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We calculate the analytic form of the vacuum modular Hamiltonian for a two interval region and the
algebra of a current jðxÞ ¼ ∂ϕðxÞ corresponding to a chiral free scalar ϕ in d ¼ 2. We also compute
explicitly the mutual information between the intervals. This model shows a failure of Haag duality for two
intervals that translates into a loss of a symmetry property for the mutual information usually associated
with modular invariance. Contrary to the case of a free massless fermion, the modular Hamiltonian turns
out to be completely nonlocal. The calculation is done diagonalizing the density matrix by computing the
eigensystem of a correlator kernel operator. These eigenvectors are obtained by a novel method that
involves solving an equivalent problem for a holomorphic function in the complex plane where
multiplicative boundary conditions are imposed on the intervals. Using the same technique we also
rederive the free fermion modular Hamiltonian in a more transparent way.
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I. INTRODUCTION

The reduced state to a local algebra of operators in a
region in quantum field theory (QFT) can be expressed, in
the presence of an ultraviolet cutoff, as a density matrix
ρ¼e−H. The exponentH, called the modular Hamiltonian,
conveniently encodes the reduced state. It retains a meaning
in the continuum limit as the generator of unitary trans-
formations corresponding to imaginary powers of the
density matrix, ρiτ ¼ e−iHτ, the so-called modular flow.
The structural importance of modular flows in the

algebraic formulation of QFT has been being recognized
since early times [1]. More recently, statistical properties of
reduced states in QFT have been the subject of much
interest. In particular, entropy and relative entropy have
simple geometric duals for holographic QFT [2,3]. In this
context, the modular Hamiltonian in the boundary theory
and its bulk dual have been used to elucidate localization
properties of degrees of freedom in quantum gravity [4–6].
More generally, knowledge of the modular Hamiltonian is
an important step in relative entropy calculations, and it is
fundamental to the formulation of entropy bounds [7–11]
and the proof of several energy conditions [12–16].
However, most of our knowledge of the explicit form of

modular Hamiltonians reduces to some examples where the
modular flow is local, and it is primarily determined by

spacetime symmetries [17–19]. In more generality, it is
possible to identify a local part of the modular Hamiltonian
which should have a large degree of universality [20,21],
while not much is known about nonlocal terms. An
example of a nonlocal modular Hamiltonian which has
been explicitly computed is for the vacuum state of the free
massless fermion in d ¼ 2 [22] (see also [23,24]). In this
case H for several disjoint intervals has a local term
proportional to the energy density and an additional non-
local part given by a quadratic expression in the fermion
field. This last term, however, does not contain all possible
products of pairs ψ†ðxÞψðyÞ for fields located in arbitrary
points x, y in the region, but only selected points appear:
For each x in one interval only one specific “conjugate”
point y appears in any of the other intervals.
There has been much progress in understanding local

statistical properties of the vacuum reduced to two intervals
in more general CFT. The Renyi entropies for integer index
n have been explicitly computed for several models of
interest [25–30]. However, analytic continuation to n → 1
to obtain the entanglement entropy has been shown to be a
difficult task. The computation of modular Hamiltonians of
the vacuum for two intervals has also proved elusive [31].
A natural candidate to apply kernel methods is the free

massless scalar. However, in two dimensions the uncom-
pactified scalar field itself is ill defined due to infrared
divergences, and one has to restrict the algebra to the
derivatives of the scalar field. In this paper we compute the
entanglement entropy and the modular Hamiltonian explic-
itly for two intervals in the theory of a chiral current, that is,
the chiral derivative of the scalar field. The model is free
and the modular Hamiltonian is quadratic. We diagonalize
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the kernel in this quadratic expression. The eigenvectors
are obtained by an adaptation of the method in [20]. In the
present case the problem is mapped to one of finding
analytic functions in the complex plane with specific
multiplicative boundary conditions on the two intervals,
located on the real line. In contrast to the case of the
fermion, for the chiral scalar, the modular Hamiltonian is
completely nonlocal, while it still contains the expected
local term proportional to the energy density operator [21].
The mutual information turns out to be a function of the

cross ratio of the four end points of the intervals given by
an integral over hypergeometric functions. We check the
result with numerical simulations on a lattice. For global
pure states it is naturally expected that the entanglement
entropy for complementary regions coincides. In this case
the mutual information for two intervals would acquire an
additional symmetry property relating the cross ratios η ∈
ð0; 1Þ and (1 − η) [32]. This property also follows from
modular invariance in the replica trick calculation with
Euclidean path integrals [33]. In the present model this
symmetry is absent. This is explained by failure of Haag
duality for two intervals: The algebra corresponding to
the complement of the two intervals is smaller than the
commutant of the algebra of the two intervals.
Kawahigashi, Longo and Müger related this failure of
Haag duality for two intervals in chiral conformal models to
an algebraic index (μ-index) on inclusion of subalgebras
[34]. This index also determines the amount of asymmetry
in the mutual information [35]. For the chiral scalar the
μ-index is infinity.
Our new method to deal with eigenvectors of the

correlator kernels also leads to a better understanding of
the derivation of the free fermion modular Hamiltonian. We
start by a detailed derivation of this result in the next
section. This also allows us to introduce the main ideas to
be used in the more complicated case of the chiral scalar.
However, the treatment of the scalar case is self-contained
and a reader not interested in the discussion of the fermion
field can start directly with Sec. III.
In Sec. III we describe the algebra of the chiral scalar

current, and the relevant kernels. In Sec. IV we show for a
one interval region the kernel diagonalization, and the
calculation of the entropy and modular Hamiltonian. The
case of two intervals is dealt with in Sec. V, where we also
compute the mutual information and modular Hamiltonian.
Section VI discusses the reasons for the breaking of the
symmetry property of the mutual information. In Sec. VII
we present the numerical calculations in a lattice and
compare with the analytic results for the mutual informa-
tion. Finally we end with a brief summary in Sec. VIII.

II. THE MASSLESS FREE FERMION REVISITED

A complete description of the reduced density matrix of
a massless fermion field for multi-interval regions was
given in [22]. This was achieved by diagonalizing the

correlator kernel in the region, using previous results on the
literature about singular kernels of the Cauchy type [36].
Here we are doing this diagonalization transparent by
mapping the problem of integral equations in one dimen-
sion to one of partial differential equations in two dimen-
sions, following [20]. The form of the eigenvectors as
well as its main properties is easily derived using this trick.
This also shows how to generalize this calculation to
scalars. We treat the scalar field in the next section.
Since chiralities decouple in the massless case we

consider a chiral fermion in d ¼ 2, which only depends
on a null coordinate. In our notation the variables x, y, etc.,
correspond to this null coordinate. We consider a region
A ¼ ða1; b1Þ ∪ ða2; b2Þ ∪ � � � ∪ ðan; bnÞ formed by n inter-
vals. The field satisfies the anticommutation relations
fψðxÞ;ψ†ðyÞg ¼ δðx − yÞ. The correlator kernel is1

Cðx − yÞ ¼ h0jψðxÞψ†ðyÞj0i ¼ 1

2
δðx − yÞ þ i

2π

1

x − y
;

ð2:1Þ

where the distribution on the left-hand side is understood in
principal value regularization. This is a projector when
acting on the full line, and on the region A is an Hermitian
operator with continuous eigenvalues in the range (0,1)
[22]. To obtain the modular Hamiltonian it is important to
solve the spectrum of the correlator reduced to the region
CAðx; yÞ≡ Cðx; yÞjx;y∈A, because the modular Hamiltonian
is given by [37–39]

H ¼
Z
A
dx dyψ†ðxÞHðx; yÞψðyÞ; ð2:2Þ

where the kernel H is

H ¼ − logðC−1
A − 1Þ: ð2:3Þ

This last equation is understood as an operator equation,
where the action of the operators is defined through their
kernels.

A. An equivalent problem in the complex plane

In this section we relate the original problem of solving
the spectrum of CA as a kernel in A, to a new problem about
a function in the complex plane. At the end, we arrive at the
same results of [20], but here we adapt the discussion to the
chiral fermion field.
For such a purpose, we think the n intervals A as

included in the real axis of the complex plane. For each
λ ∈ R consider the following problem about a function
SðzÞ in the complex plane

1Changing the sign of the imaginary part in this expression
corresponds to changing chirality.
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SðzÞ analytic in C − Ā; ð2:4Þ

Sþðx1Þ ¼ lim
x2→0þ

Sðx1þ ix2Þ ¼ λ lim
x2→0−

Sðx1þ ix2Þ ¼ λS−ðx1Þ;

x1 ∈ A; ð2:5Þ

lim
z→∞

jzSðzÞj < ∞; ð2:6Þ

lim
z→∂Alz;∂ASðzÞ → 0; ð2:7Þ

where lz;∂A is the distance from z to the boundary ∂A
(formed by 2n disjoint points). Thus, SðzÞ has a cut over A
with multiplicative boundary conditions. Consider now the
complex integral

I
dz2

1

z2 − z1
Sðz2Þ; ð2:8Þ

where we choose an integration contour that encircles
both A and z1 in the positive (anticlockwise) direction.
Then the integral vanishes because of (2.6), but writing it as
two separated contributions from the pole at z1 and the
integration around the cut A we get

Sðz1Þ ¼
1

2πi

Z
A
dy

1

y − z1
ðSþðyÞ − S−ðyÞÞ

¼ 1 − λ−1

2πi

Z
A
dy

1

y − z1
SþðyÞ; ð2:9Þ

where we have used the boundary condition (2.5). We
remark that there are no contributions from the end points
of the intervals due to (2.7). This equation gives the value
for SðzÞ on any point z ∈ C from its values at the cut A.
Taking the limit z1 → x ∈ A from above, and using

lim
y→0þ

1

xþ iy
¼ 1

x
− iπδðxÞ; ð2:10Þ

we get Z
A
dyCAðx − yÞSþðyÞ ¼ λ

λ − 1
SþðxÞ; ð2:11Þ

which means that the boundary value of SðzÞ plays the
role of an eigenvector with eigenvalue λðλ − 1Þ−1 for the
correlator kernel on A. Since the spectrum of CAðx − yÞ is
restricted to (0,1) (see [37]), we have that λ ∈ ð−∞; 0Þ. For
later convenience we write

λ ¼ −e2πs; s ∈ R: ð2:12Þ

Conversely, suppose we have a solution SþðxÞ of
Eq. (2.11) for some λ ∈ R− with appropriate boundary

conditions on the end points of the intervals as in (2.7).2

Then Eq. (2.9) gives a complex valued function SðzÞ
satisfying all the properties (2.4)–(2.7). For the boundary
condition (2.5), the function SðzÞ defined in this way has
boundary value SþðxÞ at the upper side of the cut, and for
the lower side of the cut we have to use

lim
y→0þ

1

x − iy
¼ 1

x
þ iπδðxÞ ð2:13Þ

instead of (2.10), to get the right value S−ðxÞ ¼
−e−2πsSþðxÞ.
In conclusion, the solutions of the problem in the

complex plane (2.4)–(2.7) are in one to one correspondence
with the eigenvectors of the correlator kernel (2.1).

B. Multiplicity and normalization of eigenvectors

Because of conditions (2.5) and (2.7), the function SðzÞ
must have the following asymptotic behavior when
z → ∂A,

SðzÞ ∼ Vaiðai − zÞ−1=2þis; ð2:14Þ

SðzÞ ∼ Vbiðz − biÞ−1=2−is; ð2:15Þ

where Vai , Vbi ∈ C are constants.3 Below, we show these
constants uniquely determine the solution.
In order to see this, for each s ∈ R we define the Green

function Gðz; wÞ for the problem (2.4)–(2.7), i.e.,

Gðz; wÞ analytic on w ∈ C − fw ∈ Ā or w ¼ zg; ð2:16Þ

Gðz; wÞ ∼ ðz − wÞ−1 when w ∼ z; ð2:17Þ

lim
x2→0þ

Gðz; x1 þ ix2Þ ¼ −e−2πs lim
x2→0−

Gðz; x1 þ ix2Þ;

x1 ∈ A; ð2:18Þ

and in addition Gðz; wÞ satisfies the two boundary con-
ditions (2.6) and (2.7) as a function of w for each z ∈ C
fixed.4 For w → ∂A then we have expansions analogous
to (2.14),

Gðz; wÞ ∼ UaiðzÞðai − wÞ−1=2−is; ð2:19Þ

2This is precisely the boundary condition of the eigenvectors
for the vacuum state [37].

3The difference between the left and right sides in expressions
(2.14) and (2.15) is analytic functions on C − A with finite limit
when z → ∂A.

4We explicitly change the sign of s in (2.18) with respect
to (2.5).
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Gðz; wÞ ∼ UbiðzÞðw − biÞ−1=2þis: ð2:20Þ

Then, the combination Gðz; wÞSðwÞ does not have any
jump singularity at A as a function of w. On the other hand,
it has already simple poles at ∂A and at z, but it does not
have a pole at infinity. Since the sum of all its residues must
vanish, we have

SðzÞ ¼
Xn
i¼1

ðVaiUaiðzÞ − VbiUbiðzÞÞ: ð2:21Þ

This shows there are at most 2n linearly independent
solutions to the problem (2.4)–(2.7) for fixed s, and they
can be viewed simply as elements of C2n. It also shows that
any solution which is bounded on ∂A (i.e., Vai ¼ Vbi ¼ 0)
must vanish.
Now, we show that the degeneracy of the space of

solutions for each s fixed is indeed at most n. Let us take
two solutions S1ðzÞ and S2ðzÞ corresponding to the same
value s. The function S̃1ðzÞ ¼ ðS1ðz�ÞÞ� is a solution with
parameter −s instead of s. The function S̃1ðzÞS2ðzÞ does
not have a cut, only poles at ∂A. The sum of residues must
vanish and we get

Xn
i¼1

ððV1
aiÞ�V2

ai − ðV1
bi
Þ�V2

bi
Þ ¼ 0; ð2:22Þ

where V1
ai , V

1
bi
are the coefficients corresponding to S1 and

V2
ai , V

2
bi
the ones corresponding to S2. This means that any

two solutions of (2.4)–(2.7) for the same s must be
orthogonal according to the canonical (nonpositive) inner
product of Cn;n, which includes the case when the two
solutions are the same. The argument to justify why the
space of solutions is at least n is as follows. Suppose
that the s-valued subspace of solutions is spanned by
fS1;…S2ng, where each Sk is of the form (2.21). Then after
a diagonalization procedure5 we can get a new set of
solutions fS̃1;…S̃2ng, which spans the same subspace but
with the property that Vk

ai ¼ 0 for all i ¼ 1;…; n for all
k ¼ nþ 1;…; 2n. Automatically, because of (2.22),
we must have Vk

bi
¼ 0 for all i ¼ 1;…; n and for all

k ¼ nþ 1;…; 2n and hence S̃nþ1ðzÞ ¼ � � � ¼ S̃2nðzÞ ¼ 0.
In conclusion, the s-valued subspace of solutions has
dimension at most n.
We show in the next subsection that the dimension is

exactly n.
Now we make a final comment about the normalization

of the eigenvectors Sþðx; sÞ, where we are writing explic-
itly the dependence of the eigenvectors through the

eigenvalues s. Since any two eigenvectors Sþ1 ðx; sÞ and
Sþ2 ðx; s0Þ must be orthogonal for s ≠ s0, we have6

Z
A
dx ðSþ1 ðx; sÞÞ�Sþ2 ðx; s0Þ ∝ δðs − s0Þ: ð2:23Þ

In order to orthonormalize the eigenvectors, we need to
figure out the proportionality constant on the above
equation. For this we note the delta function can only
come from the integration around the end points of the
intervals on the scalar product. Using the asymptotic
expansion near these points we arrive at7

Z
A
dx ðSþ1 ðx; sÞÞ�Sþ2 ðx; s0Þ

¼ πe2πsδðs − s0Þ
Xn
i¼1

ððV1
aiÞ�V2

ai þ ðV1
bi
Þ�V2

bi
Þ: ð2:24Þ

Note, the two terms inside the parenthesis in the right-hand
side are equal according to (2.22).

C. Construction of the eigenvectors

In this subsection we explicitly construct the eigenvec-
tors of the correlator CAðx − yÞ using the relation devel-
oped in Sec. II A. Concretely, we find the general structure
of any solution SðzÞ of the problem (2.4)–(2.7) and through
them we obtain the corresponding eigenvectors. In par-
ticular, we show that all eigenspaces for a given eigenvalue
have dimension n. In this subsection s ∈ R is fixed.
We start defining the complex valued function

ω̃ðzÞ ¼
Xn
i¼1

log
�
z − ai
z − bi

�
; ð2:25Þ

where log is the principal determination of the complex
logarithm which has a branch cut for z ∈ R≤0. The function
ω̃ is analytic everywhere on the plane except at Ā where it
has a jump discontinuity of the form

ω̃þðxÞ − ω̃−ðxÞ ¼ −2πi; x ∈ A: ð2:26Þ

Therefore, the function

eðisþ1
2
Þω̃ðzÞ ð2:27Þ

5Equivalent to the Gauss-Jordan algorithm used to diagonalize
a finite dimensional matrix.

6The function ðSþ1 ðx; sÞÞ� is the complex conjugate of the
boundary value of Sþ1 ðx; sÞ which is not the same as the boundary
value of ðS1ðz; sÞÞ�. These two operations do not commute.

7More precisely, we should write each eigenvector as SðzÞ ¼P
n
i¼1 Vaiðai − zÞ−1=2þis þ Vbiðz − biÞ−1=2−is þ RðzÞ where the

function RðzÞ has finite limit when z → ∂A. Then after replacing
in the left-hand side of (2.23) we get that the only possible delta
Dirac contributions are of the form (2.24).
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satisfies the conditions (2.4), (2.5) and (2.7), but it does not
satisfy (2.6). On the other hand, given any solution SðzÞ
of (2.4)–(2.7), the function

fðzÞ ¼ SðzÞe−ðisþ1
2
Þω̃ðzÞ ð2:28Þ

is analytic on C − Ā and it is also continuous on A; and
hence8 it is analytic on C − ∂A. Then fðzÞ must be some
rational function with poles located at the end points of the
intervals and also possibly at ∞.9 Since SðzÞ satisfies (2.7)
and because of

lim
z→xþi0þ

jeðisþ1
2
Þω̃ðzÞj ¼ eπs

Yn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� ðx − aiÞ
ðx − biÞ

����
s

; x ∈ A;

ð2:29Þ

it follows that fðzÞ must be of the form

fðzÞ ¼ gðzÞQ
n
i¼1ðz − aiÞ

; ð2:30Þ

with gðzÞ being an entire analytic function. In order to
satisfy the last requirement (2.6) for SðzÞ, we have that gðzÞ
can be a polynomial function of degree at most n − 1.
Taking all this into account, any solution SðzÞ for the
problem (2.4)–(2.7) must be of the form

SðzÞ ¼
P

n−1
k¼0 akz

kQ
n
i¼1ðz − aiÞ

eðisþ1
2
Þω̃ðzÞ; ð2:31Þ

where ak ∈ C parametrize n linearly independent func-
tions. Conversely, it is easy to see that any complex
valued function of the form (2.31) is a solution for the
problem (2.4)–(2.7).
Taking the limit of z → A from the upper side of the cut

on expression (2.31), we obtain the eigenvectors

SþðxÞ ¼ −ið−1Þn−leπseisωðxÞ
P

n−1
k¼0 akx

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Q

n
i¼1ðx− aiÞðx− biÞ

p ;

for x ∈ ðal; blÞ; ð2:32Þ

where10

ωðxÞ ¼ lim
z→xþi0þ

Reω̃ðzÞ ¼ log

�
−
Q

n
i¼1ðx − aiÞQ
n
i¼1ðx − biÞ

�
: ð2:33Þ

Therefore, there are exactly n degenerate eigenfunctions for
the same s. This space of eigenfunctions coincides with the
one obtained in [22].

1. Scalar product

Due to the degeneracy, we have some arbitrariness for
the election of the eigenvectors. Such freedom is encoded
in the polynomial PðxÞ ¼ P

n−1
k¼0 akx

k of Eq. (2.31). In
Sec. II D we fix such freedom in order to get an ortho-
normal basis of eigenvectors. In order to do that, it is useful
to have an expression for the scalar product between two
eigenvectors in terms of its corresponding polynomials. In
the rest of this subsection, we obtain such expression. In
Eq. (2.24), using that the scalar product of two eigenfunc-
tions is proportional to a delta function δðs − s0Þ, we
obtained these scalar products in terms of the coefficients
of the expansion of the eigenvectors near the end points
of the intervals. We reobtain this result here by explicit
integration of the product of eigenfunctions.
First we take two solutions Sþ1 ðx; sÞ and Sþ2 ðx; s0Þ of the

form (2.32) corresponding to two polynomials P1ðxÞ and
P2ðxÞ. Then, we compute the scalar product

Z
A
dx Sþ�

1 ðx; sÞSþ2 ðx; s0Þ

¼ −eπðsþs0Þ
Z þ∞

−∞
dω e−iðs−s0Þω

×
Xn
l¼1

1

ω0ðxlÞ
P�
1ðxlÞP2ðxlÞQ

n
i¼1ðxl − aiÞðxl − biÞ

; ð2:34Þ

where we have changed the integration variable to ω and
the sum in (2.34) runs over the distinct solutions of the
equation ωðxÞ ¼ ω, which are the n simple roots of the
polynomial equation

−eω
Yn
i¼1

ðx − biÞ ¼
Yn
i¼1

ðx − aiÞ: ð2:35Þ

In each interval Al ¼ ðal; blÞ, ωðxÞ is a monotone increas-
ing function that goes from −∞ at al toþ∞ at bl. This fact
implies that there exist n distinct simple roots xl, each one
belonging to any distinct interval Al. In (2.34) xl is
understood as a function of ω, i.e., xlðωÞ. In order to
proceed we show that the following function of ω,

KðωÞ ¼
Xn
l¼1

1

ω0ðxlÞ
Q2n−2ðxlÞQ

n
i¼1ðxl − aiÞðxl − biÞ

; ð2:36Þ

is a constant, i.e., KðωÞ is independent of ω for any
polynomial Q2n−2ðxÞ of degree 2n − 2. Replacing the
following expression for ω0ðxÞ,

8By Schwartz reflection principle.
9A further analysis prevents the possibility of having

essential singularities at such points.
10In [22] we have used the notation zðxÞ for the function ωðxÞ.
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ω0ðxÞ ¼
Q

n
i¼1ðx − biÞ

P
n
k¼1

Q
j≠kðx − ajÞ −

Q
n
i¼1ðx − aiÞ

P
n
k¼1

Q
j≠kðx − bjÞQ

n
i¼1ðx − aiÞðx − biÞ

; ð2:37Þ

in (2.36), we arrive at

KðωÞ ¼
Xn
l¼1

Q2n−2ðxlÞQ
n
i¼1ðxl − biÞ

P
n
k¼1

Q
j≠kðxl − ajÞ −

Q
n
i¼1ðxl − aiÞ

P
n
k¼1

Q
j≠kðxl − bjÞ

: ð2:38Þ

Since ω ¼ −∞ implies xl ¼ al and ω ¼ þ∞ implies
xl ¼ bl, we have the following particular limits:

Kð−∞Þ ¼
Xn
l¼1

Q2n−2ðalÞQ
n
i¼1ðal − biÞ

Q
j≠lðal − ajÞ

; ð2:39Þ

Kð∞Þ ¼ −
Xn
l¼1

Q2n−2ðblÞQ
n
i¼1ðbl − aiÞ

Q
j≠lðbl − bjÞ

: ð2:40Þ

Now, we show KðωÞ ¼ Kð−∞Þ, and hence constant. For
this, from Eq. (2.35) we have the following polynomial
identity:

eω
Yn
i¼1

ðx − biÞ þ
Yn
i¼1

ðx − aiÞ ¼ ðeω þ 1Þ
Yn
l¼1

ðx − xlÞ:

ð2:41Þ

Evaluating (2.41) on x ¼ ak (for some k ¼ 1;…; n) we get

Yn
i¼1

ðak − biÞ ¼ ð1þ e−ωÞ
Yn
l¼1

ðak − xlÞ; ð2:42Þ

and taking the derivative of (2.41) with respect to x and
evaluating at x ¼ xl (for some l ¼ 1;…; n) we have

Yn
i¼1

ðxl − biÞ
Xn
k¼1

Yn
j≠k

ðxl − ajÞ−
Yn
i¼1

ðxl − aiÞ
Xn
k¼1

Yn
j≠k

ðxl − bjÞ

¼ −ð1þ e−ωÞ
Yn
i¼1

ðxl − aiÞ
Yn
j≠l

ðxl − xjÞ: ð2:43Þ

Then, replacing (2.42) on the denominator of (2.39) we get

Kð−∞Þ ¼ ð1þ e−ωÞ−1
Xn
l¼1

Q2n−2ðalÞQ
n
i¼1ðal − xiÞ

Q
j≠lðal − ajÞ

;

ð2:44Þ

and replacing (2.43) on the denominator of (2.38) it follows
that

KðωÞ ¼ −ð1þ e−ωÞ−1
Xn
l¼1

Q2n−2ðxlÞQ
n
i¼1ðxl − aiÞ

Q
n
j≠lðxl − xjÞ

:

ð2:45Þ

Hence, the expected relation KðωÞ ¼ Kð−∞Þ follows from

ð1þ e−ωÞ½Kð−∞Þ − KðωÞ�

¼
Xn
l¼1

Q2n−2ðxlÞQ
n
i¼1ðxl − aiÞ

Q
j≠lðxl − xjÞ

þ
Xn
l¼1

Q2n−2ðalÞQ
n
i¼1ðal − xiÞ

Q
j≠lðal − ajÞ

¼ 0; ð2:46Þ

where the last equality to 0 is a general fact valid for any
polynomial Q2n−2 of degree 2n − 2: evaluating the poly-
nomial in 2n arbitrary points y1;…; y2n there is a linear
equation that relates the value on the first 2n − 1 points to
the value on y2n. This equation is

X2n
l¼1

Q2n−2ðylÞQ
i≠lðyl − yiÞ

¼ 0: ð2:47Þ

Equation (2.46) follows specializing on yi ¼ ai (for
i ¼ 1;…; n), and yi ¼ xi−n (for i ¼ nþ 1;…; 2n).
Since KðωÞ is constant, we have that Kð−∞Þ ¼ Kð∞Þ,

i.e., expressions (2.39) and (2.40) are the same. This in fact
coincides with the relation (2.22) for the coefficients of the
expansions (2.14) and (2.15) for the solutions (2.31) at the
end points of the intervals. Reading off these coefficients
from the explicit form of the solutions, the relation (2.22)
writes

Xn
i¼1

ðV1
aiÞ�V2

ai ¼ −
Xn
l¼1

P1ðalÞ�P2ðalÞQ
n
i¼1ðal − biÞ

Q
j≠lðal − ajÞ

¼
Xn
l¼1

P1ðblÞ�P2ðblÞQ
n
i¼1ðbl − aiÞ

Q
j≠lðbl − bjÞ

¼
Xn
i¼1

ðV1
bi
Þ�V2

bi
: ð2:48Þ
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Let us come back to the scalar product (2.34). Since the
integrand on the Fourier transform in ω is constant, we get

Z
A
dx Sþ�

1 ðx; sÞSþ2 ðx; s0Þ

¼ −2πe2πsδðs − s0Þ
Xn
l¼1

P1ðalÞ�P2ðalÞQ
n
i¼1ðal − biÞ

Q
j≠lðal − ajÞ

;

ð2:49Þ

which coincides with Eq. (2.24) because of (2.48).

D. A complete orthonormal basis

In order to construct a basis of eigenvectors for each
eigenspace of fixed s, we choose the following subset
fuksgnk¼1 of eigenfunctions

uksðxÞ ¼
ð−1Þlþ1

Nk

Q
i≠kðx − aiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
Q

n
i¼1ðx − aiÞðx − biÞ

p eisωðxÞ;

x ∈ ðal; blÞ; ð2:50Þ

with the normalization factor11

Nk ¼
ffiffiffiffiffiffi
2π

p �Q
i≠kðai − akÞQ
n
i¼1ðbi − akÞ

�
1=2

: ð2:52Þ

In the rest of this subsection, we show that the set fuksgnk¼1

is orthonormal and complete.
The orthonormality follows immediately from Eq. (2.49),

and hence we have

Z
A
dx uk�s ðxÞuk0s0 ðxÞ ¼ δk;k0δðs − s0Þ: ð2:53Þ

The completeness is quite less obvious. The general
argument of Sec. II B shows that n is the maximal
degeneracy and then any n linearly independent vectors
should form a complete basis. This fact can be shown
explicitly as follows.

Using the eigenfunctions (2.50), we have

Xn
k¼1

Z
∞

−∞
ds uksðxÞuk�s ðyÞ

¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

ðx − aiÞðy − aiÞ
ðx − biÞðy − biÞ

s �Xn
k¼1

1

N2
kðx − akÞðy − akÞ

�

×
Xn
l¼1

1

ω0ðxlÞ
δðx − xlÞ; ð2:54Þ

where xl ≡ xlðωðyÞÞ ∈ Al are the n roots of the polynomial
equation (2.35) for ω ¼ ωðyÞ. In particular, when y ∈ Al
then xl ≡ y. Using the following algebraic relation,12

Xn
k¼1

1

N2
kðx − akÞðy − akÞ

¼
Q

n
k¼1ðx − bkÞðy − akÞ −

Q
n
k¼1ðy − bkÞðx − akÞ

2πðx − yÞQn
k¼1ðx − akÞðy − akÞ

¼ Pðx; yÞ
2π

Q
n
k¼1ðx − akÞðy − akÞ

; ð2:55Þ

where the function

Pðx; yÞ ¼
Q

n
k¼1ðx − bkÞðy − akÞ −

Q
n
k¼1ðy − bkÞðx − akÞ

x − y
;

ð2:56Þ

is a polynomial in x of degree n − 1 for each fixed y, and its
roots are the points x ¼ xl except when xl ¼ y. Because of
that, the only delta function which survives in (2.54) is for
x ¼ y and hence

Xn
k¼1

Z
∞

−∞
ds uksðxÞuk�s ðyÞ

¼ −
Pðx; xÞQ

n
k¼1ðx − akÞðx − bkÞ

1

ω0ðxÞ δðx − yÞ: ð2:57Þ

In order get a better expression for Pðx; xÞ, from (2.56) we
define a new function

Qðx; yÞ ¼ Pðx; yÞðx − yÞ

¼
Yn
k¼1

ðx − bkÞðy − akÞ −
Yn
k¼1

ðy − bkÞðx − akÞ;

ð2:58Þ
11Note that the expression apparently differs from Eq. (36)

of [22]. But

Xn
j¼1

Q
l≠kðbj − alÞ

ðbj − akÞ
Q

l≠jðbj − blÞ
¼

Q
i≠kðai − akÞQ
n
i¼1ðbi − akÞ

; ð2:51Þ

and then both equations are in agreement.

12This relation is true for any complex numbers a1;…; an;
b1;…; bn; x; y. It can be proven using the definition (2.52) for the
normalization constants Nk and decomposing the rational func-
tion at both sides into the poles for the variable x.
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which allows us to compute

Pðx; xÞ ¼ ∂xQðx; yÞjy¼x ¼ −ω0ðxÞ
Yn
k¼1

ðx − akÞðx − bkÞ:

ð2:59Þ

Finally, replacing (2.59) into (2.57) we obtain the com-
pleteness relation

Xn
k¼1

Z
∞

−∞
ds uksðxÞuk�s ðyÞ ¼ δðx − yÞ: ð2:60Þ

E. Modular Hamiltonian

In this subsection we rederive the results of [22] about
the modular Hamiltonian using the information about the
spectral decomposition of the correlator kernel CAðx − yÞ
obtained in the previous subsections. The modular flow
corresponding to this modular Hamiltonian and the entan-
glement entropy for several intervals have been computed
in [22]. Recently, the modular Hamiltonian has also been
computed using Euclidean path integral methods in [24]. In
[23] it was shown that the modular flow satisfies the Kubo-
Martin-Schwinger condition. In [35] the mutual informa-
tion between several intervals has been computed using the
Araki formula without using a cutoff to compute the
entanglement entropy. The results coincide with the ones
in [22].
From (2.11) and (2.12) the correlator kernel writes

CAðx − yÞ ¼
Xn
k¼1

Z þ∞

−∞
ds uksðxÞ

1þ tanhðπsÞ
2

uk�s ðyÞ;

ð2:61Þ

and using this formula and (2.3) we obtain the following
expression for the modular Hamiltonian kernel

Hðx; yÞ ¼
Xn
k¼1

Z þ∞

−∞
ds uksðxÞ2πsuk�s ðyÞ: ð2:62Þ

Using Eq. (2.50) we get

Hðx; yÞ ¼ −i2πkðx; yÞδ0ðωðxÞ − ωðyÞÞ; ð2:63Þ

where the function

kðx; yÞ ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

ðx − aiÞðy − aiÞ
ðx − biÞðy − biÞ

s

×

�Xn
k¼1

1

N2
kðx − akÞðy − akÞ

�
: ð2:64Þ

The aim for the rest of this subsection is to obtain a
simplified expression for the modular Hamiltonian kernel
(2.63). First we have the following identity for the Dirac
delta term,

δ0ðωðxÞ−ωðyÞÞ ¼
Xn
l¼1

δ0ðx− xlÞ
1

ω0ðxÞ2 − δðx− xlÞ
ω00ðxÞ
ω0ðxÞ3 ;

ð2:65Þ

where xl ≡ xlðyÞ ∈ Al are the roots of ωðxÞ ¼ ωðyÞ intro-
duced in Eq. (2.54). From this last equation, the modular
Hamiltonian splits into the sum of local and nonlocal
operators

Hðx; yÞ ¼ Hlocðx; yÞ þHnolocðx; yÞ; ð2:66Þ

where Hlocðx; yÞ comes from the term in (2.65) when
xlðyÞ ¼ y and Hnolocðx; yÞ comes from the n − 1 terms in
(2.65) when xlðyÞ ≠ y. We discussed these two contribu-
tions separately.

1. Local part

We recognize the local part for the modular Hamiltonian
kernel as

Hlocðx;yÞ¼−i2πkðx;yÞ
�

1

ω0ðxÞ2δ
0ðx−yÞ− ω00ðxÞ

ω0ðxÞ3δðx−yÞ
�
:

ð2:67Þ

In order to simplify the above expression, it is compulsory
to understand it as a distribution acting over some smooth
compactly supported test function φðx; yÞ. Integrating by
parts, the derivative of the Dirac delta is converted to

φðx; yÞkðx; yÞ 1

ω0ðxÞ2 δ
0ðx − yÞ

¼ −
�
∂xφðx; yÞkðx; xÞ

1

ω0ðxÞ2 þ φðx; xÞ∂xkðx; yÞjy¼x

×
1

ω0ðxÞ2 þ φðx; yÞkðx; xÞ∂x

�
1

ω0ðxÞ2
��

δðx − yÞ;

ð2:68Þ

which can be simplified after we recognize the following
identities,

kðx; xÞ ¼ ω0ðxÞ; ð2:69Þ

∂xkðx; yÞjy¼x ¼
1

2
ω00ðxÞ; ð2:70Þ
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which they follow from (2.64) and the algebraic relation13

Xn
k¼1

1

N2
k

1

ðx − akÞ
¼ 1

2π
ð1þ e−ωðxÞÞ: ð2:71Þ

The final steps consist in replacing (2.69) and (2.70) with
(2.68), and integrating by parts the term containing
∂xφðx; yÞ, in order to factorize the test function. We get

Hlocðx;yÞ¼−i2π
�

1

ω0ðxÞδ
0ðx−yÞþ1

2
∂x

�
1

ω0ðxÞ
�
δðx−yÞ

�
:

ð2:72Þ

The local part of the modular Hamiltonian comes from
(2.2) and (2.72),

Hloc ¼ 2π

Z
A
dx

1

ω0ðxÞTðxÞ; ð2:73Þ

where TðxÞ ¼ 1
2
½i∂xψ

†ðxÞψðxÞ − ψ†ðxÞi∂xψðxÞ� is the
energy density operator.

2. Nonlocal part

The nonlocal part of the modular Hamiltonian kernel is

Hnonlocðx; yÞ ¼ −i2πkðx; yÞ
� Xn
l¼1 xl≠y

1

ω0ðxÞ2 δ
0ðx − xlÞ

−
ω00ðxÞ
ω0ðxÞ3 δðx − xlÞ

�
: ð2:74Þ

The first term can be simplified by a similar computation as
we did around Eq. (2.68). Here the situation is simpler
because kðxl; yÞ≡ 0 for all xl ≠ y as we showed in (2.55).
Hence the unique term which survives it is the one
proportional to the derivative of kðx; yÞ,

∂xkðx; yÞjx¼xl ¼
ω0ðxlÞ
xl − y

: ð2:75Þ

Replacing it on (2.74) we arrive at

Hnolocðx; yÞ ¼ i2π
Xn

l¼1;xl≠y

1

ðx − yÞ
1

ω0ðxÞ δðx − xlðωðyÞÞÞ;

ð2:76Þ

and

Hnoloc ¼ i2π
Xn

l¼1;xl≠x

Z
A
dxψ†ðxlÞ

1

ðxl − xÞ
1

ω0ðxlÞ
ψðxÞ

ð2:77Þ

¼ i2π
Z
A×A;x≠y

dxdyψ†ðxÞδðωðxÞ−ωðyÞÞ
x−y

ψðyÞ:

ð2:78Þ
3. Two intervals

For the case of two intervals A ¼ ða1; b1Þ ∪ ða2; b2Þ,
the modular Hamiltonian operator H ¼ Hloc þHnoloc
reduces to

H ¼ 2π

Z
A
dxω0ðxÞ−1TðxÞ þ i2π

Z
A
dxψ†ðxÞω0ðxÞ−2

×
ðb1 − a1Þða2 − b1Þðb2 − a1Þðb2 − a2Þ
ðx − a1Þðx − a2Þðx − b1Þðx − b2Þ

×
1

xða1 þ a2 − b1 − b2Þ þ ðb1b2 − a1a2Þ
ψðx̄Þ;

ð2:79Þ

where

ω0ðxÞ ¼ 1

x − a1
þ 1

x − a2
−

1

x − b1
−

1

x − b2
; ð2:80Þ

x̄ ¼ a1a2ðx − b1 − b2Þ − b1b2ðx − a1 − a2Þ
xða1 þ a2 − b1 − b2Þ þ ðb1b2 − a1a2Þ

: ð2:81Þ

For two symmetric intervals A ¼ ð−R;−rÞ ∪ ðr; RÞ,
0 < r < R, a more explicit form of H is

H¼ 2π

Z
A
dx

ðx2 − r2ÞðR2 − x2Þ
2ðR− rÞðx2 þ rRÞTðxÞ

þ iπ
Z
A
dxψ†ðxÞ rRðx

2 − r2ÞðR2 − x2Þ
ðR− rÞxðx2 þ rRÞ2 ψðx̄Þ; ð2:82Þ

where now x̄ ¼ − rR
x .

III. THE FREE CHIRAL CURRENT

We are going to study the model determined by a field
operator jðxÞ in the line, which is identified with the chiral
derivative of a massless free scalar in d ¼ 2, that is,
jðxþÞ ¼ ∂þϕðxþÞ, with xþ ¼ x0 þ x1. Then the line we
are considering can be thought of as a null line in the d ¼ 2
model, and all variables x, y, etc. will be null variables. We
study the structure of the vacuum density matrix reduced to
a region. Because of the complexity of the problem we
restrict attention to the case of one or two intervals.

13As (2.55), Eq. [(2.71)] is a pure algebraic relation valid for
any complex number ak, bk and x. It can be shown matching the
coefficients of the poles in x on both sides.
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The commutator is

½jðxÞ; jðyÞ� ¼ iδ0ðx − yÞ; ð3:1Þ

and the model has Hamiltonian

H ¼ 1

2

Z
dx j2ðxÞ; ð3:2Þ

where TðxÞ ¼ ð1=2Þj2ðxÞ is the energy density operator.
The vacuum two point correlator distribution is

Fðx; yÞ ¼ hjðxÞjðyÞi ¼ −
1

2π

1

ðx − y − i0þÞ2 : ð3:3Þ

The model is Gaussian and all other multipoint correlators
follow from this one according to Wick’s theorem.
In order to proceed we need general formulas for

Gaussian states in an algebra of canonical commutation
relations. We briefly review the derivation of these formulas
in Appendix.
An algebra of canonical commutation relations can be

written in the form

½fi; fj� ¼ iCij; ð3:4Þ

for Hermitian variables fi, with the numerical commutator
given by the real antisymmetric matrix Cij. We take a
Gaussian state with correlator

Fij ¼ hfifji: ð3:5Þ

The modular Hamiltonian is then given by

H ¼
X
ij

fiHijfj; ð3:6Þ

H ¼ −
i
2

V
jVj log

�jVj þ 1=2
jVj − 1=2

�
C−1; ð3:7Þ

where

V ¼ −iC−1F −
1

2
: ð3:8Þ

The entropy is [40]

S ¼ trΘðVÞððV þ 1=2Þ logðV þ 1=2Þ
þ ð1=2 − VÞ logðV − 1=2ÞÞ: ð3:9Þ

The operator V is not symmetric but it has real
eigenvalues ν ∈ �ð1=2;∞Þ. In the present case this spec-
trum is continuous. For later convenience we parametrize

ν ¼ 1

2
cothðπsÞ; s ∈ R: ð3:10Þ

We name the left and right eigenvectors of V as

Vjuksi ¼
1

2
cothðπsÞjuksi; ð3:11Þ

V†jvksi ¼
1

2
cothðπsÞjvksi; ð3:12Þ

where k is a possible degeneracy index. We normalize the
eigenvectors as

hvks juk0s0 i ¼ δk;k0δðs − s0Þ: ð3:13Þ

It is not difficult to see from (3.8), (3.11), and (3.12) that
Cjuksi is an eigenvector of V† with the same eigenvalue as
the vectors jvksi, and then is a linear combination of these
later. The orthogonality (3.13) leaves us the freedom to
redefine the basis juksi by an arbitrary matrix and the basis
jvksi by the inverse adjoint matrix. We can use this freedom
to set jvksi proportional to Cjuksi. The phase of the
proportionality constant is however fixed to be isignðsÞ,
as can be seen from taking the scalar product of (3.11) with
hvk0s0 j and using (3.13) and the positivity of F. As a result,
we can further fix the vectors by taking

jvksi ¼ isignðsÞCjuksi: ð3:14Þ

In terms of these vectors the kernel (3.7) writes simply

H ¼
X
k

Z
∞

−∞
dsjuksiπjsjhuks j: ð3:15Þ

IV. THE CASE OF A SINGLE INTERVAL

Let us first consider the simplest case of a single interval
A ¼ ða; bÞ. The inverse of the commutator δ0ðx − yÞ acting
on a test function hðxÞ has to be a linear combination ofR
x
a dy hðyÞ, and

R
b
a dy lðyÞhðyÞ, for some lðyÞ. This last term

is linear in hðyÞ and being independent of x, is annihilated by
the δ0. In kernel notation we have to combine14

θðx − yÞ; −θðy − xÞ; lðyÞ: ð4:1Þ

There is only one antisymmetric inverse, given by

ðδ0Þ−1ðx; yÞ ¼ 1

2
ðθðx − yÞ − θðy − xÞÞ: ð4:2Þ

On a test function its action is

14Only two of these three kernels are linearly independent.

ARIAS, CASINI, HUERTA, and PONTELLO PHYS. REV. D 98, 125008 (2018)

125008-10



ððδ0Þ−1hÞðxÞ ¼ 1

2

�Z
x

a
dy hðyÞ −

Z
b

x
dy hðyÞ

�
: ð4:3Þ

Hence δ0 · ðδ0Þ−1 ¼ 1 and ðδ0Þ−1 · δ0 ¼ 1 on test functions
that vanish on the boundary of the interval.
Hence our first task is to solve the spectrum of

2πC−1F≡ 1

ðx − y − i0þÞ −
1=2

ðb − yÞ −
1=2

ða − yÞ : ð4:4Þ

We proceed as in the case of the fermion. We think the
interval A as included in the real axis of the complex plane.
We consider an analytic function SðzÞ, with a multiplicative
boundary condition on the interval A, as in (2.5). This is

SðzÞ analytic in C − Ā; ð4:5Þ

Sþðx1Þ ¼ lim
x2→0þ

Sðx1 þ ix2Þ ¼ λ lim
x2→0−

Sðx1 þ ix2Þ ¼ λS−ðx1Þ;

x1 ∈ A: ð4:6Þ

Thus, SðzÞ has a cut over A with multiplicative boundary
conditions. We further impose the boundary conditions at
the infinity and at the end points of the interval,

lim
z→∞

jSðzÞj < ∞; ð4:7Þ

lim
z→∂AjSðzÞj < ∞: ð4:8Þ

Consider now the complex integral

I
dz2

�
1

z1 − z2
−
1

2

1

b − z2
−
1

2

1

a − z2

�
Sðz2Þ ¼ 0 ð4:9Þ

on a closed curve in the complex plane encircling both A
and z1. This integral is 0 because the integrand has zero
residue at infinity. We can shrink the integration contour
around the point z1 and around the cut to get

Sðz1Þ¼
i
2π

ð1−λ−1Þ⨍Ady
�

1

z1−y
−
1

2

1

b−y
−
1

2

1

a−y

�
SþðyÞ:

ð4:10Þ

The symbol ⨍ for the integral means here that it is
regularized at the end points of the interval by taking
the complex integral on a small circle around these end
points [as implied by (4.9)] and then taking the limit of zero
circle size. We will soon be more specific on how this
regularization can be expressed directly for the function of
a real variable such as SþðyÞ.
Taking the limit of z1 → x − i0þ, x ∈ A, and using (4.6),

(4.4) and (3.8), we get

⨍AdyVðx; yÞSþðyÞ ¼
λþ 1

2ð1 − λÞ S
þðxÞ: ð4:11Þ

Since the eigenvalues of jVj are in (1=2,∞), we have λ > 0,
in contrast to the case of the fermion where the factor λ is
negative. We write

λ ¼ e−2πs; s ∈ R: ð4:12Þ

The eigenvalue in (4.11) then coincides with 1=2 cothðπsÞ
as in (3.11).
Therefore, for each solution SðzÞ of the problem in the

complex plane we get an eigenvector of the kernel Vðx; yÞ
in the interval. The eigenvector modulus, in contrast to the
case of the fermion, is bounded at the end points of the
interval, (4.8). This is in accordance with boundary con-
ditions for scalars [37]. Conversely, if we have a solution of
(4.11) we can use it as boundary data on the interval in
(4.10), which gives a solution SðzÞ satisfying (4.5)–(4.8).
These problems are then mutually equivalent.
For a single interval we can write a solution to this

problem as

SðzÞ ¼ e−isω̃ðzÞ; ω̃ðzÞ ¼ log

�
z − a
z − b

�
;

ω̃þðxÞ − ω̃−ðxÞ ¼ −2πi; x ∈ A: ð4:13Þ

This obeys all boundary conditions. Any other solution
divided by SðzÞ in (4.13) must be an analytic function on
the plane except perhaps the end points of the interval.
Consequently this other solution would be either propor-
tional to (4.13) or it is not bounded at infinity or at the end
points of the interval. Hence (4.13) is in fact the unique
solution to the problem.
The eigenvector is given by the boundary value on the

interval

uðxÞ∝ SþðxÞ∝ e−isωðxÞ; ωðxÞ¼ log

�
x−a
b−x

�
: ð4:14Þ

Now we explain more precisely the regularization in
(4.10) and (4.11). Frequently we encounter integrals on the
real line of the form

Z
b

a
dx fðxÞ; ð4:15Þ

where

fðxÞ ∼ c
e−is logðx−aÞ

x − a
; x → a: ð4:16Þ

Then the integral has an oscillatory but bounded term
−ce−is logðx−aÞ=ð−isÞ in the lower boundary as x → a, and it
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does not converge. The regularization used above just
subtracts this oscillatory phase, that is,

⨍ ba dx fðxÞ ¼ lim
ϵ→0

Z
b

aþϵ
dx fðxÞ þ c

e−isϵ

ð−isÞ

¼
Z

b

a
dx

�
fðxÞ − c

e−is logðx−aÞ

x − a

�

þ c
e−is logðb−aÞ

ð−isÞ : ð4:17Þ

If the oscillatory term appears on the upper end of the
integral an analogous subtraction is understood. As men-
tioned above, this subtraction appears naturally when the
integral comes from a limit of a complex integral around
the cut as in the transformation from (4.9) to (4.10). The
definition of the kernel V has to be understood with this
regularization.15

Now we have to look at the left eigenvectors of V. These
are eigenvectors of V† ¼ −iFC−1 − 1=2. For this we can
just use the relation (3.14). However, we find it instructive
to compute them directly from the kernel. From (4.2) this is

2πFC−1ðx;yÞ¼ 1

ðx−y− i0þÞ−
1=2

ðb−xÞ−
1=2

ða−xÞ: ð4:18Þ

Now we take a new analytic function SðzÞ, and assume the
same multiplicative boundary condition (4.6). However,
in order to obtain a solution of the eigenvector problem
from the complex integral, we are now forced to impose
SðzÞ → jzj−2 at infinity, and that SðzÞ must have at most
pole singularities at a and b. We integrate�

1

z1 − z2
−
1

2

1

b − z1
−
1

2

1

a − z1

�
Sðz2Þ ð4:19Þ

in a close contour encircling z1 and the cut A. We get

Sðz1Þ¼
i
2π

ð1−λ−1Þ⨍Ady
�

1

z1−y
−
1

2

1

b−z1
−
1

2

1

a−z1

�
SþðyÞ:

ð4:20Þ

The limit z1 → x − i0þ, x ∈ A, gives

⨍AdyV†ðx; yÞSþðyÞ ¼ λþ 1

2ð1 − λÞ S
þðxÞ: ð4:21Þ

The value of λ is the same as above, giving the same
multiplicative boundary conditions for SðzÞ as for the
eigenvectors of V. However, the boundary conditions at

infinity and at the end points of the interval are different.
These now imply that the unique solution is

SðzÞ ¼ e−isw̃ðzÞ
�

1

z − a
−

1

z − b

�
: ð4:22Þ

The poles have to have opposite sign in order that the
function decays at infinity as jzj−2. We recognize this
function is proportional to the derivative of (4.13), as it
must be, given (3.14).
Orthonormalizing the eigenvectors we get

us ¼
e−isωðxÞffiffiffiffiffiffiffiffiffiffi
2πjsjp ; ð4:23Þ

vs ¼ isignðsÞu0s ¼
ffiffiffiffiffiffi
jsj
2π

r
e−isωðxÞ

�
1

x − a
−

1

x − b

�
: ð4:24Þ

These satisfy (3.13) and (3.14).

A. Modular Hamiltonian and entropy

Replacing these formulas for the eigenvectors into
Eq. (3.15) and after a simple integration, we get the
following expression for the modular Hamiltonian kernel:

Hðx; yÞ ¼
Z

∞

−∞
ds usðxÞπjsjðusðyÞÞ� ¼ πðω0ðxÞÞ−1δðx − yÞ:

ð4:25Þ
Then the modular Hamiltonian operator has the known
form for an interval in a CFT [18],

H ¼ 2π

Z
b

a
dx

ðb − xÞðx − aÞ
b − a

TðxÞ; ð4:26Þ

where in the present case the energy density is T ¼ 1
2
j2.

According to (3.9) the entropy is

S ¼
Z

∞

0

ds gðsÞ
Z
A
dx usðxÞðvsðxÞÞ�; ð4:27Þ

where

gðsÞ ¼ 1þ coth ðπsÞ
2

log

�
coth ðπsÞ þ 1

2

�

þ 1 − coth ðπsÞ
2

log

�
coth ðπsÞ − 1

2

�
: ð4:28Þ

The full integral over the x coordinate gives a delta function
δð0Þ and is divergent. This is just the usual divergence
of entropy in QFT due to the continuum spectrum of the
modular operator.
A convenient way to regularize the entropy is to integrate

up to a distance cutoff from the boundary. Then we
compute

15Note that this regularization eliminates from the bare integral
an infinitely oscillatory phase in s, which produces vanishing
terms in any finite calculation involving integrals over the
eigenvalues.
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S ¼
Z

b−ϵ

aþϵ
dx

Z
∞

0

ds gðsÞusðxÞðvsðxÞÞ�

¼ 1

12

Z
b−ϵ

aþϵ
dxωðxÞ0 ¼ 1

6
log

�
b − a
ϵ

�
: ð4:29Þ

This gives the expected result for a conformal model with
one chiral component of central charge c ¼ 1.
According to (A18) the Renyi entropies can be computed

analogously by replacing gðsÞ by the function

gnðsÞ ¼
1

n − 1
log½ðcothðπsÞ=2þ 1=2Þn

− ðcothðπsÞ=2 − 1=2Þn�; ð4:30Þ

with g1ðsÞ ¼ gðsÞ. We get the well-known result

Sn ¼
nþ 1

12n
log

�
b − a
ϵ

�
: ð4:31Þ

V. THE TWO INTERVAL CASE

To start, we need first to know the expression of the
kernel C−1 ≡ δ−1ðx − yÞ for two intervals. The commu-
tator is block diagonal in each of the intervals, and we
get the same result as (4.2) for each of the intervals
separately,

ðδ0Þ−1ðx; yÞ ¼

8>><
>>:

1
2
ðθðx − yÞ − θðy − xÞÞ if x; y ∈ ða1; b1Þ

1
2
ðθðx − yÞ − θðy − xÞÞ if x; y ∈ ða2; b2Þ

0 if x ∈ ða1; b1Þ; y ∈ ða2; b2Þ or y ∈ ða1; b1Þ; x ∈ ða2; b2Þ
; ð5:1Þ

or equivalently,

C−1 ≡ ðδ0Þ−1ðx; yÞ ¼ 1

2
ðθðx − yÞ − θðy − xÞÞ

−
1

2
θðx − a2Þθðb1 − yÞ þ 1

2
θðy − a2Þθðb1 − xÞ:

ð5:2Þ
Notice this last equation manages to be antisymmetric and
its derivative is the delta function.
Then we have

2πC−1F≡ 1

ðx − y − i0þÞ þ
1

2

�
Θ1ðxÞ

�
1

y − a1
þ 1

y − b1

�

þ Θ2ðxÞ
�

1

y − a2
þ 1

y − b2

��
; ð5:3Þ

and

2πFC−1 ≡ 1

ðx − y − i0þÞ −
1

2

�
Θ1ðyÞ

�
1

x − a1
þ 1

x − b1

�

þ Θ2ðyÞ
�

1

x − a2
þ 1

x − b2

��
; ð5:4Þ

where Θ1ðxÞ and Θ2ðxÞ are the characteristic functions
of the two intervals, that is, functions with value 1 inside
the first interval (respectively second interval) and 0
elsewhere.
We have to deal now with kernels that contain theta

functions and it might seem at first glance that the analytic
method used in previous sections is not applicable here.
However, we show how to bypass this issue.

To begin with, let us consider eigenvectors vsðxÞ of (5.4)
satisfying the extra property

⨍A1
dx vsðxÞ ¼ ⨍A2

dx vsðxÞ ¼ 0: ð5:5Þ

For such particular eigenvectors the second and third
term in (5.4) vanishes. At the end we show this is true in
the general case. Under this assumption we have that vs
is an eigenfunction of ðx − y − i0þÞ−1. Then we use the
same ideas as for a single interval, trying to obtain vs as
a boundary value of an analytic function. We again look
for analytic functions SðzÞ on the complex plane with
multiplicative boundary conditions on the two intervals A
as in (4.6). The class of eigenfunctions us of the problem
must behave near the end points of the intervals as in the
case of a single interval (or the case of the half line).
That is, they should behave as pure phase factors of the
form us ∼ e−is logðx−aiÞ or us ∼ eis logðbi−xÞ near the end
points. Their derivative, the vs functions, should at most
have single poles (together with a phase factor) at the
end points. Under this condition the general solution is of
the form

SðzÞ ∝ e−isω̃ðzÞ
�

α1
z − a1

þ α2
z − b1

þ α3
z − a2

þ α4
z − b2

�
;

ð5:6Þ

with

ω̃ðzÞ ¼
X2
i¼1

log

�
z − ai
z − bi

�
: ð5:7Þ
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Integrating SðzÞ along a contour encircling the two
intervals and a large circle at infinity, it is not difficult
to see that the integral at infinity is equal to the one
over the two intervals, which vanish because of (5.5).
Then these functions must fall as jzj−2 to cope with
(5.5), and impose the condition

α1 þ α2 þ α3 þ α4 ¼ 0: ð5:8Þ

Calling q⃗ ¼ ða1; b1; a2; b2Þ, we have from (5.5) the
coefficients αi satisfy in addition

X4
1

αiI1qi ¼ 0; ð5:9Þ

X4
1

αiI2qi ¼ 0; ð5:10Þ

where

Ilqi ¼ ⨍ blal dx e
−isωðxÞ 1

x − qi
; l ¼ 1; 2; i ¼ 1; 2; 3; 4;

ð5:11Þ

and

ωðxÞ ¼ log

�
−
ðx − a1Þðx − a2Þ
ðx − b1Þðx − b2Þ

�
: ð5:12Þ

Only two of Eqs. (5.8)–(5.10) are independent. This
follows from the fact that

I
dze−isωðzÞ

�
1

z− qi
−

1

z− qj

�
¼ I1qi − I1qj þ I2qi − I2qj ¼ 0:

ð5:13Þ

This complex integral around the two cuts is 0 because it is
equal to the integral at infinity which vanishes because the
integrand falls fast enough.
Therefore we conclude the dimension of the space of

these solutions for fixed s is 2. The same argument of the
previous section shows that these solutions give the
eigenvectors of V† once evaluated on A, and any eigen-
vector of V† with at most simple poles at the end of the
intervals, and satisfying (5.5), is of this form.
Now a simple solution is

ṽ1ðzÞ ∝ ðe−isω̃Þ0

¼ −ise−isω̃
�

1

z − a1
−

1

z − b1
þ 1

z − a2
−

1

z − b2

�
:

ð5:14Þ

In fact, this satisfies (5.8) and (5.9) because it is
proportional to a derivative of the phase e−isω̃ and hence
the integral on any of the intervals vanishes with the
regularization we are using. That is, integrating this
function on the intervals we have a further relation for
the Ilq integrals,

I1a1 − I1b1 þ I1a2 − I1b2 ¼ 0; ð5:15Þ

I2a1 − I2b1 þ I2a2 − I2b2 ¼ 0: ð5:16Þ

The eigenvector v1ðxÞ follows from taking the boundary
limit of ṽ1ðzÞ on A. The corresponding u1 solution is an
integral of this function,

u1 ¼ −isignðsÞC−1v1 ∝ e−isω; ð5:17Þ

where in applying (5.2) to v1 boundary terms that are
oscillatory phases are discarded, in accordance with the
regularization we are using. We can check more directly
this is an eigenfunction of (5.3) by noting that

⨍Ady
�

1

y − a1
þ 1

y − b1

�
u1ðyÞ

¼ ⨍Ady
�

1

y − a2
þ 1

y − b2

�
u1ðyÞ: ð5:18Þ

This follows from (5.13), (5.15) and (5.16). Hence, the
two terms with characteristic functions in (5.3) are equal
and we can eliminate these functions altogether by
replacing Θ1ðxÞ, Θ2ðxÞ → 1=2. After this replacement
the proof that u1 is an eigenvector of the kernel (5.3)
follows the same steps as the one for a single interval in
the previous section by promoting u1 to ũ1ðzÞ ∝ e−isω̃ in
the complex plane.
We choose the second solution, ṽ2ðzÞ, of the form (5.6),

such that its value on A gives a v2 eigenfunction orthogonal
to u1. Collecting the coefficients of the would-be delta
functions in the scalar product between u1 and v2, which
are generated by the integral near the end points of the
intervals, we have for ṽ2

α1 − α2 þ α3 − α4 ¼ 0: ð5:19Þ

From this and (5.8) we get

ṽ2 ∝ e−iswðzÞ
�

1

z − a1
þ α

z − b1
−

1

z − a2
−

α

z − b2

�
ð5:20Þ

and from (5.9) it follows that
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α ¼ −
I1a1 − I1a2
I1b1 − I1b2

: ð5:21Þ

In order to compute u2 we use the fact that the integrals
of v2 along the two intervals A1 and A2 vanish according to
(5.5). Therefore using u ¼ −isignðsÞC−1v, and (5.4), we
have

u2ðxÞ ¼ −isignðsÞ
(
⨍ xa1dy v2ðyÞ ¼ ⨍ xb1dy v2ðyÞ; x ∈ A1

⨍ xa2dy v2ðyÞ ¼ ⨍ xb2dy v2ðyÞ; x ∈ A2

:

ð5:22Þ

In order to normalize the solutions, we compute the
coefficient of the delta function in the scalar product that
can only come from the singular part of the integrals near

the end points of the intervals. We have that the normalized
solutions satisfying (3.14) are

v1ðxÞ ¼
ffiffiffiffiffiffi
jsj
4π

r
e−isωðxÞ

�
1

x− a1
−

1

x− b1
þ 1

x− a2
−

1

x− b2

�
;

ð5:23Þ

u1ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
4πjsjp e−isωðxÞ; ð5:24Þ

v2ðxÞ ¼
ffiffiffiffiffiffi
jsj
4π

r
e−isωðxÞ

�
1

x− a1
þ α

x− b1
−

1

x− a2
−

α

x− b2

�
;

ð5:25Þ

u2ðxÞ ¼ −i
sffiffiffiffiffiffiffiffiffiffi
4πjsjp

8<
:

⨍ xa1dy e
−isωðyÞ

�
1

y−a1
þ α

y−b1
− 1

y−a2
− α

y−b2

	
; x ∈ A1

⨍ xa2dy e
−isωðyÞ

�
1

y−a1
þ α

y−b1
− 1

y−a2
− α

y−b2

	
; x ∈ A2

: ð5:26Þ

We have not yet shown that these are the only possible
eigenfunctions, since we imposed the additional conditions
(5.5) to derive them. We show at the end of the next
subsection that these conditions follow from orthogonality
with us1 and u

s
2 in the limit jsj → 0. To do that we first have

to get simpler expressions for these eigenvectors.

A. Dependence of the eigenvectors through
the cross ratio

The aim of this section is to obtain simplified expres-
sions for the function α (5.21) and the eigenfunctions
(5.23)–(5.26), which will be useful for the final computa-
tion of the modular Hamiltonian and the mutual informa-
tion. For such a purpose, we analyze the behavior of such
expressions in terms of the cross ratio

η ¼ ðb1 − a1Þðb2 − a2Þ
ða2 − a1Þðb2 − b1Þ

∈ ð0; 1Þ; ð5:27Þ

which is the natural geometric parameter of the problem
given the conformal invariance of the model. We consider a
change of coordinates x0 ¼ fðxÞ given by a general Mobiüs
transformation

x0 ¼ fðxÞ ¼ axþ b
cxþ d

; ð5:28Þ

where a, b, c, d ∈ R and ad − cb > 0. Such transforma-
tion leaves the cross ratio (5.27) invariant.
Let us first understand the dependence of the function

αðs; a1; b1; a2; b2Þ with the interval end points. We can

use (5.28) to make a change in the integration variables
on the integrals (5.11) involved in the definition of the
function α. After that, a straightforward computation
shows that

αðs; a1; b1; a2; b2Þ ¼ αðs; a01; b01; a02; b02Þ; ð5:29Þ

where the two sets of interval end points are related by

a0i ¼ fðaiÞ; b0i ¼ fðbiÞ for i ¼ 1; 2: ð5:30Þ

Since such a relation holds for any general Mobiüs trans-
formation, we have that αðs; ηÞ depends on the interval end
points only through the cross ratio.
Similarly, a direct computation for the eigenfunctions

reveals the following covariance properties under the
change of variables x0 ¼ fðxÞ,

uiðx0; q0iÞ ¼ eisKðqiÞuiðx; qiÞ; ð5:31Þ

viðx0; q0iÞ ¼ eisKðqiÞ
1

f0ðxÞ uiðx; qiÞ; ð5:32Þ

where uiðx; qiÞ and viðx; qiÞ are the eigenfunctions
corresponding to the problem with end points qi ¼
ða1; b1; a2; b2Þ (idem for q0i) and the two sets of end points
are related by (5.30). The real function KðqiÞ is given by

KðqiÞ ¼
1

2
log

�
f0ða1Þf0ða2Þ
f0ðb1Þf0ðb2Þ

�
: ð5:33Þ
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Not surprisingly, the u functions transform as a scalar wave,
and the functions v as their derivatives under conformal
transformations.
Simpler expressions are obtained when we specially take

the Mobiüs transformation f1ðxÞ which sends the points
ða1; b1; a2; b2Þ → ð0; η; 1;∞Þ, i.e.,16

f1ðxÞ ≔
ðb2 − a2Þðx − a1Þ
ða2 − a1Þðb2 − xÞ ; ð5:34Þ

f01ðxÞ ¼
ðb2 − a1Þðb2 − a2Þ
ða2 − a1Þðb2 − xÞ2

¼ 1

b2 − a1

�
b2 − a2
a2 − a1

þ 2x0 þ a2 − a1
b2 − a2

x02
�
: ð5:35Þ

With this transformation we get from (5.21) the compact
formula

αðs; ηÞ ¼ − 2F1ð1þ is;−is; 1; ηÞ
2F1ð1 − is; is; 1; ηÞ ; ð5:36Þ

where 2F1ða; b; c; xÞ is the Gaussian or ordinary hyper-
geometric function. To derive this result we used the
integral representation for such a function,

2F1ða; b; c; xÞ

¼ ΓðcÞ
ΓðbÞΓðc − bÞ

Z
1

0

dt tb−1ð1 − tÞc−b−1ð1 − txÞ−a;

ð5:37Þ

for x < 1 and ReðcÞ > ReðbÞ > 0.17 Expression (5.36)
reveals the dependence of α through the cross ratio, and
the fact that α is a phase factor. For s ¼ 0 we have α ¼ −1,
and it reaches a value dependent on η for s → �∞ (see
below). We also have αð−s; ηÞ ¼ αðs; ηÞ�. For fixed s ≠ 0
we have limη→0α ¼ −1, and limη→1α ¼ 1.
Applying the same transformation to the eigenvectors

(5.23)–(5.26) and using the expressions (5.31) and (5.32)
we arrive at18

u1ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
4πjsjp e−is logð

x0ð1−x0Þ
η−x0 Þ; ð5:38Þ

v1ðxÞ ¼
ffiffiffiffiffiffi
jsj
4π

r
f01ðxÞe−is logð

x0ð1−x0Þ
η−x0 Þ

�
1

x0
þ 1

x0 − 1
−

1

x0 − η

�
;

ð5:39Þ

u2ðxÞ ¼ i
sffiffiffiffiffiffiffiffiffiffi
4πjsjp �

x0

η

�
−is

�
1

is
F1

�
−is; is;−is; 1− is;x0;

x0

η

�

þ α

1− is
x0

η
F1

�
1− is; is;1− is;2− is;x0;

x0

η

�

−
x0

1− is
F1

�
1− is; 1þ is;−is; 2− is;x0;

x0

η

��
;

x∈ A1; ð5:40Þ

v2ðxÞ ¼
ffiffiffiffiffiffi
jsj
4π

r
f01ðxÞe−is logð

x0ð1−x0Þ
η−x0 Þ

�
1

x0
þ α

x0 − η
−

1

x0 − 1

�
;

ð5:41Þ

where the function F1ða; β1; β1; c; z1; z2Þ in (5.40) is the
Appell hypergeometric function of two variables. Such a
function has the following integral representation

F1ða;β1;β1;c;z1;z2Þ

¼ ΓðcÞ
ΓðaÞΓðc−aÞ

Z
1

0

ta−1ð1− tÞc−a−1ð1− tz1Þ−β1ð1− tz2Þ−β2 ;

ð5:42Þ

for x, y < 1 and ReðaÞ > 0 and Reðc − aÞ > 0.19 We
remark formula (5.40) is only valid for x ∈ A1; in such
case x0 ∈ ð0; ηÞ and hence the arguments of the Appell’s
function belong to its domain of analyticity.
To get an expression for u2 valid for x ∈ A2 in terms of

Appell functions we must consider a different Mobiüs
transformation x̃ ≔ f2ðxÞ which sends ða1; b1; a2; b2Þ →
ð1;∞; 0; ηÞ,

f2ðxÞ ≔
ðb1 − a1Þðx − a2Þ
ða2 − a1Þðx − b1Þ

; ð5:43Þ

f02ðxÞ ¼
ðb1 − a1Þða2 − b1Þ
ða2 − a1Þðx − b1Þ2

¼ 1

a2 − b1

�
b1 − a1
a2 − a1

þ 2x̃þ a2 − a1
b1 − a1

x̃2
�
: ð5:44Þ

Then we obtain for x ∈ A2,

16More carefully, we take the Mobiüs transformation which
transforms ða1; b1; a2; b2Þ → ð0; η; 1;ΛÞ with Λ > 1 and in the
end take Λ → ∞.

17When ReðbÞ ¼ 0, which occurs in (5.36), Eq. (5.37) has to
be understood as the ⨍ -regularization explained on (4.17).

18Here we drop out a global constant phase factor which is the
same for all the eigenvectors, without modifying the orthonorm-
alization condition and the condition (3.14). 19For ReðaÞ ¼ 0, see footnote 17.
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u2ðxÞ ¼ −i
sffiffiffiffiffiffiffiffiffiffi
4πjsjp �

x̃
η

�
−is

�
1

is
F1

�
−is; is;−is; 1− is; x̃;

x̃
η

�

þ α

1− is
x̃
η
F1

�
1− is; is;1− is; 2− is; x̃;

x̃
η

�

−
x̃

1− is
F1

�
1− is; 1þ is;−is; 2− is; x̃;

x̃
η

��
;

ð5:45Þ

which is the same expression valid for u2 in the first interval
(up to a minus global sign) but evaluated in x̃ instead of x0.
Such expression indicates that for any point x1 ∈ A1 exits a
point x2 ∈ A2 such that u2ðx1Þ ¼ −u2ðx2Þ, and vice versa.
In the next subsection we show that all the eigenvectors are
classified according to such “parity symmetry.”

B. Parity symmetries of the eigenfunctions

In this section we study the behavior of the eigenfunctions
under a conformal transformation that interchanges the two
intervals. For that we introduce the Mobiüs transformation

x̄ ¼ pðxÞ ð5:46Þ

which interchanges the two intervals ða1; b1; a2; b2Þ ↔
ða2; b2; a1; b1Þ, namely

pðxÞ ¼ a1a2ðx − b1 − b2Þ − b1b2ðx − a1 − a2Þ
xða1 þ a2 − b1 − b2Þ þ ðb1b2 − a1a2Þ

; ð5:47Þ

p0ðxÞ ¼ ðb1 − a1Þðb2 − a1Þða2 − b1Þða2 − b2Þ
½xða1 þ a2 − b1 − b2Þ þ ðb1b2 − a1a2Þ�2

> 0;

ð5:48Þ

where (5.47) is the same as (2.81), which indicates
that x̄ is the conjugate point of the point x, that is,
ωðx̄Þ ¼ ωðxÞ. Specializing this transformation on relations
(5.31) and (5.32) we get

uiðx̄; a2; b2; a1; b1Þ ¼ uiðx; a1; b1; a2; b2Þ; ð5:49Þ

viðx̄; a2; b2; a1; b1ÞÞ ¼
1

p0ðxÞ uiðx;a1; b1; a2; b2Þ; ð5:50Þ

where in this case we have Kða1; b1; a2; b2Þ ¼ 0. On the
other hand, from (5.23)–(5.25) we easily see that

u1ðx; a2; b2; a1; b1Þ ¼ u1ðx;a1; b1; a2; b2Þ; ð5:51Þ

v1ðx; a2; b2; a1; b1Þ ¼ v1ðx; a1; b1; a2; b2Þ; ð5:52Þ

v2ðx; a2; b2; a1; b1Þ ¼ −v2ðx; a1; b1; a2; b2Þ: ð5:53Þ

Therefore, using additionally (5.40) and (5.45) for u2, we
conclude we have the following parity symmetries:

u1ðx̄Þ ¼ u1ðxÞ; ð5:54Þ

v1ðx̄Þ ¼
1

p0ðxÞ v1ðxÞ; ð5:55Þ

u2ðx̄Þ ¼ −u2ðxÞ; ð5:56Þ

v2ðx̄Þ ¼ −
1

p0ðxÞ v2ðxÞ: ð5:57Þ

Then, the first set of eigenfunctions is even and the second is
odd under taking the conjugate point x̄. We remark that in
these expressions we have the same eigenfunctions for the
same end points ða1; b1; a2; b2Þ appear at both sides.
Another particular Mobiüs transformation which implies

a quite simple symmetry relation is the transformation
x̂ ¼ qðxÞ which sends the end points ða1; b1; a2; b2Þ →
ðb1; a1; b2; a2Þ, i.e., reflects each interval into itself,

x̂¼qðxÞ¼xða2b2−a1b1Þ−a1a2ðb2−b1Þ−b1b2ða2−a1Þ
xðb2þa2−b1−a1Þþa1b1−a2b2

:

ð5:58Þ

Under such transformation, the eigenvectors satisfy

u1;−sðx̂Þ ¼ eisKðqiÞu1;sðxÞ; ð5:59Þ

u2;−sðx̂Þ ¼ eisKðqiÞð−1Þαð−sÞu2;sðxÞ; ð5:60Þ

v1;−sðx̂Þ ¼ eisKðqiÞ
ð−1Þ
q0ðxÞ v1;sðxÞ; ð5:61Þ

v2;−sðx̂Þ ¼ eisKðqiÞ
αð−sÞ
q0ðxÞ v2;sðxÞ; ð5:62Þ

where now we must explicitly write the dependence of the
eigenfunctions with the parameter s because the above
expressions relate a eigenfunction of eigenvalue s with the
one of eigenvalue −s. In this case we have a no null phase
factor KðqiÞ ¼ 2 logðb2−b1a2−a1

Þ.

C. Completeness of the eigenvector system

Before we compute the mutual information and modular
Hamiltonian, we have to clarify if the eigenvector basis is
complete. When we explicitly constructed the eigenvectors,
we only considered solutions satisfying Eq. (5.5) in order to
simplify the calculation, but there was no further reason
to assume that. Now, we are able to show that any other
possible eigenvector must satisfy (5.5), and hence there are
no other eigenvectors than the ones already obtained. This
fact follows considering the s ¼ 0 solutions for u1 and u2.
Taking out an irrelevant factor of jsj−1=2 (which is com-
pensated by the inverse factor in the eigenfunctions v)
we have
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lim
s→0

ffiffiffiffiffiffiffiffiffiffi
4πjsj

p
u1ðx; sÞ ¼ 1; ð5:63Þ

lim
s→0

ffiffiffiffiffiffiffiffiffiffi
4πjsj

p
u2ðx; sÞ ¼ Θ1ðxÞ − Θ2ðxÞ: ð5:64Þ

The first one is proportional to a constant, the same in
the two intervals, while the second one is proportional to
two opposite constants in the two different intervals.
Hence, any third solution v3 for any s would be orthogonal
to u1ðs ¼ 0Þ and u2ðs ¼ 0Þ, and therefore must satisfy
(5.5). Therefore there cannot be any other eigenvectors for
two intervals.

D. Mutual information

In this section we compute the mutual information using
the formulas developed in the previous sections. As we did
for the one interval case, the equivalent expression of (4.27)
to the present case is

SðAÞ ¼
X2
k¼1

Z
AðϵÞ

dx
Z þ∞

0

ds uk;sðxÞv�k;sðxÞgðsÞ; ð5:65Þ

where AðϵÞ ¼ AðϵÞ
1 ∪ AðϵÞ

2 with AðϵÞ
i ¼ ðai þ ϵ; bi − ϵÞ is the

UV-regularized region and gðsÞ is given by (4.28). The
entropy is UV divergent, and it is more convenient to
express the result in terms of the mutual information

IðA1; A2Þ ¼ SðA1Þ þ SðA2Þ − SðA1 ∪ A2Þ; ð5:66Þ

which is finite and independent of regularization. The
one interval entropies SðAiÞ are obtained from (4.29).
Each term involved in Eq. (5.66) is UV divergent and
its corresponding regularizations cannot be chosen inde-
pendently. They must correspond to evaluate the integrals
(4.27) and (5.65) along the regularized regions as we have
already defined, with the same cutoff parameter ϵ for all the
terms. After that, we take the limit ϵ → 0þ and we get the
finite desired result for the mutual information.
Using the formulas (5.23) and (5.24), the first term on

(5.65) can be easily calculated,

S1ðAÞ ¼
Z
AðϵÞ

dx
Z þ∞

0

ds u1;sðxÞv�1;sðxÞgðsÞ

¼ 1

24

Z
AðϵÞ

dxω0ðxÞ ð5:67Þ

¼ 1

12
log

�ða2 − b1Þðb2 − a1Þ
ðb2 − b1Þða2 − a1Þ

�
þ 1

12
log

�
b1 − a1

ϵ

�

þ 1

12
log

�
b2 − a2

ϵ

�
ð5:68Þ

¼ 1

12
logð1 − ηÞ þ 1

2
SðA1Þ þ

1

2
SðA2Þ: ð5:69Þ

Direct treatment of the integral for the second eigen-
vector is more complicated due to the presence of hyper-
geometric and Appell functions in u2. We find it convenient
to use the following trick instead. Since the integral in
(5.65) is regularized, keeping ϵ fixed, we can replace

Z
AðϵÞ

dx u2;sðxÞv�2;sðxÞ ¼ lim
δs→0

Z
AðϵÞ

dx u2;sðxÞv�2;sþδsðxÞ

¼ lim
δs→0

�Z
A
dx u2;sðxÞv�2;sþδsðxÞ −

X
i¼1;2

�Z
aiþϵ

ai

dx u2;sðxÞv�2;sþδsðxÞ þ
Z

bi

bi−ϵ
dx u2;sðxÞv�2;sþδsðxÞ

��

¼ − lim
δs→0

X
i¼1;2

�Z
aiþϵ

ai

dx u2;sðxÞv�2;sþδsðxÞ þ
Z

bi

bi−ϵ
dx u2;sðxÞv�2;sþδsðxÞ

�
: ð5:70Þ

In the last step we have used the fact that vectors us and
vsþδs are orthogonal for δs ≠ 0. The advantage is that we do
not need now the precise behavior of the eigenfunctions
along the intervals but only in a small region near the end
point of the intervals. Then we can just take the leading
terms of us and vsþδs since all other subleading terms in ϵ
disappear in the limit ϵ → 0. From (5.23)–(5.26) these
leading terms are

u2;s ∼
ð−1Þiþ1ffiffiffiffiffiffiffiffiffiffi

4πjsjp e−isω for x ∼ ai;

u2;s ∼
ð−1Þiffiffiffiffiffiffiffiffiffiffi
4πjsjp αðs; ηÞe−isω for x ∼ bi; ð5:71Þ

v2;s ∼ ð−1Þiþ1

ffiffiffiffiffiffi
jsj
4π

r
e−isω

x − ai
for x ∼ ai;

v2;s ∼ ð−1Þiþ1αðs; ηÞ
ffiffiffiffiffiffi
jsj
4π

r
e−isω

x − bi
for x ∼ bi: ð5:72Þ

Plugging this back in (5.70) we get

S2ðAÞ ¼
1

12
logð1 − ηÞ þ 1

2
SðA1Þ þ

1

2
SðA2Þ

−
Z þ∞

0

ds
gðsÞ
2π

iαðs; ηÞ∂sα
�ðs; ηÞ: ð5:73Þ
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This implies

IðA1; A2Þ ¼ −
1

6
logð1 − ηÞ þUðηÞ; ð5:74Þ

where the first term in (5.74) coincides with the mutual
information of the free chiral fermion field [22,41], and,
taking into account that −iαðs; ηÞ∂sα

�ðs; ηÞ ¼ i∂s logðαÞ,
and integrating by parts, the second term is given by

UðηÞ¼−
iπ
2

Z þ∞

0

ds
s

sinh2ðπsÞ log
�

2F1ð1þ is;−is;1;ηÞ
2F1ð1− is; is;1;ηÞ

�
:

ð5:75Þ

We could not express this last integral in terms of standard
known functions, and it has to be performed numerically.
The result for UðηÞ is always negative, as it must be,
considering that the chiral current is a subalgebra of the
chiral fermion algebra,20 and hence the mutual information
has to be smaller [see formula (5.74)]. In Fig. 1 we show a
plot of the mutual information while the function UðηÞ is
shown in Fig. 2.
The mutual Renyi entropies InðηÞ ¼ SnðA1Þ þ SnðA2Þ −

SnðA1 ∪ A2Þ can be computed by replacing gðsÞ by gnðsÞ,
Eq. (4.30), in (5.73). Hence we get

InðηÞ ¼ −
nþ 1

12n
logð1 − ηÞ þ UnðηÞ; ð5:76Þ

with

UnðηÞ ¼
in

2ðn − 1Þ
Z þ∞

0

dsðcothðπsnÞ − cothðπsÞÞ

× log

�
2F1ð1þ is;−is; 1; ηÞ
2F1ð1 − is; is; 1; ηÞ

�
: ð5:77Þ

In Fig. 3 we show InðηÞ for some values of n.
We come back to discuss some aspects of these results in

the following sections. In the rest of this section we work
out the asymptotic expansions for the mutual information
for large and short distances between the intervals.

1. Asymptotic behavior for IðηÞ
Before we continue with the calculation of the modular

Hamiltonian, we analyze the asymptotic behavior of the
function UðηÞ in the limits η → 0 and η → 1.

0.0 0.2 0.4 0.6 0.8 1.0

�0.5

�0.4

�0.3

�0.2

�0.1

0.0

U

FIG. 2. The functionUðηÞ as a function of the cross ratio η. This
function is negative because the model of the current is a
subalgebra of the free fermion model. It does not have the η ↔
ð1 − ηÞ symmetry expected for the case where the entropy for two
intervals is equal to the entropy of its complement. UðηÞ has a
−1=2 logð− logð1 − ηÞÞ divergence for η → 1.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

I

FIG. 1. The mutual information IðA1; A2Þ as a function of the
cross ratio η. The continuous solid line corresponds to the
mutual information obtained by numerical integration of the
analytic expression (5.74) and (5.75). The red points corre-
spond to the simulation on the lattice as it is explained in
Sec. VII. The dashed line is the chiral free fermion mutual
information −ð1=6Þ logð1 − ηÞ.

0.0 0.2 0.4 0.6 0.8

0.00

0.05

0.10

0.15

I n

1.0

FIG. 3. The Renyi mutual information InðηÞ as a function of the
cross ratio η for different values of n. From top to bottom
n ¼ 1=3, 1=2, 1, 2, ∞. The mutual information I1ðηÞ ¼ IðηÞ is
shown with the dashed line.

20By bosonization the fermion current has exactly the same
n-point functions as jðxÞ.
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The η → 0 limit corresponds to the large distance limit
between the intervals. Since the integrand of (5.75) is
analytic at η ¼ 0, a simple Taylor expansion reveals the
following asymptotic behavior:

UðηÞ ¼ −
1

6
η −

1

15
η2 −

13

315
η3 þOðη4Þ: ð5:78Þ

This gives

IðηÞ ∼ η2

60
þ η3

70
þOðη4Þ: ð5:79Þ

The first term coincides with the general result for the
leading term of the large distance expansion of the mutual
information for CFT [28,29,42,43]. For two intervals this is

IðηÞ ∼
ffiffiffi
π

p
Γð2Δþ 1Þ

42Δþ1Γð2Δþ 3=2Þ η
2Δ; ð5:80Þ

where Δ is the lowest dimensional operator of the theory.
In the present model this is jðxÞ ¼ ∂ϕðxÞ and has Δ ¼ 1.
The fermion has Δ ¼ 1=2 and a different behavior IðηÞ ∼
ð1=6Þη at large distances, which is quite visible in Fig. 1.
The short distance limit η → 1 is more tricky, since the

integrand of (5.75) converges to 0 in a nonuniform way in
such a limit. The main contribution to UðηÞ in this limit
comes from s ∼ 0. We have to expand the hypergeometric
functions at the numerator and denominator inside the
logarithm in (5.75) for η ∼ 1 and s ∼ 0 to get

UðηÞ ∼ −
iπ
2

Z þ∞

0

ds
s

sinh2ðπsÞ log
�
i − s logð1 − ηÞ
iþ s logð1 − ηÞ

�

∼ −
1

2
logð− logð1 − ηÞÞ: ð5:81Þ

This gives the expansion

IðηÞ ∼ −
1

6
logð1 − ηÞ − 1

2
logð− logð1 − ηÞÞ: ð5:82Þ

E. Modular Hamiltonian

We have now all the necessary elements to compute the
modular Hamiltonian. This is

H ¼
Z
A
dx

Z
A
dy jðxÞHðx; yÞjðyÞ; ð5:83Þ

where, according to (4.25), the kernel becomes

Hðx; yÞ ¼
X2
k¼1

Z
∞

−∞
ds uk;sðxÞπjsju�k;sðyÞ: ð5:84Þ

The kernel is real and symmetric.

As the expression for this Hamiltonian turns out to be
quite complex, we need to start with some preliminaries
about how we are going to express the results. Our first
simplification is to express the kernel in the four sectors
A1 × A1, A1 × A2, A2 × A1 and A2 × A2, which we call
respectively H11, H12, H21, H22, in terms of the kernel in
the first interval alone, H11, using the parity symmetry of
the eigenfunctions.
Let us start by computing the contribution of the first

eigenvector u1 to H11,Z þ∞

−∞
ds u1;sðxÞπjsju�1;sðyÞ ¼

1

4

Z þ∞

−∞
ds s eisðωðxÞ−ωðyÞÞ

¼ π

2

δðx − x1ðωðyÞÞÞ
ω0ðxÞ

¼ π

2
ω0ðxÞ−1δðx − yÞ; ð5:85Þ

where we set x, y ∈ A1 and hence we have summed over
only one of the roots of ωðxÞ ¼ ωðyÞ in the delta function.
We find it convenient to write

H11ðx; yÞ ¼ πω0ðxÞ−1δðx − yÞ þ Nðx; yÞ; x; y ∈ A1;

ð5:86Þ

that is, we have doubled the delta function contribution by
u1, and the remaining part is, from (5.84) and (5.85),

Nðx;yÞ¼
Z þ∞

−∞
dsπjsj½u2ðxÞu�2ðyÞ−u1ðxÞu�1ðyÞ�: ð5:87Þ

It turns out that Nðx; yÞ is a regular distribution.21 Hence
it gives the purely nonlocal contribution to the modular
Hamiltonian.
Now, we recall the parity symmetry of the eigenfunctions

studied in Sec. V B under the conformal transformation
x̄ ¼ pðxÞ that interchanges the intervals, Eq. (5.47). We
have u1ðx̄Þ ¼ u1ðxÞ and u2ðx̄Þ ¼ −u2ðxÞ. These relations
give the following relations between the kernel of the
modular Hamiltonian in the different sectors

H12ðx; yÞ ¼ H21ðy; xÞ ¼ −Nðx; ȳÞ; x ∈ A1; y ∈ A2;

ð5:88Þ

H22ðx; yÞ ¼ H11ðx̄; ȳÞ; x ∈ A2; y ∈ A2: ð5:89Þ

These relations, together with (5.86), reduce the problem to
the one of finding the form of the kernelNðx; yÞ in A1 × A1.
Unless otherwise stated, in the following we assume x and
y belong to the first interval.
A different parity symmetry, (5.58), implies the kernel

Nðx; yÞ, x, y ∈ A1 satisfies

21It is a locally integrable function.
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Nðx; yÞ ¼ Nðx̂; ŷÞ; ð5:90Þ

where the transformation x → x̂ is given by (5.58). This
follows from the corresponding symmetry of the eigen-
vectors (5.59) and (5.60).
Another simplification is that we can relate all two

interval cases with cross ratio η between the four end points
of the intervals to the case where the two interval region
is the standard region Aη ¼ ð0; ηÞ ∪ ð1;∞Þ. This is done
using the action of the conformal transformation x0 ¼ f1ðxÞ
given by (5.28) on the eigenvectors, Eq. (5.31). This simply
gives

NAðx; yÞ ¼ Nηðx0; y0Þ; ð5:91Þ

where we wrote explicitly the dependence on the two
interval regions. In the following we call simplyNðx0; y0Þ to
the kernel on the right-hand side of (5.91), and keep
x0, y0 ∈ ð0; ηÞ. That is, we focus on the first interval in
the case where the region is Aη.
An evaluation of Nðx0; y0Þ requires the integration over s,

which turns out to be the Fourier transform of products of
Appell functions contained in u2, Eq. (5.40). This obscures
the structure of the kernel due to the complexity of these
functions, and in particular the analysis of the possible
singular terms. Instead we proceed in the following way.
We first write the vectors us as

usðx0Þ ¼ −isignðsÞ⨍ x00 dx̃ vsðx̃Þ: ð5:92Þ

Then we make the integral in s that is more amenable.
Therefore we write

Nðx0; y0Þ ¼
Z

x0

0

dx̃
Z

y0

0

dỹ Kðx̃; ỹÞ; ð5:93Þ

with

Kðx̃; ỹÞ ¼
Z þ∞

−∞
ds πjsj½v2ðx̃Þv�2ðỹÞ − v1ðx̃Þv�1ðỹÞ�: ð5:94Þ

We split the above kernel in two contributionsK1 andK2

corresponding to v1 and v2. Using (5.39) we get

K1ðx0; y0Þ ¼
π

2
ω̃0ðx0Þω̃0ðy0Þδ00ðω̃ðx0Þ − ω̃ðy0ÞÞ; ð5:95Þ

where

ω̃ðx0Þ ¼ log

�
x0ð1 − x0Þ
η − x0

�
: ð5:96Þ

For the other term we use (5.41) and hence

K2ðx0; y0Þ ¼
Z

∞

−∞
ds πjsj 1

f01ðxÞ
1

f01ðxÞ
v2;sðxÞv�2;sðyÞ

¼ 1

4

Z
∞

−∞
ds s2e−isðω̃ðx0Þ−ω̃ðy0ÞÞ

×

�
1

x0
þ αðs; ηÞ

x0 − η
−

1

x0 − 1

�

×

�
1

y0
þ αð−s; ηÞ

y0 − η
−

1

y0 − 1

�
¼ K

2;=αðx0; y0Þ þ K2;αðx0; y0Þ; ð5:97Þ

where

K
2;=αðx0; y0Þ ¼ −

π

2

��
1

x0
−

1

x0 − 1

��
1

y0
−

1

y0 − 1

�

þ 1

x0 − η

1

y0 − η

�
δ00ðzÞ; ð5:98Þ

K2;αðx0; y0Þ ¼
π

2

�
1

x0
−

1

x0 − 1

�
1

y0 − η
α̂ðzÞ

þ π

2

1

x0 − η

�
1

y0
−

1

y0 − 1

�
α̂ð−zÞ; ð5:99Þ

where z ¼ ω̃ðx0Þ − ω̃ðy0Þ, and we have also introduced the
function

α̂ðz; ηÞ ¼ 1

2π

Z
∞

−∞
ds s2αðs; ηÞeisz:

(5.98) and (5.99) are respectively the α-independent and
α-dependent contributions to the kernel K2ðx0; y0Þ.
This gives the kernel Nðx0; y0Þ as a double integral over

the sum of (5.95), (5.98) and (5.99). The final result depends
on the Fourier transform of the function s2αðs; ηÞ, which has
to be computed numerically. This numerical computation
can be done after we have extracted the leading terms for
s → ∞ from αðs; ηÞ. This also helps to understand the
structure of singularities of these kernels. In the following we
will make a further analysis of their local and nonlocal parts.

1. Structure of singular terms

The asymptotic behavior of the hypergeometric func-
tions in αðs; ηÞ for large s can be computed using the
integral representation and the saddle point approximation.
This is straightforward. The leading term was computed for
example in [44]. Extending this calculation to include
fluctuations around the saddle point we get the asymptotic
expansion

αðs; ηÞ ¼ α0 þ
α1
s
þ α2

s2
þ α3

s3
þOðjsj−4Þ; jsj → ∞;

ð5:100Þ
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where

α0 ¼ ð2η − 1Þ þ i2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p
signðsÞ; ð5:101Þ

α1 ¼
i
2
ð2η − 1Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p
signðsÞ; ð5:102Þ

α2 ¼ −
i
16

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞp signðsÞ; ð5:103Þ

α3 ¼ −
1

32

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞp signðsÞ þ i

1

32

ð2η − 1Þ
ηð1 − ηÞ : ð5:104Þ

Instead of extracting these asymptotic terms directly, we
write

αðs; ηÞ ¼ α̃0 þ
α̃1
s
þ α̃2

s2
þ α̃3

s3
þ αrðs; ηÞ; ð5:105Þ

where now

α̃0 ¼ ð2η − 1Þ þ i2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p
tanh

�
π

2
s

�
; ð5:106Þ

α̃1 ¼
i
2
ð2η − 1Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p
tanh

�
π

2
s

�
; ð5:107Þ

α̃2 ¼ −
i
16

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞp tanh

�
π

2
s

�
; ð5:108Þ

α̃3 ¼ −
1

32

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞp tanh

�
πs
2

�
þ i

1

32

ð2η − 1Þ
ηð1 − ηÞ

s2

s2 þ 1
;

ð5:109Þ

and the remaining function αrðs; ηÞ is smooth in the
parameter s and αrðs; ηÞ ∼ 1

s4 when jsj → ∞. The Fourier
transform of s2αðs; ηÞ is

α̂ðz; ηÞ ¼ 1

2π

Z
∞

−∞
ds s2αðs; ηÞeisz ¼ 1

2π

Z
∞

−∞
ds s2

�
α̃0 þ

α̃1
s
þ α̃2

s2
þ α̃3

s3
þ αrðs; ηÞ

�
eisz

¼ ð1 − 2ηÞδ00ðzÞ þ 1

2
ð2η − 1Þδ0ðzÞ þ 1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p
ð3þ cosh ð2zÞÞcsch3ðzÞ þ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p
sinh ð2zÞcsch3ðzÞ

þ 1

16π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞp cschðzÞ þ 1

32π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞp log

�
tanh

���� z2
����
�
þ 1

64

1 − 2η

ηð1 − ηÞ signðzÞe
−jzj þ α̂rðz; ηÞ; ð5:110Þ

where α̂rðz; ηÞ is the Fourier transform of s2αrðs; ηÞ. This is a continuous function vanishing exponentially fast at infinity.
This real function is computed numerically, and ii is shown in Fig. 4 for some values of η. Putting this all together we
finally get

Kðx0; y0Þ ¼ K1ðx0; y0Þ þ K2ðx0; y0Þ ¼ K1ðx0; y0Þ þ K2;αðx0; y0Þ þ K
2;=αðx0; y0Þ

¼ kδ00 ðx0; y0; ηÞδ00ðzÞ þ kδ0 ðx0; y0; ηÞδ0ðzÞ þ kiðx0; y0; ηÞ þ krðx0; y0; ηÞ; ð5:111Þ

where

kδ00 ðx0; y0; ηÞ ¼
π

2
ω̃0ðx0Þω̃0ðy0Þ − π

2

�
1

x0ð1 − x0Þy0ð1 − y0Þ þ
1

ðη − x0Þðη − y0Þ
�
þ π

2
ð2η − 1Þ

�
1

rðx0; y0Þ þ
1

rðy0; x0Þ
�
; ð5:112Þ

kδ0 ðx0; y0; ηÞ ¼ −
π

4
ð2η − 1Þ

�
1

rðx0; y0Þ −
1

rðy0; x0Þ
�
; ð5:113Þ

kiðx0; y0; ηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p ½rðx0; y0Þ − rðy0; x0Þ�2
½rðx0; y0Þ þ rðy0; x0Þ�3 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ

p rðx0; y0Þrðy0; x0Þ
½rðx0; y0Þ − rðy0; x0Þ�2½rðx0; y0Þ þ rðy0; x0Þ�

þ 1

16

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞp 1

rðx0; y0Þ þ rðy0; x0Þ −
1

64

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞp rðx0; y0Þ þ rðy0; x0Þ

rðx0; y0Þrðy0; x0Þ log

���� rðx0; y0Þ − rðy0; x0Þ
rðx0; y0Þ þ rðy0; x0Þ

����
−

π

128

ð2η − 1Þ
ηð1 − ηÞ ½rðx

0; y0Þ − rðy0; x0Þ�
�
Θðx − yÞ 1

rðx0; y0Þ2 − Θðy − xÞ 1

rðy0; x0Þ2
�

ð5:114Þ
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krðx0; y0; ηÞ ¼ −
π

2

1

rðx0; y0Þ α̂rðz; ηÞ −
π

2

1

rðy0; x0Þ α̂rð−z; ηÞ;

ð5:115Þ

where we have defined the positive polynomial function

rðx0; y0Þ ¼ x0ð1 − x0Þðη − y0Þ > 0: ð5:116Þ

The singular terms can be simplified rewriting the Dirac
delta distributions in terms of the variable x − y. A careful
computation reveals the relations22

kδ00 ðx0; y0; ηÞδ00ðω̃ðx0Þ − ω̃ðy0ÞÞ

¼ 2πηð1 − ηÞ x
0ð1 − x0Þðη − x0Þ
ðηþ x02 − 2ηx0Þ3 δðx

0 − y0Þ; ð5:117Þ

kδ0 ðx0; y0; ηÞδ0ðω̃ðx0Þ − ω̃ðy0ÞÞ ¼ π

4

ð1 − 2ηÞ
ηþ x02 − 2ηx0

δðx0 − y0Þ:

ð5:118Þ

Therefore, upon integration in (5.93) these terms behave
as ordinary functions, and they produce a singularity in
Nðx0; y0Þ which is just a jump in the first derivative for
x0 ¼ y0.
In a similar way, expanding for x0 ∼ y0 the term (5.114)

reveals that it behaves as ðx0 − y0Þ−2 for x0 → y0. Upon
integration, this gives a log jx0 − y0j singularity for
Nðx0; y0Þ. Hence, this shows that the nonlocal kernel
Nðx0; y0Þ is given by a regular distribution.
The behavior of the kernel Kðx0; y0Þ on the extremes of

the interval, for example for x0 → 0 and y0 fixed, can be

seen more clearly from (5.95), (5.98) and (5.99). The only
nonlocal contribution comes from the Fourier transform
of s2αðη; sÞ,

Kðx0; y0Þ ∼ π

2x0
1

y0 − η
α̂ðlogðx0Þ; ηÞ; x0 ∼ 0: ð5:119Þ

Since αðη; sÞ is an infinite differentiable function of s its
Fourier transform falls faster than any power of the
variable. Therefore Kðx0; y0Þ is integrable on the boundary,
and that is the reason we have not needed to use a
regularization in (5.93).23 As a result Nðx0; y0Þ fall to 0
faster than any power of logðx0Þ−1 for x0 ∼ 0.
A simplification in the structure of the nonlocal kernel

Nðx0; y0Þ arises if we take into account that the integrationR
A0
1
dx0vksðx0Þ ¼ 0. Hence, using (5.94) we could write

(5.93) as

Nðx0;y0Þ ¼−
Z

x0

0

dx̃
Z

η

y0
dỹðkiðx̃; ỹÞþkrðx̃; ỹÞÞ; x0 <y0;

ð5:120Þ

Nðx0;y0Þ ¼−
Z

η

x0
dx̃

Z
y0

0

dỹðkiðx̃; ỹÞþkrðx̃; ỹÞÞ; x0 >y0:

ð5:121Þ

In this way we avoid crossing the x̃ ¼ ỹ line in the
integration, and therefore the delta functions (5.117) and
(5.118) do not contribute. Moreover, the integrals are
now completely regular and can be done numerically
since we do not have to cross the singular points of the
distribution. We checked that these expressions coincide
with (5.93).24 A contour plot of Nðx0; y0Þ for η ¼ 9=10 is
shown in Fig. 5.

2. Summary of the modular Hamiltonian
for two intervals

Summarizing the results, the modular Hamiltonian con-
tains a local part and a nonlocal part

H ¼ Hloc þHnoloc: ð5:122Þ

The local part, generated by the delta function in (5.86) and
(5.89), gives a contribution to the modular Hamiltonian that
writes on the full region A as

10 5 0 5 10

0.02

0.00

0.02

0.04

0.06

r

z

FIG. 4. The function α̂rðzÞ for different values of η, blue
η ¼ 1=3, green η ¼ 1=2, and red η ¼ 2=3.

22The reason that a term containing two derivatives of the
Dirac delta function becomes just a term proportional to
δðx0 − y0Þ is that the prefactor function behaves as kδ00 ðx0; y0; ηÞ ∼
Oðx0 − y0Þ2 for x0 → y0.

23That is, the regularizing terms in the integral of vs as in (4.17)
do not contribute if we make the integral in s first.

24We have evaluated (5.93) extracting the singular contribution
and integrating it analytically, and adding the numerical integral
of the regular parts.
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Hloc ¼
Z
A
dx πðω0ðxÞÞ−1jðxÞ2 ¼

Z
A
dx 2πðω0ðxÞÞ−1TðxÞ;

ð5:123Þ

where TðxÞ ¼ 1=2j2ðxÞ is the energy density. The quantity
βðxÞ ¼ 2πðω0ðxÞÞ−1 acts as the local inverse temperature
multiplying the energy density operator and controls the
limit of relative entropy between the vacuum and energetic
localized excitations around x [21]. This term, written in
terms of the energy density, is equal to the local term of the
modular Hamiltonian for the free fermion studied in Sec. II.
This result coincides with general expectations for this term
to be universal across two-dimensional theories [20,21].
The nonlocal part of the modular Hamiltonian is

Hnoloc ¼
Z
A1×A1

dx dy jðxÞNðx; yÞjðyÞ

−
Z
A1×A2

dx dy jðxÞNðx; ȳÞjðyÞ

−
Z
A2×A1

dx dy jðxÞNðx̄; yÞjðyÞ

þ
Z
A2×A2

dx dy jðxÞNðx̄; ȳÞjðyÞ: ð5:124Þ

The relevant kernel, Nðx; yÞ, follows from (5.120), (5.121),
(5.114) and (5.115). In contrast to the case of the fermion,
here it is less singular than the local term. It is given by an
integrable function, with at most a log jx − yj singularity for
x ∼ y. Again in contrast to the fermion case, the modular

Hamiltonian is completely nonlocal; the kernel does not
vanish identically in any open set of A × A.
The modular flow is defined as the unitary transforma-

tionOðτÞ ¼ eiτHOe−iτH of the operators localized in A. For
an operator linear in the currentOðτÞ ¼ R

dxγðx; τÞjðxÞ we
have the linear flow equation

∂τγðx; τÞ ¼ −βðxÞ∂xγðx; τÞ − 2

Z
A
dyNðx; yÞ∂yγðy; τÞ:

ð5:125Þ

Then, if we start with a γðx; 0Þ localized in an open interval
inside the first interval A1 and separated away from the
boundary of A by a finite distance, for any τ ≠ 0 the
function γðA; τÞ spreads everywhere in both intervals
A1 and A2. The expectation value hO†ðτÞOðτÞi should
be finite. From the correlator (3.3) it follows that the
Fourier transform γ̂ðp; τÞ of γðx; τÞ should satisfyR
dpjγ̂ðp; τÞj2jpj < ∞. This does not allow for a sharp

discontinuity in the test function γðx; τÞ at the boundary of
A that would give γ̂ðp; τÞ ∼ p−1. However, a term falling
like the boundary behavior of Nðx; yÞ [that is, falling to 0
with x as x → 0 faster than any power of logðxÞ−1] can keep
the test function in the space of allowed functions.
Of course, the eigenvectors of the modular Hamiltonian

kernel diagonalize the modular flow. If we decompose the
test function

γðx; τÞ ¼
X2
k¼1

Z
ds γ̃kðs; τÞuksðxÞ; ð5:126Þ

γ̃kðs; τÞ ¼
Z
A
dx vksðxÞ�γðx; τÞ; ð5:127Þ

the flow equation gets diagonalized according to (5.93),

γ̃ðs; τÞ ¼ e2πsiγ̃ðs; 0Þ: ð5:128Þ

VI. FAILURE OF HAAG DUALITY
FOR TWO INTERVALS

For simplicity, in this section we compactify the line and
think in a circle S1 instead. Let us consider two disjoint
intervals A1, A2 in the circle, and the complement is formed
by two disjoint intervals that we call A3, A4. We call A0 the
complement of a region A; hence ðA1 ∪ A2Þ0 ¼ A3 ∪ A4. If
the global state is pure one usually assumes

SðA1 ∪ A2Þ ¼ SðA3 ∪ A4Þ: ð6:1Þ

This is equivalent to

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

x,

y,

0.45

0.20

0.10

0.05

FIG. 5. A contour plot of the kernel Nðx0; y0Þ giving the
nonlocal part of the modular Hamiltonian for two intervals
for η ¼ 9=10. Nðx0; y0Þ has a logarithmic divergence along the
diagonal.
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IðA1;A2Þ ¼ IðA3;A4Þ þ ðSðA1Þ þ SðA2Þ− SðA3Þ− SðA4ÞÞ:
ð6:2Þ

Taking into account that the mutual information is a
function of the cross ratio and that the entropies for single
intervals are equal to the one of complementary intervals,
we can express this relation for the model in the line as

IðηÞ ¼ Ið1 − ηÞ þ 1

6
log

�
η

1 − η

�
; ð6:3Þ

or equivalently [32]

UðηÞ ¼ Uð1 − ηÞ: ð6:4Þ

That is, the symmetry property for the entropy of comple-
mentary regions (6.1) gives the symmetry of the function
UðηÞ. This symmetry has also been shown as a conse-
quence of modular invariance of two-dimensional CFTs.
We have seen that this symmetry is not present for the
free chiral current. This is not a problem of the continuum
limit; the same happens in a finite lattice as we show in
the next section. In the rest of this section we explain how it
is possible.
The essential reason is that we have two basic choices

for algebras of the two intervals. Let us call A0 to the
commutant of the algebra A, that is, the set of all bounded
operators that commute with all operators ofA. If we take a
set of operators S, the smallest algebra containing this set is
S00. This is the generated algebra by S. The first choice of
algebra for two intervals is just the algebra generated by
jðxÞ for x in the region, and we call it

Að1ÞðA1 ∪ A2Þ ¼

�Z

dx αðxÞjðxÞ
�
; αðxÞ ¼ 0

for x ∈ ðA1 ∪ A2Þ0
�00

: ð6:5Þ

Here we are smearing the field inside the region.25

There is another algebra that can be attached to the two
intervals, which consists of adding another operator to the
generating set of the previous algebra. This is given by

Φ12 ¼
Z

dx fðxÞjðxÞ; ð6:6Þ

where fðxÞ is any smooth function such that

fðxÞ ¼


1 x ∈ A3

0 x ∈ A4

: ð6:7Þ

The second algebra is generated by Að1ÞðA1 ∪ A2Þ and
this new operator26

Að2ÞðA1 ∪ A2Þ ¼ Að1ÞðA1 ∪ A2Þ∨fΦ12g: ð6:8Þ

It is evident that any two operators Φ12 given by two
different functions fðxÞ with the above properties differ by
an element of Að1ÞðA1 ∪ A2Þ, and therefore the choice of
fðxÞ satisfying these properties does not change the algebra
Að2ÞðA1 ∪ A2Þ. Note, we can define Að2ÞðA1 ∪ A2Þ as the
algebra of A1 ∪ A2 becauseΦ12 actually commutes with all
jðxÞ for x ∈ A3 ∪ A4. This is precisely because fðxÞ is
constant in A3 ∪ A4, and the commutation relations (3.1).
Notice these are two possible different algebra choices for
the same underlying theory and for the same region.
We call the mode Φ12 a “long link” joining A1 with A2,

since being the integral of ∂þϕ, it is equivalent to some
difference of the field ϕ localized inside the two intervals.
However, in this model the field ϕ does not actually exist,
and the only way to write this operator is through an
integral of the current as in (6.6).
There is still the possibility of adding a long link crossing

the interval A4, rather than A3 as in Φ12. However, a sum of
these two long links is [modulo operators inAð1ÞðA1 ∪ A2Þ]
equivalent to the integral of the current on the circleH
dx jðxÞ. This last operator commutes with all the algebra

and generates the global center. In a specific Hilbert
space representation this operator takes a fixed value and
then would be equivalent to a multiple of the identity
operator. Hence the two options for the long link are
actually equivalent.
Now, we can define in an analogous way the algebras

Að1ÞðA3 ∪ A4Þ and Að2ÞðA3 ∪ A4Þ. A long link crossing A1

for example would be

Φ34 ¼
Z

dx gðxÞjðxÞ; ð6:9Þ

with

gðxÞ ¼


1 x ∈ A1

0 x ∈ A2

: ð6:10Þ

It follows from the commutation relations that

½Φ12;Φ34� ¼ i
Z

dx fðxÞg0ðxÞ ¼ i ≠ 0: ð6:11Þ25There is an additional technical point in getting algebras of
bounded operators that can be thought as doing the spectral
decomposition of the smeared fields and taking the algebra of the
projectors, or, equivalently, taking the algebra of the exponentials
of these operators. We are assuming this step when writing the
generated algebra as in (6.5).

26More correctly one should add the spectral projectors of this
operator or the unitaries eiaΦ12 for all a ∈ R.
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Therefore Að2ÞðA1 ∪ A2Þ and Að2ÞðA3 ∪ A4Þ do not com-
mute, and cannot be the algebras of complementary
regions. Instead we have27

ðAð1ÞðA1 ∪ A2ÞÞ0 ¼ Að2ÞðA3 ∪ A4Þ; ð6:12Þ

ðAð2ÞðA1 ∪ A2ÞÞ0 ¼ Að1ÞðA3 ∪ A4Þ: ð6:13Þ

In general, the algebras of complementary regions V
and V̄ commute, i.e., AðV̄Þ ⊆ ðAðVÞÞ0. If this inclusion is
instead an equality, i.e., AðV̄Þ ¼ ðAðVÞÞ0, it is said that the
model satisfies Haag duality for the region V. Hence, in
order to have Haag duality for a two interval region in this
model one should choose the long link for one of the pairs
of intervals and not for the complementary one. This
prescription necessarily does not treat in an equivalent
way all pairs of intervals. Another perhaps more disturbing
consequence of this choice is that the algebra Að2Þ con-
taining the long link is not additive, meaning that it is not
the generated algebra by the algebras of the two intervals.
This is because the long link does not belong to the algebra
generated by the single intervals. Hence we can have
additivity at the expense of Haag duality, or vice versa,
but not both properties together. The natural choice is the
Að1ÞðA1 ∪ A2Þ because it can be consistently assigned to
any two interval regions, and because of the additivity
property, it is the only choice that allows the definition of
mutual information.
The relation (6.1) holds for example when the comple-

mentary regions correspond to a tensor product of full
algebras in a lattice and the global state is pure. This
situation always gives Haag duality. In the present case,
failure of Haag duality indicates that one can still think in
terms of tensor products (in a regularized model) but where
one of the factors does not have an interpretation in terms of
the algebra of two intervals; it contains additional long-link
operators. Hence, for the chiral current Eq. (6.1) fails not
because the global state is not pure but because of failure of
Haag duality; i.e., the commutant of the algebra of a region
is not the algebra of the complementary region.
It is worth noticing that the algebra of the current jðxÞ is

a subalgebra of the free massless chiral fermion. It is
precisely the subalgebra generated by the fermion current
ψ†ψ . The fermion is an extension of the current algebra,
and it is one that satisfies Haag duality for two intervals.28

This is why for the fermionUðηÞ ¼ Uð1 − ηÞ since trivially
UðηÞ≡ 0. It is by reducing the theory to the current algebra
that we run into this particular trouble. The current
subalgebras of the free fermion for two intervals are of

the formAð1Þ, since the long link (6.6) measures the charge
in A3 and does not commute with the charged fermion field.
This failure of Haag duality for two intervals in

general chiral conformal models has been associated to
an algebraic index (μ-index) of the inclusion of subalgebras
Að1ÞðA3 ∪ A3Þ ⊂ ðAð1ÞðA1 ∪ A2ÞÞ0 ¼ Að2ÞðA3 ∪ A4Þ [34].
This index should also determine the amount of asymmetry
in the mutual information [35] as29

Uð0Þ −Uð1Þ ¼ 1

2
logðμÞ: ð6:14Þ

In the present model we have seen this is divergent, in
accordance with the fact that the μ-index of the current is
infinity.30

A. Two chiralities and restoration of Haag duality

From the point of view of CFT in d ¼ 2 it might seem
strange that we could have Haag duality violation for two
intervals and hence UðηÞ ≠ Uð1 − ηÞ. This property can be
derived from modular invariance of the twist operators
giving place to the Renyi entropies [33]. The reason is that
Haag duality can be restored by adequately combining two
chiral theories.
Let us look at the example of the massless limit of a free

massive scalar. The usual local algebra for a massive scalar
in d ¼ 2 is Haag dual and additive for two “diamonds,”
corresponding to two intervals in the spatial line at t ¼ 0.
At zero mass the zero mode of the scalar field has divergent
mean quadratic variation and has to be removed. Then
what remains are spatial and time derivatives of the field.
With these we can form ∂�ϕ, the two chiral currents. For a
single diamond, the algebra is then equivalent to the one of
two decoupled chiral currents in an interval. For two
diamonds however, the algebra also contains the difference
ϕðx2Þ − ϕðx1Þ, with x1 and x2 belonging to the two
different diamonds. We can take x1, x2 on the two intervals
at t ¼ 0. This is

ϕðx2Þ − ϕðx1Þ ¼
Z

x2

x1

dx ∂xϕð0; xÞ

¼
Z

xþ
2

xþ
1

dxþ∂þϕðxÞ −
Z

x−
2

x−
1

dx−∂−ϕðxÞ:

ð6:15Þ

Hence, the two diamonds contain the difference of long
link operators corresponding to the two chiral algebras.
However, they do not contain the sum of these long link

27This can be shown easily in the finite lattice model of the
next section.

28The fields with odd fermionic number are included in the
regions by slightly generalizing the causality requirement [45].
The fermion model is also additive.

29The paper [35] proves this relation for subalgebras of the free
fermion field and conjectures its greater validity for chiral CFT
models.

30We thank Roberto Longo for clarifications on the material of
this section.
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operators, and therefore the chiralities do not decouple for
two diamonds. This is the reason these algebras for the two
diamonds are compatible with the ones of the two com-
plementary diamonds: the chiral long link operators do not
commute to each other but their sum does, since commu-
tators come out with opposite sign. Thinking in terms of the
field differences (6.15) this commutation is evident.
Therefore these algebras have the same form for all pairs
of diamonds and Haag duality is retained.31 However,
without the zero mode, additivity is lost in this example.
The massless limit of the mutual information of two
intervals is divergent as I ∼ 1=2 logð− logðmÞÞ [37].

VII. THE CHIRAL CURRENT IN THE LATTICE

For doing numerical simulations we put the model in a
lattice. We take the lattice Hamiltonian

H ¼ 1

2

X
f2i ; ð7:1Þ

and the commutator

½fi; fj� ¼ iðδj;iþ1 − δj;i−1Þ≡ iC: ð7:2Þ

Let us take a periodic system, and in order for C to be
invertible, we take an even number N ¼ 2n of points. The
eigenvectors of the commutator are given by phase factors

X
j

Cjleikl¼2isinðkÞeikj; k¼2πm
N

; m¼−ðn−1Þ;…;n:

ð7:3Þ

From here it follows that, defining the following variables
for 0 < k < π [that is, m ∈ ð1; n − 1Þ],

ϕk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N sinðkÞp X
j

cosðkjÞfj; ð7:4Þ

πk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N sinðkÞp X
j

sinðkjÞfj; ð7:5Þ

they are canonical conjugates, ½ϕk; πk0 � ¼ iδk;k0 . There are
another two variables that form a global center of the
algebra since they commute with all other elements,

ψ0 ¼
1ffiffiffiffi
N

p
X
j

fj; ψπ ¼
1ffiffiffiffi
N

p
X
j

ð−1Þjfj: ð7:6Þ

The inverse relation is

fj ¼
2ffiffiffiffi
N

p
X
0<k<π

ffiffiffiffiffiffiffiffiffiffiffiffi
sinðkÞ

p
ðcosðkjÞϕk þ sinðkjÞπkÞ

þ ψ0ffiffiffiffi
N

p þ ψπð−1Þjffiffiffiffi
N

p : ð7:7Þ

The Hamiltonian then writes in these new variables

H ¼
X
0<k<π

sinðkÞðϕ2
k þ π2kÞ þ

1

2
ψ2
0 þ

1

2
ψ2
π: ð7:8Þ

This gives for the vacuum state hϕ2
ki ¼ hπ2ki ¼ 1=2,

hϕkπki ¼ i=2. The center can take any value and we set
ψ0 ¼ ψπ ¼ 0. Hence we impose these relations as a
constraint. In this way we get a pure vacuum state and
a global algebra without center. The full system has now
n − 1 degrees of freedom: n − 1 coordinates and n − 1
momentum variables.
We see from (7.8) that we have two sets of low energy

degrees of freedom, for k ∼ 0 and k ∼ π. Hence the system
shows doubling of degree of freedom in the continuum,
analogous to the usual fermion doubling. This is also the
reason we have two commuting operators ψ0 and ψπ .
The correlator of the original variables Fði − jÞ ¼ hfifji

is given by

FðxÞ ¼ 1

N

cos2ðπx
2
Þ sinð2πN Þ

sinðπðxþ1Þ
N Þ cosðπðx−1þN=2Þ

N Þ
; jxj ≠ 1; ð7:9Þ

FðxÞ ¼ i
2
CðxÞ; jxj ¼ 1: ð7:10Þ

In the limit of a large circle N → ∞ we have

FðxÞ ¼ −
1þ ð−1Þx
πðx2 − 1Þ ; jxj ≠ 1; ð7:11Þ

FðxÞ ¼ i
2
CðxÞ; jxj ¼ 1: ð7:12Þ

The entropy of a region follows from (A14) and (A16).
We first check numerically the entropy for an interval.
We calculate the matrices (7.2) and (7.11) for intervals
of length R ¼ 10k with k ¼ 1;…; 20. We fit the pairs
ðRk; SðRkÞÞ with c0 þ clog log kþ c−1 1

k þ c−2 1
k2 obtaining

the logarithmic coefficient clog ¼ 1=3 with high precision.
Notice this coefficient is twice the expected one for the
chiral current model. This reflects the doubling on the
lattice.
To calculate the mutual information between two inter-

vals of length a and b separated by a distance c, that is,
IðA;BÞ ¼ SðAÞ þ SðBÞ − SðA ∪ BÞ, we need the entropies
of the single intervals SðAÞ and SðBÞ and the entropy of the
two intervals SðA ∪ BÞ. Each of these entropies is calcu-
lated using (A14) and (A16). In the continuum limit the

31Note that the tensor product of the two chiral scalars in two
intervals gives a different algebra, which can be associated with
four (nonspacelike separated) diamonds in Minkowski space.

ENTROPY AND MODULAR HAMILTONIAN FOR A FREE … PHYS. REV. D 98, 125008 (2018)

125008-27



mutual information is a function of the cross ratio η,
IðA;BÞ ¼ IðηÞ where η is defined as

η ¼ a:b
ðaþ cÞðbþ cÞ ; ð7:13Þ

in accordance to (5.27). For a given cross ratio, we repeat
the calculation for different configurations that differ
one from another just by a dilatation with parameter
k ¼ 2; 4;…; 20. We then fit the pairs ðk; IkðηÞÞ with
c0 þ c−1 1

k þ c−2 1
k2 þ c−3 1

k3 and take the constant coeffi-
cient c0 as the continuum limit of the mutual information
for the lattice model, which is twice the chiral current
model due to doubling. We then take IðηÞ ¼ c0=2. We
repeat the same procedure for different values of η
obtaining the red points shown in Fig. 1.
In doing simulations for this model it is important that, if

N is finite, we take the total number of points even N ¼ 2n,
and, in order not to have a center, the subsystems need to
have an even number of points or variables (intervals of
even size). This is because half of them are coordinates and
half are momentum. The complementary subsystems auto-
matically must have equal entropy because the global state
is pure. For example, for an interval of size 2k in a circle of
size 2n, the commutant is an interval of size 2n − 2k − 2,
because there are two points in the complementary region
adjacent to the interval that do not commute with the
original interval. The entropies are indeed equal. When we
consider two interval regions the commutant algebra
contains a long link as explained in the previous section.
In the lattice it will contain two long links operators,
because of the doubling. More precisely, these commutant
algebras with long links for two intervals are of the
following form: all points in the closed intervals
½a1; b1� ∪ ½a2; b2�, and two long links, given by the sumsP

fi and
Pð−1Þifi, where the sums are over all the points

in the open interval ðb1; a2Þ ¼ ðb1 þ 1;…; a2 − 1Þ. The
long links crossing the other gap between the intervals are
related to these by elements of the algebra of the intervals
and the global constraints, and hence they do not give
additional contributions. The counting of degrees of free-
dom is as follows: for a circle of 2n points, if the original
intervals have 2k1 and 2k2 points, the commutant has
2n − 2k1 − 2k2 − 4 points plus two long links. This gives a
total of 2n − 2k1 − 2k2 − 2 linearly independent operators.
This is precisely (twice) the complementary number of
degrees of freedom: 2n − 2 is twice the total number of
degrees of freedom in the lattice.
We have checked that the entropies of complementary

algebras of two intervals are equal in the circle. The entropy
for the two intervals with the long links S̃ can also be
completed to form a kind of mutual information, elimi-
nating UV divergences in the continuum, as

ĨðA1; A2Þ ¼ SðA1Þ þ SðA2Þ − S̃ðA1 ∪ A2Þ: ð7:14Þ

The equality of the entropies for two intervals and the one
of the complementary region including the long links,

SðA1 ∪ A2Þ ¼ S̃ðA3 ∪ A4Þ; ð7:15Þ

can be completed with single interval entropies to form a
relation between the mutual informations

ĨðηÞ ¼ Ið1 − ηÞ þ 1

6
log

�
η

1 − η

�
: ð7:16Þ

We can define the U function for the entropies with the
long link

ĨðηÞ ¼ −
1

6
logð1 − ηÞ þ ŨðηÞ: ð7:17Þ

Then relation (7.16) is just the complementary relation for
the UðηÞ,

Ũð1 − ηÞ ¼ UðηÞ: ð7:18Þ

These two should be symmetric and equal for a model with
Haag duality for two intervals but this is not the case in
the present model. We have also checked numerically the
relation (7.16) in the infinite lattice. For that we calculate
ĨðηÞ and we note that convergence to the continuum limit is
much improved for this case using the fitting function as
c0 þ c−1=2 1

k1=2
þ c−3=2 1

k3=2
, instead of integer powers, as we

increase the global size k of the region. The continuum limit
again corresponds to the coefficient ĨðηÞ ¼ c0=2.

VIII. FINAL REMARKS

We have diagonalized the vacuum density matrix for a
chiral scalar in two intervals. The modular Hamiltonian
contains the usual local term given by an integral of the
energy density times a position dependent inverse temper-
ature. This term is identical to the free fermion one, and
very probably is universal for all theories in d ¼ 2. In
addition, there is a nonlocal term. This is given by a
quadratic expression in the current with a locally integrable
kernel which does not vanish in any open set of A × A.
Hence the modular Hamiltonian is completely nonlocal in
contrast to the fermion case.
The mutual information does not have the symmetry

property (6.3), and the origin of this is the failure of duality
for two intervals.
We treated the case of two intervals. More intervals could

in principle be treated in a similar fashion, but the
expressions depend on a higher number of cross rations,
and besides the hypergeometric and Appell functions that
parametrize the eigenvectors should be replaced by higher
dimensional Lauricella functions.
It would be interesting to understand why the fermion

modular Hamiltoninan is quasilocal while the one of the
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current is completely nonlocal. The technical reason is that
one eigenvector of the bosonic model (u2) has a depend-
ence of the eigenvalue s that is not simply a phase factor
eisωðxÞ. For the fermion field and any number of intervals,
or the current field in the single interval case, this same
phase factor determines completely the dependence of
all eigenvectors in s. In this case the modular flow has a
simple geometrical picture as a translation in the variable ω,
ω → ωþ 2πτ [22]. Perhaps a reason for the fermion to be
special is the multilocal symmetries described by Rehren
and Tedesco [46].
We have shown that the current mutual information is

smaller than the fermion one because the former model is a
subalgebra of the latter. It would be interesting to explore
other consequences of this inclusion. For example, the
difference of modular HamiltoniansHψ −Hj between these
models should be a positive operator. We can compute the
expectation value of this difference of operators in a state
generated from the vacuum by acting with a unitary in A, for

example a coherent state ei
R

dxγðxÞjðxÞj0i. The local contri-
bution vanishes in the difference of expectation values of the
two modular Hamiltonians and we get an inequality involv-
ing exclusively the nonlocal parts of Hψ and Hj.
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APPENDIX: FORMULAS FOR GAUSSIAN STATE

Formulas for the entropy and modular Hamiltonian for
Gaussian states in the algebra of canonical commutation
relations in terms of coordinate and momentum correlators
are described for example in [37]. We need here a slightly
more general approach where we describe the algebra by
2n Hermitian operators fi, i ¼ 1 � � � 2n, with a general
nondegenerate numerical commutator

½fi; fj� ¼ iCij; ðA1Þ

where C is antisymmetric and real. This general case is
treated for example in [40,47,48]. The state is Gaussian
with Hermitian correlator

Fij ¼ hfifji; ðA2Þ
and we have

Cij ¼ 2ImðFijÞ: ðA3Þ
With an orthogonal matrix O we can write C in the form

OCOT ¼
�

0 D

−D 0

�
; ðA4Þ

where D is a diagonal n × n matrix with positive elements.
Another transformation allows us to write this matrix into
the canonical form

M ¼ QOCOTQ ¼
�

0 1

−1 0

�
; ðA5Þ

where

Q ¼
�
D−1=2 0

0 D−1=2

�
: ðA6Þ

Accordingly

Φ⃗ ¼ QOf⃗ ¼ ðϕ1;…;ϕn; π1;…; πnÞT ðA7Þ
is a vector of field and momentum with canonical com-
mutation relations. We write

QOFOTQ ¼
�

X i=2

−i=2 P

�
; ðA8Þ

where X and P are the matrices of correlators of the
field and momentum, respectively. In writing (A8) we are
assuming there is no real part of the off diagonal blocks,
and this is a consequence of time-inversion invariance
of the state, that is, an antiunitary symmetry mapping
ϕi → ϕi, πi → −πi. In terms of the original variables fi it is
an antiunitary symmetry mapping linearly fi → Tijfj, with
T being real and TCTT ¼ −C.
We can choose the system of eigenvectors of XP and PX,

XPuν ¼ ν2uν; ðA9Þ

PXvν ¼ ν2vν; ðA10Þ

such that

Xuν ¼ νvν; ðA11Þ

Pvν ¼ νuν: ðA12Þ

They can be normalized with

huνjvν0 i ¼ δν;ν0 : ðA13Þ
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We have ν ≥ 1=2 because of the uncertainty relations.
The matrix

V ¼ −iC−1F −
1

2
¼ OTQ

�
0 iP

−iX 0

�
Q−1O; ðA14Þ

has eigenvalues �jνj corresponding to the eigenvectors
OTQð∓ iuν; vνÞT . Hence the formula of the entropy in
terms of the X, P correlators [37]

S ¼ trðð
ffiffiffiffiffiffiffi
XP

p
þ 1=2Þ logð

ffiffiffiffiffiffiffi
XP

p
þ 1=2Þ

− ð
ffiffiffiffiffiffiffi
XP

p
− 1=2Þ logð

ffiffiffiffiffiffiffi
XP

p
− 1=2ÞÞ ðA15Þ

writes

S ¼ trðV þ 1=2Þ log jV þ 1=2j
¼ trΘðVÞððV þ 1=2Þ logðV þ 1=2Þ
þ ð1=2 − VÞ logðV − 1=2ÞÞ: ðA16Þ

This was first shown in [40]. Analogously, the Renyi
entropies defined by

Sn ¼
1

1 − n
logðtrρnÞ ðA17Þ

are given by

Sn ¼
1

n − 1
trΘðVÞ log ½ðV þ 1=2Þn − ðV − 1=2Þn�:

ðA18Þ

The modular Hamiltonian writes [37]

H ¼ Φ⃗T
�
gðPXÞP 0

0 gðXPÞX

�
Φ⃗; ðA19Þ

where

gðyÞ ¼ 1

2
ffiffiffi
y

p log

� ffiffiffi
y

p þ 1=2ffiffiffi
y

p − 1=2

�
: ðA20Þ

In the present notation we have

H ¼ −if⃗TgðV2ÞVC−1f⃗: ðA21Þ
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