [14,18,27,41,42,48].

The possibility that orexins via general or portal circulation reach the
gland, and alone or in combination with other factors, may regulate go-
nadotropins secretion and OX1-R and OX2-R mRNA expression, espe-
cially during proestrus, is an interesting hypothesis that should be a
matter of further research.
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