
Computers and Chemical Engineering 29 (2005) 1203–1215

Optimal synthesis of complex distillation columns
using rigorous models
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Abstract

The synthesis of complex distillation columns has remained a major challenge since the pioneering work by [Sargent, R.W.H., & Gamini-
bandara, K. (1976). Optimal design of plate distillation columns. In L.C.W. Dixon (Ed.),Optimization in action. New York: Academic Press].
In this paper, we first provide a review of recent work for the optimal design of distillation of individual columns using tray-by-tray models.
We examine the impact of different representations and models, NLP, mixed-integer nonlinear programming (MINLP) and generalized dis-
junctive programming (GDP), as well as the importance of appropriate initialization schemes. We next provide a review of the synthesis of
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omplex column configurations for zeotropic mixtures and discuss different superstructure representations as well as decomposit
or tackling these problems. Finally, we briefly discuss extensions for handling azeotropic mixtures. Numerical examples are pr
emonstrate that effective computational strategies are emerging that are based on disjunctive programming models that are c

hermodynamic initialization models and integrated through hierarchical decomposition techniques.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

The optimal synthesis of distillation continues to be a
ajor problem in the design of chemical processes due to

he high investment and operating costs involved in these
ystems. The recent trends in this area have been to address
odels of increasing complexity through the use of mathe-
atical programming. The high degree of nonlinearity and

he difficulty of solving the corresponding optimization mod-
ls, however, have prevented methods with rigorous models

rom becoming tools that can be readily used by industry. For
nstance, a common problem that is experienced with rig-
rous models is when the trays or columns are “deleted”, as

hen the equations describing the MESH equations become
ingular, which in turn produces convergence failure.

In this paper, we provide a general review of the area
f optimal design and synthesis of distillation columns,

∗ Corresponding author. Tel.: +1 412 268 3642; fax: +1 412 268 7139.
E-mail address:grossmann@cmu.edu (I.E. Grossmann).

emphasizing recent developments in our groups at Car
Mellon and INGAR, particularly the Ph.D. work of Maria
Barttfeld. As will be shown, the successful solution of
optimization of individual columns and complex colu
systems seems to require appropriate representations
design alternatives, disjunctive programming formulat
that are coupled to decomposition methods and initializa
schemes that are based on thermodynamics. We first pre
general review of optimal distillation design. This is follow
by a brief review of mixed-integer nonlinear programm
(MINLP) and generalized disjunctive programming (GD
We then examine the optimal design problem of columns
contrast the relative advantages/disadvantages of M
and GDP models. We also discuss the impact of various
umn superstructure representations as well as the impor
of suitable initialization schemes. We next present a ge
classification of superstructures and discuss briefly seve
ternatives, including a thermodynamically based supers
ture. We then discuss a decomposition strategy for so
the GDP model. Finally, we describe an example proble
098-1354/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2005.02.030
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2. Background

The economic optimization of a distillation column in-
volves the selection of the number of trays and feed location,
as well as the operating conditions to minimize the total in-
vestment and operation cost. Discrete decisions are related to
the calculation of the number of trays and feed, and products
locations and continuous decisions are related to the opera-
tion conditions and energy use involved in the separation. A
major challenge that remains is to perform the optimization
using tray-by-tray models that assume phase equilibrium.

There are two major formulations for the mathematical
representation of problems involving discrete and contin-
uous variables: mixed-integer nonlinear programming and
general disjunctive programming, where the logic is repre-
sented through disjunctions and propositions (Grossmann,
2002). Both approaches have been employed in the literature
to model distillation columns.

The most common form of MINLP problems is the special
case in which the 0–1 variables are linear, while the contin-
uous variables are nonlinear:

minZ = cTy + f (x)

s.t. h(x) = 0

By + g(x) ≤ 0
(MINLP)
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MINLP problems can be solved for instance with
the computer code DICOPT (Viswanathan & Grossmann,
1990), which is an implementation of the outer approx-
imation/equality relaxation (OA/ER) algorithm (Kocis &
Grossmann, 1987). The computational expense in solving
these models depends largely on the problem structure. There
is also the computational difficulty that each constraint must
be solved even if the stage “disappears” from the column. It
would be desirable to eliminate these constraints, not only to
reduce the size of the NLP subproblems, but also to avoid
singularities that are due to the linearization at zero flows.

MINLP formulations have been used for optimizing in-
dividual columns and superstructures using economic ob-
jective functions (Aguirre, Corsano, & Barttfeld, 2001;
Bauer & Stilchmair, 1998; Dunnebier & Pantelides, 1999;
Viswanathan & Grossmann, 1990, 1993). Two basic repre-
sentations arise from this formulation according to the way
the discrete decisions related to the tray optimization are mod-
eled. In one a binary variable with a value of “1” is assigned
to each tray of the column denoting its existence and with a
value of “0” its absence (Viswanathan & Grossmann, 1990).
In the other representations, binary variables are used for the
discrete decisions related to the location of the reflux, re-
boil or both (Aguirre et al., 2001; Bauer & Stilchmair, 1998;
Viswanathan & Grossmann, 1993). In both cases, flows of
streams of non-existing trays are driven to zero which tends
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ajor methods for MINLP problems include first branch a
ound (BB) (Borchers & Mitchell, 1994; Gupta & Ravindran
985; Stubbs & Mehrotra, 1999), which is a direct extensio
f the linear case, except that NLP subproblems are s
t each node. Generalized Benders decomposition (G
Benders, 1962; Geoffrion, 1972) and outer-approximatio
OA) (Ding-Mei & Sargent, 1992; Duran & Grossmann
986; Fletcher & Leyffer, 1994; Yuan, Zhang, Piboleau,
omenech, 1988) are iterative methods that solve a seque
f alternate NLP subproblems with all the 0–1 variables fi
nd MILP master problems that predict lower bounds
ew values for the 0–1 variables. The difference betwee
BD and OA methods lies in the definition of the MILP m

er problem; the OA method uses accumulated lineariza
f the functions, while GBD uses accumulated Lagrang

unctions parametric in the 0–1 variables. The LP/NLP b
ranch and bound byQuesada and Grossmann (1992)es-
entially integrates both subproblems within one tree se
hile the extended cutting plane method (ECP) (Westerlund
Pettersson, 1995) does not solve the NLP subproble

nd relies exclusively on successive linearizations. All t
ethods assume convexity to guarantee convergence
lobal optimum. Nonrigorous methods for handling nonc
exities include the equality relaxation algorithm byKocis
nd Grossmann (1987)and the augmented penalty vers
f it (Viswanathan & Grossmann, 1990). A review of these
ethods and how they relate to each other can be fou
rossmann (2002).
o cause singularities, and hence numerical difficulties
onvergence.

In order to overcome difficulties in MINLP with “disa
earing streams and units,”Raman and Grossmann (199
roposed Generalized Disjunctive Programming, whic

urn provides a modeling and solution framework for
ulating problems with algebraic equations and symb

ogic equations. The GDP model consists of Boolean and
inuous variables that are involved in an objective funct
ubject to three types of constraints: (a) global inequa
hat are independent of discrete decisions; (b) disjunc
hat are conditional constraints involving an OR operator
ure logic constraints that involve only the Boolean variab
ore specifically, the problem is given as follows:

minZ =
∑
k ∈ K

ck + f (x)

s.t.

g(x) ≤ 0

∨
j ∈ Ik




yjk

hjk(x) ≤ 0

ck = γjk


 k ∈ K

Ω(y) = True

x ∈ X, yjk ∈ {True, False}

(GDP)

here x are continuous variables andy are the Boolea
ariables. The objective function involves the termf(x)
or the continuous variables (e.g., operating cost) and
hargesck that depend on the discrete choices. The eq
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ties/inequalitiesg(x) ≤ 0 must hold regardless of the discrete
conditions andhjk(x) ≤ 0 are conditional constraints that must
be satisfied when the corresponding Boolean variableyjk is
true for thejth term of thekth disjunction. The setIk repre-
sents the number of choices for each disjunction defined in
the setK. Also, the fixed chargeck is assigned the valueγ jk
for that same variable. Finally, the constraintsΩ(y) involve
logic propositions in terms of Boolean variables.

For the nonlinear case of problem (GDP),Lee and
Grossmann (2000)have developed reformulations and algo-
rithms that rely on obtaining the algebraic description of the
convex hull of the nonlinear convex inequalities. The refor-
mulations lead to tight MINLP problems, while the algo-
rithms generally involve branch and bound methods where
branching is performed on disjunctions. For the case of pro-
cess networks,Türkay and Grossmann (1996)proposed a
logic-based outer-approximation algorithm. This algorithm
consists of solving NLP subproblems in reduced space, in
which constraints that do not apply in the disjunctions are
disregarded, with which both the efficiency and robustness
can be improved. In this method the MILP master problems
correspond to the convex hull of the linearization of the non-
linear inequalities. Also, several NLP subproblems must be
solved to initialize the master problem in order to cover all
the terms in the disjunctions. Penalties can also be added
to handle the effect of nonconvexities as in the method by
V
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convexity constraint:∑
i

yi = 1, 0 ≤ yi ≤ 1 (2)

in combination with the concave constraint∑
i

y2
i ≥ αi, ∀i (3)

that enforces integrality through the successive adjustment of
the parameterα from 0 to a value of 1. Although this alterna-
tive eliminates the problem of ill-conditioning, it introduces
well-known nonconvexities that often produce convergence
to the nearest integer point.

A major difficulty that arises in the MINLP and GDP ap-
proaches is dealing with the nonlinearities that are involved
in distillation models, which complicates the convergence of
solvers and often leads to infeasible solutions. Therefore, de-
veloping methods for the initialization and bounding of the
variables involved in the problem is an essential part for the
successful application of optimization formulations and al-
gorithms for distillation columns.

Fletcher and Morton (2000)examined the infinite reflux
case for generating good initial values for the NLP solution
of general distillation columns.Bruggemann and Marquardt
(2001)have proposed a short cut method based on the rectifi-
cation body method (RBM) that provides qualitative insights
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iswanathan and Grossmann (1990).
The logic-based outer-approximation algorithm has b

uccessfully applied for solving GDP models of indiv
al distillation columns and superstructures (Yeomans &
rossmann, 2000a,b), as well as to reactive distillatio
olumns (Jackson & Grossmann, 2001). Different ap-
roaches can be used with this formulation dependin
hich trays are defined as permanent in the configura

t is this issue that has been analyzed in depth byBarttfeld,
guirre, and Grossmann (2003).
It should also be noted that there have been attempts t

ulate and solve the design problem for distillation colu
s an NLP problem. For instance,Lang and Biegler (2002
roposed a continuous approximation of 0–1 variableyi

hrough the use of the differentiable distribution funct
DDF)

i =
exp

[
−
(

i−Nc
σ

)2
]

∑
jexp

[
−
(

j−Nc
σ

)2
] (1)

hese variables, which are used to multiply flowrate
treams, are adjusted by successively decreasing the p
terσ in a sequence of NLP problems. Aside from the

roduction of highly nonconvex functions, the DDF funct
ecomes ill-conditioned asσ approaches zero. To circumve

his problemNeves, Dulce, Nuno, and Oliveira (2004)pro-
osed a continuous formulation that relies on the use o
-

or rigorous simulations. The method gives information
he minimum energy demand involved in a separation
rial and error procedure. Given the products and feed
ositions as well as the operating pressure, an estimate
nergy demand is determined to calculate the pinch p

o construct the rectification bodies related to both col
ections. The energy involved in the separation under m
um reflux is achieved when the bodies intersect in ex
ne point. An automatic initialization scheme based on
uccessive solution of NLP and MINLP optimization pr
ems was presented byBarttfeld and Aguirre (2002). These
uthors developed rigorous and robust optimization mo

hat approach reversible conditions in order to initialize
ound zeotropic distillation models. No external parame
ave to be tuned in the model to achieve convergence.

. Optimization of single columns

.1. MINLP models

The simplest type of distillation design problem is
ne where there are a fixed number of trays and the g

o select the optimal feed tray location.Fig. 1 shows that
uperstructure that can be postulated is one where simp
eed is split into as many streams as there are trays, excl
ondenser and reboiler. This is in essence the superstr
hat was proposed bySargent and Gaminibandara (197.
he model can easily be written as an MINLP mode
onsidering all the mass and enthalpy balances, and
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Fig. 1. Superstructure for feed tray location.

equilibrium equations (MESH equations), in addition to the
following mixed-integer constraints. Letzi , i ∈ LOC, denote
the binary variable associated with the selection ofi as the
feed tray; i.e.,zi = 1 if i is the feed tray. LetFi , i ∈ LOC denote
the amount of feed entering trayi.∑
i ∈ LOC

zi = 1

∑
i ∈ LOC

Fi = F

Fi − Fzi ≤ 0, i ∈ LOC

(4)

The last constraint in(4)expresses the fact that if trayi ∈ LOC
is selected as the feed tray, then, the amount of feed entering
other candidate locations is zero. This follows from the fact
zj = 0, j �= i, i ∈ LOC. In addition, there may be constraints on
purity, recovery or reflux ratio.

The MINLP problem, then, is to minimize (or maximize)
a given objective function (e.g., minimize energy cost). Note
that in this model, the variableszi are binary, while all other
variables are continuous.

An interesting property of the MINLP for fixed number
of trays is that computational experience has shown that this
problem is solved almost always as a relaxed NLP. The physi-
cal explanation is that one can expect the optimal distribution
t tray
w ition
o orted
t
G 3

When the objective is to optimize not only the feed tray, but
also the number of trays, the complexity of the model greatly
increases. One possible configuration that was proposed by
Viswanathan and Grossmann (1993)involving variable re-
flux location is depicted inFig. 2. The basic idea here is to
consider a fixed feed tray with an upper bound of trays spec-
ified above and below the feed. The reflux is then returned
to all trays above the feed and the reboil returned to all trays
below the feed. In essence this representation determines the
“optimal feed” of the reflux and reboils streams. In order to
assign the actual number of trays 0–1 variable are assigned
to the existence of each of the reflux and reboil returns. The
problem then leads to an MINLP mode, which has as con-
straints the MESH equations and mixed-integer constraints
for the return of reflux and reboil streams. While in principle
this model is suitable for optimizing the feedtray location and
number of trays, it has the difficulty that trays not selected
above the feed only handle vapor flow since the liquid flow is
zero, rendering the phase equilibrium equations redundant. A
similar situation arises with trays not selected below the feed.
This means that the vapor liquid equilibrium (VLE) condi-
tions have to be satisfied in non-existing trays where no mass
transfer takes place. This feature clearly showed in the work
by Viswanathan and Grossmann (1993)a marked increase in
computation time versus the case of fixed number of trays.

3

er-
a iffi-
c of
t -
r rays.
F d for
a mass
b tions
a o 1.
F sim-
p hich
g (inlet
a ows
a lude
t only
d ap-
p ent
t

s.
o be one where the feed is all directed into a single
here the tray composition matches closely the compos
f the feed. Our computational experience has supp

his observation many times (e.g., seeBarttfeld, Aguirre, &
rossmann, 2003; Viswanathan & Grossmann, 1990, 199).
.2. Disjunctive model for single column

Yeomans and Grossmann (2000a)have proposed a gen
lized disjunctive programming model that overcomes d
ulties of the MINLP models by allowing the “by-pass”
hose trays that are not selected.Fig. 3shows the column rep
esentation for this approach. Consider the conditional t
or each existing tray the mass transfer task is accounte
nd modeled with the MESH equations: the component
alances, the tray energy balance, the equilibrium equa
nd the summation of liquid and vapor mole fractions t
or a non-existing or inactive tray the task considered is
ly an input–output operation with no mass transfer, w
ives rise to trivial mass and energy balance equations
nd outlet flows and enthalpies are same for the liquid fl
nd the vapor flows), because the MESH equations inc

he solution for trivial mass and energy balances, the
ifference between existing and non-existing trays is the
lication of the equilibrium equations. As for the perman

rays, all the equations for an existing tray apply.

Fig. 2. Variable reflux and reboil location with fixed heat exchanger
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Fig. 3. Structure of disjunctive model with permanent and conditional trays.

The general form of the GDP model is given by equa-
tion (GDP-C) where a disjunction is postulated for each
conditional tray.

Min cost

s.t.

Mesh equations for permanent trays

Mass/energy balances for conditional trays


Yn

Equilibrium equations

Conditional trays


∨




¬Yn

Bypass equations

Conditional trays


 (GDP− C)

The advantage of the disjunctive modeling approach is
that the MESH equations of the non-existing trays do not
have to be converged, and no flows in the column are
required to take values of zero, making the convergence of
the optimization procedure more reliable. Also, by using
generalized disjunctive programming as the modeling tool,
the computational expense of solving the problem can be
reduced.

3.3. Different representations for MINLP and GDP
models

Barttfeld et al. (2003)have recently studied the impact of
different representations and models that can be used for the
optimization of a single distillation column. General models
comprising different column configurations were presented
for the MINLP and GDP formulations.Fig. 4 shows three
possible representations that are different fromFig. 2to deter-
mine optimal feed tray and number of trays with the MINLP
formulation. InFig. 4a (b), one fixed condenser (reboiler)
and reboilers (condensers) are placed in all candidate trays
for exchanging energy. This means that a variable re-boil
(reflux) stream is considered by moving the reboiler (con-
denser).Fig. 4c is a combination of the representation of
Fig. 4a and b, where the feed location is fixed and the location
o wise,
i

Fig. 4. MINLP distillation column representations.
f both heat exchange equipments is optimized. Other
n the representation of variable reflux location (Fig. 2), the
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Fig. 5. GDP distillation column representations.

condenser and reboiler are fixed equipments in both column
extremes. The reflux (reboil) flow location is variable and not
the condenser (reboiler) itself. These two alternatives are the
same if one fixed equipment is considered at each column
ends. However, when heat exchange variable locations are
modeled as part of the tray optimization procedure as seen
in the representations ofFig. 4, some differences arise. In
one case, the problem consists in finding the optimal loca-
tion for the energy exchanged, while in the other the optimal
location for a “secondary” feed stream (reflux) is consid-
ered. The variable heat exchange representation has an impor
tant advantage. The energy can be exchanged at intermediate
tray temperatures, possibly leading to more energy efficient
designs.

The results byBarttfeld et al. (2003)have shown that
the most efficient MINLP representation involves variable
reboiler and feed tray location (Fig. 4a). In addition these
authors also found that the most convenient formulation
involves the use of total flows and compositions, and variable
energy demand for the variable reboiler location representa-
tion. In a similar way, as in the case of the MINLP models,
Barttfeld et al. (2003)considered different representations
for the GDP model, with fixed and variable feeds as shown in
Fig. 5. The computational results showed that the most effec-
tive structure is the one with fixed feed (Fig. 5a), which was

the original representation used byYeomans and Grossmann
(2000a).

3.4. Initialization procedures

Due to the complexity, nonlinearities and nonconvexities
involved in both, the MINLP and GDP models, good initial
values and bounds are essential in order to achieve conver-
gence.Barttfeld and Aguirre (2002)proposed a preprocess-
ing phase to generate a good initial solution. The column
topology in this phase corresponds to the one used for the
economic optimization, except that the number of trays is
fixed to the maximum specified. This means that the same
upper bound on the number of trays has to be employed as
well as the potential feed and product location. The initial
design considered is the one that involves minimum reflux
conditions as well as minimum entropy production. This re-
versible separation provides a feasible design and hence a
good initial guess to the economic optimization.

In the preprocessing phase, for the case of zeotropic
columns, overall mass and energy balances are formulated
as an NLP problem to compute the reversible products. This
preliminary formulation is a well-behaved problem that pro-
vides initial values and bounds for the rigorous NLP tray-by-
tray preprocessing formulation.Barttfeld et al. (2003)have
shown that convergence is greatly enhanced by including the
p cribed
a
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reprocessing procedure. Also, these authors have des
n initialization procedure for azeotropic columns.

It is also interesting to note that the MINLP formulat
an be solved with a reduced number of binary variables
eason is that the NLP relaxation yields a number of t
hat is often very close to the integer optimal design.
elaxation also provides a good lower bound on the obje
unction value. Therefore, the solution of the relaxed prob
an be employed to reduce the domain of the variable
ocation such that they contain few additional trays comp
o the ones at the relaxation solution. In the case of the
odel, one cannot take advantage of the relaxation since
LP subproblems with fixed number of trays are solved

.5. Numerical performance

Barttfeld et al. (2003)solved several example proble
o evaluate the robustness and performance of the M
nd GDP models for the optimal design of single colum
or the examples studied, the MINLP formulation with p
rocessing and domain reduction yields designs invo

ower total costs. In the azeotropic example, the disti
omposition achieved in the economic solution crosse
istillation boundary. In all cases, the MINLP solution tim
ere considerably longer than the ones of the GDP mo
he robustness of the MINLP formulations was observe
epend very much on the solution scheme. If a good in
uess is generated with the preprocessing phase and t
ain reduction for the binary variables is applied, an int

olution is often obtained in few iterations. However, the
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Table 1
Comparison for butane/toluene/xylene mixture

MINLP model GDP model

26 trays 19 trays
Feed tray: 13 Feed tray: 8
Cost: US$ 79962/year Cost: US$ 80720/year
648 CPU (s) 211 CPU (s)

tal solution time is long because the convergence of the NLP
subproblems is usually very difficult to achieve. Also, the
MILP subproblems include constraints, which were gener-
ated by linearizing the original constraints of the problem at
zero flows.

On the other hand, the GDP formulations were found to
be more robust and faster than the MINLP model. It was
also observed that the GDP formulation is not as strongly
dependent of the initial guess as the MINLP formulation. If a
good initial solution guess is provided, the convergence of the
initial NLP problems is guaranteed without tuning external
parameters and also, better solutions can be found. It should
be noted that the relaxed solution of the GDP formulation
does not provide a useful distribution of trays, as it was the
case of the relaxed MINLP solution. Interestingly, despite the
greater robustness of the GDP models, solutions with about
1% lower cost were found with the MINLP models when they
converged. As an example, in an equimolar mixture of butane,
toluene and xylene, with minimum purity of 98% of butane at
the distillate and a minimum recovery of 98%, and an upper
bound of 60 for the number of trays, the MINLP model yields
an optimal total cost of US$ 79,962/year while the optimal
design obtained with the GDP formulation involves a cost of
US$ 80,720/year (seeTable 1).
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( s

Fig. 6. State–task network superstructure representation for distillation se-
quence.

(1995), and where the basic idea is to work with two types of
nodes: states and equipment. The tasks in this case are treated
implicitly through the model.Fig. 7shows the example again
for the four-component system. It is clear that if rigorous tray-
by-tray models are to be used, SEN superstructures should
lead to much more compact formulations. In factYeomans
and Grossmann (1999a)have developed generic GDP models
for each of the two different types of representations. These
can then be used for solution with a GDP algorithm, or they
can be used for reformulation as MILP or MINLP problems,
depending on the complexity of the model.

5. Superstructure for the optimization of complex
columns

5.1. The Sargent–Gaminibandara superstructure

In the previous section, we presented superstructures for
the case of sharp splits. The separation of more than two com-
ponents by continuous distillation is often accomplished by
. Classification superstructures

In the application of mathematical programming te
iques to design and synthesis of distillation systems
ecessary to postulate a superstructure of alternatives

s true whether one uses a high level aggregated mod
fairly detailed model.Yeomans and Grossmann (199

ave characterized two major types of superstructure r
entations for process synthesis. The first is the state
etwork (STN), which is motivated by the work in sched

ng by Kondili, Pantelides, and Sargent (1993). The basic
dea here is that the representation makes use of two typ
odes: states and tasks. The assignment of different pie
quipment is usually assumed for each separation task.Fig. 6
rovides an example of an STN superstructure for the s
eparation of four components.

It is clear from that figure that using detailed tray-by-t
odels in such a superstructure leads to a problem of
imensionality.

The second representation is the state equipment ne
SEN) which is motivated by work ofSmith and Pantelide
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Fig. 7. State equipment network superstructure representation for distillation sequences.

simply arranging columns in such systems. However, even
under the assumption of minimum reflux, past work has
shown that complex column arrangements can yield signif-
icant savings in the operating costs. Most of the effort in
the field of distillation synthesis has been applied to develop
short-cut and simplified methods (Annakou & Mizsey, 1996;
Fidkowski & Krolikowski, 1986; Glinos & Malone, 1988;
Triantafyllou & Smith, 1992), mainly because of the conver-
gence difficulties of rigorous formulations. As an example of
recent work,Caballero and Grossmann (2003)have presented
a systematic approach for generating all the thermodynamic
equivalent structures for a given sequence. If our objective is
to be able to synthesize complex columns possibly Petlyuk
columns, columns with side strippers and side rectifiers, it
is clear that more complex superstructures are needed com-
pared to the ones inFigs. 6 and 7.

The generation of complex column configurations has
been principally developed byAgrawal (1996); Fidkowski
and Agrawal (1995, 1996); Sargent and Gaminibandara
(1976). Other superstructures include for instance the one
by Koehler, Aguirre, and Blass (1992)who consider thermo-
dynamic aspects. However, the problem for systematically
obtaining the optimal design out of the superstructure was
not addressed by these authors. Some recent work has applied
mathematical programming tools to rigorously solve the dis-
tillation design problem. The superstructure most commonly
u t
a
a
i

be derived from the functional state–task network shown in
Fig. 9, which in fact corresponds to a zeotropic mixture (see
Sargent, 1998). A different superstructure that is not so com-
monly used is the one proposed byBauer and Stilchmair
(1998)that uses thermodynamic information in the represen-
tation itself. These authors applied this representation in the
design of azeotropic sequences.

As for other superstructures,Dunnebier and Pantelides
(1999)have considered the optimal design of thermally cou-
pled distillation columns and dividing wall columns for ideal
mixtures using detailed distillation models and mathemat-
ical optimization.Yeomans and Grossmann (1999b)pre-
sented the rigorous synthesis of heat integrated sequences

ns.
sed in the literature is based on the one proposed bySargen
nd Gaminibandara (1976)for ideal mixtures (seeFig. 8)
nd later extended for azeotropic cases (Sargent, 1998). It

s interesting to note that the superstructure inFig. 8 can
 Fig. 8. Sargent–Gaminibandara superstructure for complex colum
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Fig. 9. Sargent–Gaminibandara STN representation for a four-component
zeotropic mixture.

applying disjunctive programming techniques to formulate
the problem. These authors have also developed a disjunc-
tive programming procedure for the optimal design of sin-
gle ideal and nonideal single distillation units and separation
sequences (Yeomans & Grossmann, 2000a) as well as com-
plex sequences (Yeomans & Grossmann, 2000b). In these
two methods, the major challenge is that the optimal design
of distillation columns configurations involves the solution
of large, highly nonlinear nonconvex optimization problems.

5.2. Reversible distillation sequence model
superstructure

The superstructure considered byBarttfeld, Aguirre, and
Grossmann (2004)is based on the reversible distillation se-
quence model (RDSM) proposed byFonýo (1974), which
allows the introduction of thermodynamic aspects in the de-
sign (for details of the RDSM theory seeBarttfeld & Aguirre,
2003; Koehler et al., 1992). The motivation in using such a
superstructure is that it is tied closely to a robust initializa-
tion scheme similar to the one that was described for sin-
gle columns as it involves a relatively simple NLP model.
The RDSM superstructure can be automatically generated
for zeotropic as well as for azeotropic mixtures. In the lat-
ter case, a composition diagram of the mixture is assumed
t lso be
g )
F ned in
t struc
t seen
i er
t av-
i state
A are
d tion
o and

Fig. 10. STN representation of the RDSM-based superstructure.

do not necessarily have the same composition. As a conse-
quence of this fact, for separating a NC-zeotropic mixture,
the RDSM-based superstructure has the same number of lev-
els as the Sargent–Gaminibandara representation, but a larger
number of columns, given by 2NC−1.

The representation of the equipment for the RDSM-based
superstructure for a four-component zeotropic mixture is
shown inFig. 11a. Note that in this representation, columns 2
and 3 (second level) cannot be coupled. However, other rep-
resentations are possible for the RDSM superstructure (see
Koehler et al., 1992).

In the RDSM representation considered, column coupling
is only possible in those columns that yield pure products, that
is, in the last level of the superstructure. Note that columns 4
and 5 are integrated to produce product, B as well as columns
6 and 7 to produce pure product C (seeFig. 11b). Therefore,
in the proposed superstructure it is not possible to represent

e.
o be available. The RDSM-based superstructure can a
enerated using the STN representation ofSargent (1998.
or the RDSM-based superstructure the states are defi

he same way as in the Sargent–Gaminibandara super
ure, but the tasks in this representation are different as
n Fig. 10for a four-component zeotropic mixture. In ord
o approximate reversibility conditions, only products h
ng the same composition can be represented in one
s an example, in the RDSM STN, two different states
efined for the mixture, BC, as shown in the representa
f Fig. 10. These states come from states, ABC or BCD,
-

.

Fig. 11. RDSM-based superstructure for a four-component mixtur
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in a level all the columns by one single unit as in the represen-
tation of Sargent and Gaminibandara ofFig. 8. Only 2NC−3

columns integrations (single columns) can be found in the last
level of the superstructure. Each column in the superstructure
of Fig. 11is represented by an adiabatic unit, and with one
condenser and one reboiler. The trays in each unit can be clas-
sified as intermediate or permanent trays (seeFig. 3). This
representation is the one that has been found to be the most
effective to model distillation columns with GDP formula-
tions (Barttfeld et al., 2003). Those trays that can disappear
in the superstructure optimization are the intermediate trays.
Note that the column sections contain intermediate trays and
each section is located between two permanent trays. An up-
per bound on the number of trays is assigned to each section
of a column. The columns in the superstructure are intercon-
nected by feeds and products streams. The columns where
multicomponent separations take place (columns 1, 2 and
3, Fig. 11a) are coupled by the feeds and products streams.
Each column can be fed by primary and secondary feeds.
Compared to the Sargent and Gaminibandara superstructure,
the RDSM representation excludes certain configurations
that involve mixing of streams, as would be the case of a
Petluk column. However, if desired additional streams can
be added to the RDSM superstructure in order to account for
the same alternatives as in the Sargent and Gaminibandara
superstructure.

can
a ex-
i tive
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lated in the following general form:

Min cost

s.t.

Mesh equations for permanent trays

Mass/energy balances for conditional trays


Ys

ns = stn


Yn

Equilibrium equations

Conditional trays

stn = 1


∨




¬Yn

Bypass equations

Conditional trays

stn = 0







∨
(

¬Yn

ns = 0

)

Note that model (GDP-S) involves embedded disjunctions.
At the outer level the Boolean variablesYS determine the se-
lection of the sections in the columns (rectifying or stripping),
while at the inner level the Boolean variablesYn determine
the existence or non-existence of the trays that are postulated
in each section.

.
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It should also be noted that the RDSM superstructure
lso be extended for azeotropic distillation. Due to the

stence of distillation boundaries, the order of the rela
olatility of the components cannot be predefined. There
composition diagram showing the distillation boundari
eeded to define the feasible states that can be achieve
given feed (seeBarttfeld et al., 2004).

.3. Decomposition strategy

Tray-by-tray distillation synthesis models are very d
ult to optimize due to the highly nonlinear and noncon
quations that are involved, as well as to the large size o
orresponding formulations. Furthermore, formulating
olving a single optimization problem to simultaneously
ablish the existence of columns as well as the feed tray
ion generally leads to a very difficult problem that often f
o converge. Convergence problems are often found w
olving complex MINLP models (Bauer & Stilchmair, 1998;
unnebier & Pantelides, 1999). Also, although the disjunc

ive formulation increases robustness, it is still quite diffi
o solve these problems as was reported byYeomans an
rossmann (2000a,b). Barttfeld et al. (2004)have develope
computational strategy that exploits the nature of the

ions involved in the GDP model in order to yield robust
omputationally effective models.

Barttfeld et al. (2004)formulated the synthesis proble
s a GDP problem that does not have to be solved sim
eously and is amenable to decomposition. Specifically
DP of the RDSM superstructure inFig. 11can be formu
Based on the embedded disjunctions,Barttfeld et al
2004)proposed an iterative decomposition strategy tha
loits two major levels of decisions in the problem (
ig. 12). In the first level, a configuration is derived by m

ng the decision related to the selection of column sec
i.e., with the Boolean variablesYS). In this level each sectio
s assigned a maximum number of trays in order to produ
ounding solution. In the second level, the feed tray loca
nd the number of trays of the selected sections are optim
i.e., with the Boolean variablesYn). The algorithm solve
he disjunctive programming model by iteratively solving
ILP for selecting the sections, an MILP for selecting

rays of that configuration and an NLP subproblem for o
izing the particular design. Integer cuts are only adde

he MILP for trays and not the one for the sections in ord
nsure proper optimization of the number of trays. Simil
s in the single column case, a thermodynamic based

s solved for the initialization of this decomposition strate
Table 1).

.4. Numerical experience

Numerical examples were solved byBarttfeld et al. (2004
o test the performance of the formulations. Two zeotropi
mples were solved and nontrivial configurations were fo
hich include column coupling. In the azeotropic exam

he influence of the product purity specification was anal
ith respect to the azeotrope recycle. Also, the influenc

ncluding intercondensers in the first column was analy
n all the examples, the solutions were obtained with the
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Fig. 12. Decomposition strategy.

Fig. 13. Pentane/hexano/heptano example: (a) superstructure with selected sections and (b) optimal configuration in terms of two columns.

Fig. 14. Liquid composition profiles of the optimal configuration.

Table 2
Computational results for pentane/hexane/heptane mixture

Preprocessing phase: NLP tray-by-tray models
Continuous variables 3297
Constraints 3225
CPU time (min) 2.20

Model description
Continuous variables 3301
Discrete variables 96
Constraints 3230
Nonlinear nonzero elements 3244
Number of iterations 5
NLP CPU time (min) 6.97
MILP CPU time (min) 2.29
CPU time (min) 9.25

Objective value (US$/year) 140880
Total CPU time (min) 11.46
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posed method, are nontrivial and require reasonable solution
times.

A specific example is presented inFig. 13, where it can be
seen that even for an ideal system such asn-pentane,n-hexane
andn-heptane a significantly improved design in the form of a
complex column can be obtained (US$ 140,088/year) versus
a standard direct sequence (US$ 145,040/year).Fig. 14shows
the liquid profiles of the optimal design andTable 2shows
the computational results with the proposed decomposition
method.

6. Concluding remarks and future work

We hope that this paper has shown that despite its great
difficulty, there has been significant progress in the optimal
synthesis of complex column configurations using tray-by-
tray models. As has been seen the combination of novel repre-
sentations for individual columns and superstructures, com-
bined with disjunctive programming and robust initialization
schemes has made it possible to solve with reasonable com-
putational efficiency these problems.

While the results reported in this paper have shown that
there has been significant progress in the optimal design of
complex distillation columns, it is clear that there is still
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