- 1 **GENETIC INHIBITION OF CALCINEURIN INDUCES DIASTOLIC DYSFUNCTION IN** 2 MICE WITH CHRONIC PRESSURE OVERLOAD 3 4 Ricardo J. Gelpi, PhD^{1,2}, Shumin Gao, MD, PhD¹, Peiyong Zhai, MD, PhD¹, Lin Yan, PhD¹, 5 Chull Hong, MD¹, Lauren M.A. Danridge¹, Hui Ge¹, Yasahiro Maejima, PhD¹, Martin Donato, 6 MD², Mitsuhiro Yokota, MD, PhD³, Jeffery D. Molkentin, PhD⁴, Dorothy E. Vatner, MD¹, 7 Stephen F. Vatner, MD¹, Junichi Sadoshima, MD, PhD¹ 8 9 10 ¹Cardiovascular Research Institute and the Department of Cell Biology & Molecular Medicine, 11 University of Medicine and Dentistry of New Jersey – New Jersey Medical School, Newark, NJ, 12 07103 13 ² Institute of Cardiovascular Physiopathology and the Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina 14 ³Department of Genome Science, Aichi-Gakuin University, School of Dentistry, Nagova, Japan 15 ⁴Department of Pediatrics, University of Cincinnati, Children's Hospital Medical Center, and the 16 17 Howard Hughes Medical Institute, Cincinnati, OH 18 19 Short title: Calcineurin inhibition and diastolic dysfunction 20 21 Correspondence should be addressed to: 22 Junichi Sadoshima, MD, PhD. 23 UMDNJ-New Jersey Medical School Department of Cell Biology & Molecular Medicine 24 185 South Orange Avenue 25 MSB G-609 26 27 Newark, NJ 07103 28 Tel: 973-972-8920 29 Fax: 973-972-7489
- 30 <u>sadoshju@umdnj.edu</u>
- 31
- 32
- 33

34 ABSTRACT

36	Background: Calcineurin is a calcium/calmodulin-dependent protein phosphatase that induces
37	myocardial growth in response to several physiological and pathological stimuli. Calcineurin
38	inhibition, induced either via cyclosporine or genetically, can decrease myocardial hypertrophy
39	secondary to pressure overload, without affecting left ventricular (LV) systolic function. Since
40	hypertrophy can also affect LV diastolic function, the goal of this study was to examine the
41	effects of chronic pressure overload (2 wks aortic banding) in transgenic (Tg) mice
42	overexpressing Zaki-4 β (TgZ), a specific endogenous inhibitor of calcineurin, on LV diastolic
43	function. Methods and Results: As expected, in the TgZ mice with calcineurin inhibitor
44	overexpression, aortic banding reduced the degree of LV hypertrophy, as assessed by LV/body
45	weight (3.5±0.1) compared with non-Tg (NTg) mice (4.6±0.2). LV systolic function remained
46	compensated in both groups with pressure overload. However, the LVED Stress/LVEDD ratio,
47	an index of diastolic stiffness and T ¹ / ₂ and isovolumic relaxation time, two indices of isovolumic
48	relaxation, increased significantly more in TgZ mice with aortic banding. Protein levels of
49	phosphorylated phospholamban (PS16), SERCA2a, phosphorylated ryanodine receptor and the
50	Na^+/Ca^{2+} exchanger were also reduced significantly, p<0.05, in the banded TgZ mice.
51	Conclusions: As expected, genetic calcineurin inhibition inhibited the development of LV
52	hypertrophy with chronic pressure overload, but also induced LV diastolic dysfunction, as
53	reflected by both impaired isovolumic relaxation and increased myocardial stiffness. Thus,
54	genetic calcineurin inhibition reveals a new mechanism regulating LV diastolic function.
55	Keywords: hypertrophy, Diastole, Hemodynamics

56 **INTRODUCTION**

57

58	Left ventricular (LV) hypertrophy (H) is the major compensatory mechanism in response to
59	pressure or volume overload in the heart. There are few adverse effects of mild to moderate
60	LVH, but more severe LVH is thought to be deleterious because of limitations in subendocardial
61	coronary reserve (12, 13, 27) and alterations in LV function, particularly in isovolumic
62	relaxation. Since the calcineurin pathway is thought to be a key mechanism mediating the
63	development of cardiac hypertrophy, it is not surprising that several studies have suggested that
64	inhibition of this pathway could be an important approach for clinical therapy (4, 14, 18, 20, 24).
65	However the prior work in this field has not determined if this therapeutic approach might
66	invoke the precise adverse effects the therapy is designed to correct, e.g., alterations in LV
67	diastolic function.
68	Calcineurin is a Ca ²⁺ /calmodulin activated serine/threonine phosphatase, that is activated
69	by sustained elevations in intracellular Ca^{2+} and which plays a significant role in cardiac
70	hypertrophy as a sensing molecule that links alterations with Ca^{2+} handling and the genetic

В 71 program of hypertrophic growth (18). The hypertrophy process is initiated by dephosphorylation 72 of transcription factors of the NFAT (nuclear factor of activated T cells) family. It is presumed 73 that translocation of activated NFAT3 to the nuclei leads to genetic reprogramming and initiation 74 of the hypertrophic transcriptional response. Cardiac specific overexpression of calcineurin in 75 transgenic mice was shown to induce profound hypertrophy characterized by a 2 to 4-fold 76 increase in the heart size, which rapidly progresses to dilated heart failure (23, 24, 28). On the 77 other hand calcineurin inhibition blunted hypertrophy, further demonstrating involvement of 78 calcineurin in this process. In this sense, several studies have shown that pharmacological (15,

79	24, 26) or genetic calcineurin inhibition (10, 20) can regress hypertrophy, without affecting LV
80	systolic function. However, the extent to which inhibiting calcineurin affects LV diastolic
81	function is not established, despite its importance in LVH (7), and its contribution to the
82	development of cardiac failure (1).
83	Therefore, to address the effects of inhibition of LVH by calcineurin on LV diastolic
84	function, it would be more desirable to inhibit the calcineurin pathway genetically. To this end,
85	genetic inhibition of calcineurin was achieved using Tg mice that over-expressed ZAKI 4β
86	(TgZ) (also designated as MCIP2 or DSCR1L1), a specific endogenous calcineurin inhibitor (17,
87	21). Accordingly, the objective of this study was to assess the effects of genetic inhibition of
88	calcineurin on the development of LV hypertrophy, on LV systolic and LV diastolic function and
89	on Ca ²⁺ regulatory proteins in TgZ and NTg mice, with chronic pressure overload due to aortic
90	stenosis. Diastolic function was assessed both on isovolumic relaxation and myocardial stiffness.
91	

92 MATERIALS AND METHODS

93

94 <u>Transgenic mice:</u>

95 TgZ mice were generated in FVB background using the α-myosin heavy chain promoter

96 (courtesy, Dr. J. Robbins, University of Cincinnati) to achieve cardiac specific expression.

97

98 <u>Experimental Groups:</u>

99 Four experimental groups were performed: non-Tg (NTg) and TgZ sham and NTg and TgZ with 100 2 weeks of transverse aortic banding. n=8-18 in each group. All protocols concerning animal use 101 were approved by the Institutional Animal Care and Use Committee at the New Jersey Medical 102 School. The transverse thoracic aorta between the innominate artery and left common carotid 103 artery was constricted using a 30-gauge needle and a 7-0 nylon suture with the aid of a dissecting 104 microscope and under anesthesia (11, 22, 32-34). After removal of the needle, the aorta remained 105 constricted. Aortic constriction was performed using a mixture of ip ketamine 0.065 mg/g, 106 xylazine 0.013 mg/g, and acepromazine 0.002 mg/g for anesthesia.

107 <u>Cardiac catheterization</u>

2 weeks after aortic banding, closed-chest catheterization was performed. Two highfidelity catheter tip transducers (1.4F, Millar) were used; one was inserted into the right carotid artery and carefully advanced to the LV, the other into the left femoral artery and abdominal aorta, respectively. The pressures in the LV and abdominal aorta were measured simultaneously to calculate the pressure gradient. LV+dP/dt was used as an isovolumic index of systolic function. After the hemodynamic study the mice were then killed and the heart and lungs were

114	dissected and weighed. Half of the LV tissue was frozen in liquid nitrogen and the other half was
115	fixed in 10% formalin.

116 <u>Echocardiography</u>

117	Mice were anesthetized using 12μ l/g body weight of 2.5% filtered avertin (Sigma-		
118	Aldrich), and echocardiography was performed using ultrasonography (VisualSonics Vevo770		
119	Ultrasound Imaging System). A 13-MHz linear ultrasound transducer was used. We took 2D-		
120	guided motion mode measurements of LV internal diameter from more than 3 beats and		
121	averaged the measurements. LVEDD was measured at the time of the apparent maximal LVEDD		
122	while LVESD was measured at the time of the most anterior systolic excursion of the posterior		
123	wall. Ejection fraction (EF) was also calculated and used as an ejective index of systolic		
124	function.		
125	Indices of Diastolic Function		
126			
127	Diastolic function was assessed by indices derived from the curve of left ventricular		
128	pressure and dimensions, and also using echocardiography - Doppler data.		
129	End-diastolic LV global circumferential wall stress was calculated using a cylindrical		
130	model:		
131	Stress= 1.36*[(LVSP* LVEDD)/2 LVEDWT)]		
132	The LV end-diastolic stress/diameter ratio was assessed to measure diastolic stiffness.		
133	T ¹ /2, an isovolumic relaxation index was calculated from the left ventricular pressure		
134	curve.		
135	The E wave, A wave, E wave/A wave ratio, and the duration of the isovolumic relaxation		
136	time (IVRT), were estimated by the Doppler-echo study.		

137 <u>Histology</u>

138 In each group, hearts were separated and processed for histological analysis. They were 139 cut and stained with hematoxylin and eosine and picrosirius red. The interstitial collagen 140 concentration in the septum and left ventricle free wall was assessed in the slides stained with 141 picrosirius red technique. Digital image software (Image Pro-Plus 5.0) bound to a Leitz light 142 microscope was used, with a $\times 10$ objective, counting a total of 50 fields per heart. The 143 percentage of collagen in each assessed region was calculated by adding the areas corresponding 144 to collagen, divided by the addition of all the areas corresponding to myocytes plus the areas of 145 collagen tissue

146 <u>Western Blot Analysis</u>

147 Western blots were performed for phospholamban (PLB), phospho-PLB(Ser16) (PS16),

148 SERCA2a, phospho-ryanodine receptor (Ser2808) (p-ryanodine receptor), Na⁺/Ca²⁺ exchanger

149 and protein phosphatase 1 (PP1). Other non contractile proteins like vinculin, paxillin, desmin,

150 tallin and beta tubulin were also evaluated using total protein lysates prepared from homogenized

151 LV of hearts. Membrane fractions were separated from total lysates by centrifugation at 100,000

152 g for 45 min. The membrane pellet was then suspended in extraction buffer. The proteins were

153 separated on 8% SDS-PAGE, transferred to nitrocellulose and probed with antibody. Secondary

154 antibody was goat anti-rabbit coupled to horseradish peroxidase. The blots were developed with

155 ECL, scanned and band densities was measured and expressed as arbitrary units. PKA activity

156 was determined by StressXpress® PKA Kinase Activity Assay kit.

157

158 <u>NFAT assays</u>

159 NFAT-luciferase reporter mice (Tg-NFAT-Luc) generated on an FVB background (30). Heart

160 homogenates (10 µg) from NFAT-luciferase transgenic mice were lysed in Reporter lysis buffer

- 161 (Promega) and analyzed for luciferase activity. The luciferase activity was measured using the
- 162 luciferase assay system (Promega) and OPTOCOMP I (MGM instruments).
- 163

164 *Statistical analysis*

- 165 All data are presented as mean \pm SE. For statistical analysis of data from multiple groups,
- 166 ANOVA was used and comparisons between groups were made using Student-Newman-Keuls
- 167 test, p<0.05 was taken as a minimal level of significance.
- 168
- 169
- 170

- **RESULTS**

173	After 2 weeks of aortic stenosis the LV - aortic pressure gradient was similar in the NTg
174	mice and TgZ mice (97±5 vs 90±4 mmHg). However, the LV hypertrophy, LV weight/body
175	weight ratio (mg/g), was greater in the NTg animals (4.6 \pm 0.2) as compared with TgZ (3.5 \pm 0.1)
176	(p<0.05). Table 1 shows systolic function and hemodynamic data. $LV + dP/dtmax$ and $LVEF$
177	were not reduced in both banded groups, demonstrating preserved LV systolic function. LVEDD
178	was not increased in either group.
179	Although LVEDD was similar in both groups, LV end diastolic pressure (LVEDP) rose
180	significantly more, p<0.05, in the TgZ group with a rtic banding than in the NTg group (10.1 \pm
181	2.13 vs 3.7 \pm 0.8 mmHg), resulting in increased LVED wall stress and increased myocardial
182	stiffness, as reflected by the LVED stress/LVEDD ratio and the E/A wave ratio, a Doppler index
183	of diastolic function (Figure 1). T ¹ /2, an isovolumic relaxation index derived from the LV
184	pressure curve, and IVRT, an isovolumic relaxation index derived from Doppler, both also
185	consistently increased in the TgZ group with and without aortic banding (Figure 2). These data
186	suggest that calcineurin genetic inhibition caused diastolic dysfunction that affected not only
187	myocardial stiffness but isovolumic relaxation as well.
188	The total collagen did not change significantly with aortic banding in either group. The
189	non contractile proteins vinculin, paxillin, desmin, tallin and beta tubulin were measured by
190	western blotting and levels were not different in the two groups (data not shown). PLB
191	phosphorylation, reflected by the ratio of PS16 to PLB, was decreased, p<0.05, in aortic banded
192	TgZ mice. Protein levels for SERCA2a, the Na ⁺ /Ca ²⁺ exchanger and phosphorylated ryanodine

193 receptor were also decreased in aortic banded TgZ mice (Figure 3). As noted in Table 2, protein

194	levels for SERCA2a, the ratio of PS16 to PLB and the Na^+/Ca^{2+} exchanger were also
195	significantly reduced in sham operated TgZ mice. In addition, PP1 expression and protein kinase
196	A (PKA) activity, which could be involved in PLB phosphorylation, were examined in the two
197	groups. As shown in Figure 3, PP1 was increased significantly, p<0.05, in TgZ mice with aortic
198	banding, but PKA activity showed no difference between the two groups.
199	Transcriptional activity of NFAT is one of the most reliable indicators of the calcineurin
200	activity in the heart <i>in vivo</i> (30). In order to evaluate the effect of ZAKI-4 β upon the calcineurin
201	activity in vivo hearts, TgZ mice were crossed with Tg-NFAT-Luc mice, which harbor an
202	NFAT-Luc reporter gene, and then the mice were subjected to aortic banding for 2 weeks. Aortic
203	banding-induced increases in NFAT-Luc activity were significantly attenuated in TgZ-NFAT-
204	Luc mice compared to Tg-NFAT-Luc mice, suggesting that calcineurin activity is significantly
205	attenuated in the presence of ZAKI-4 β (Figure 4).

207 **DISCUSSION**

208

209 In the present study we evaluated the effects of 2 weeks of chronic pressure overload induced by 210 aortic banding in mice with transgenic inhibition of calcineurin on LVH, and systolic and 211 diastolic function. Calcineurin is a major mechanism mediating the development of LVH (10, 15, 212 20, 23, 24, 26, 28) and inhibition of calcineurin has been shown to reduce LVH without affecting 213 LV systolic function (10, 20). Our study confirmed these results, demonstrating significantly less 214 hypertrophy in the banded TgZ mice without compromise of LV systolic function. Although 215 LVH is one of the major causes of LV diastolic function leading to diastolic heart failure (1, 7), 216 few studies have examined the role of calcineurin on LV diastolic function. Surprisingly, despite 217 reduced hypertrophy, which should protect against diastolic dysfunction and the preservation of 218 LV systolic function in the banded transgenic mice with inhibition of calcineurin, both 219 components of LV diastolic function were compromised severely, i.e., relaxation was impaired 220 and myocardial stiffness was significantly increased. The increase in myocardial stiffness was 221 characterized by significant increases in LV end diastolic pressure, LV end-diastolic wall stress, 222 without an increase in LV end-diastolic dimensions. Mitral inflow E/A ratio, an indirect index of 223 stiffness, was also increased with banding in TgZ mice. The impairment of isovolumic relaxation 224 was also measured by T $\frac{1}{2}$ using a high fidelity micromanometer. The impaired diastolic 225 function with pressure overload due to calcineurin inhibition has not been observed previously. 226 Yamamoto et al. (31) found that both an angiotensin II type I receptor antagonist and calcineurin 227 inhibition protected against the development of LV hypertrophy, but the angiotensin II type I 228 receptor antagonist also reduced myocardial stiffness in hypertensive rats with LVH, whereas the 229 calcineurin inhibitor did not exhibit this positive effect on LV diastolic function. Semeniuk, et al.

230 (23) found that inhibition of LVH with cyclosporine in mice with overexpressed calcineurin in 231 the heart did not reverse either LV systolic or diastolic dysfunction. The lack of effect could have 232 been due to the inability to inhibit all of the effects of the overexpressed calcineurin, since 233 cyclosporine was administered later, or because of the toxic effects of cyclosporine (15). 234 It is conceivable that the impaired LV diastolic function observed after 2 weeks of 235 banding in the TgZ group could reflect more rapid LV systolic dysfunction and development of 236 heart failure with banding in this group. This was not likely since systolic LV function was 237 almost identical in the two groups. Furthermore, we followed a subgroup of banded NTg and TgZ mice (n=4-5/group) for 4 weeks and found that LV systolic function declined similarly in 238 239 the NTg and TgZ groups, e.g., LVEF (61±0.8 vs 61±1.2%). Thus, LV systolic function was 240 maintained in both groups after 2 weeks aortic banding, and began to decline by similar amounts 241 after 4 weeks aortic banding.

242 The sarcoplasmic reticulum (SR) includes SERCA2a (Sarco/Endoplasmic Reticulum Ca^{2+} -ATPase), a Ca^{2+} ATPase. These proteins regulate Ca^{2+} dynamics, through Ca^{2+} release 243 during contraction and Ca^{2+} sequestration during relaxation. During depolarization, a small 244 amount of Ca^{2+} enters the cardiac cell through the L-type Ca^{2+} channels, which causes a 245 localized increase in Ca²⁺ between the sarcolemma and the SR, which activates the Ca²⁺-release 246 channel or ryanodine receptors to release Ca^{2+} into the cytosol. This process is termed Ca^{2+} -247 induced- Ca²⁺-release and is involved in excitation–contraction coupling. Relaxation is initiated 248 by the uptake of Ca²⁺ into the sarcoplasmic reticulum by Ca²⁺-ATPase and SERCA2a, which are 249 under regulation of phospholamban, and to a lesser extent by the Na^+/Ca^{2+} exchanger. 250 Although it is known that calcineurin affects Ca²⁺ handling and regulation of SERCA and 251

252 PLB (5, 16, 18, 19, 25), less is known how these proteins may regulate diastolic function with

253 inhibition of calcineurin, most likely as noted above. In the current investigation we found that 254 the impairment in isovolumic relaxation was associated with a decrease in PLB phosphorylation, as well as in the SERCA2a, ryanodine receptor phosphorylation, and the Na^+/Ca^{2+} exchanger, 255 256 which could be involved in the mechanism for the impaired relaxation. These findings were also 257 detected in the TgZ sham operated mice, which are consistent with the diastolic dysfunction 258 found even in the absence of aortic banding. Interestingly, the data from Chu et al. (2), 259 demonstrating increased PLB phosphorylation and SERCA protein levels in mice overexpressing 260 calcineurin activity, are consistent with our data demonstrating reduced PLB phosphorylation 261 and SERCA protein levels with calcineurin inhibition. In the present study we also observed a reduction in ryanodine receptor phosphorylation and in the Na^+/Ca^{2+} exchanger protein levels. 262 Thus, based on our data, we speculate that the regulation of diastolic Ca^{2+} by calcineurin may 263 result from a complex interplay among the different proteins involved in controlling Ca^{2+} in 264 265 cardiac cells. Previous studies also demonstrated that PP1 (6, 8, 9) and PKA (3, 29) are involved 266 in PLB phosphorylation. Our data indicate that a reduction in PLB phosphorylation may be due 267 to an upregulation of PP1, but PKA is not involved in PLB phosphorylation.

Although increased collagen can affect LV diastolic stiffness, we did not find an increase in collagen or other non-contractile proteins (data not shown) in the TgZ mice compared with NTg mice with aortic banding.

In summary, in the present investigation we have found that TgZ mice, which inhibit calcineurin, develop less hypertrophy with chronic pressure overload with preserved LV systolic function, but with a clear impairment of diastolic function as reflected by isovolumic relaxation impairment and increased myocardial stiffness. This suggests that the inhibition of calcineurin in hearts subjected to pressure overload could represent a new mechanism for diastolic dysfunction

- 276 resulting in impaired relaxation and increased myocardial stiffness, despite its concomitant
- action to reduce LVH.

SOURCES OF FUNDING:

- This work was supported in part by NIH grants AG027211; HL033107; HL059139; HL069752; HL069020; AG023137; AG014121 and HL067724.

284 **REFERENCES**

- Brutsaert DL. Diastolic heart failure: perception of the syndrome and scope of the
 problem. *Prog Cardiovasc Dis* 49: 153-156, 2006.
- 287 2. Chu G, Carr AN, Young KB, Lester JW, Yatani A, Sanbe A, Colbert MC, Schwartz
- 288 SM, Frank KF, Lampe PD, Robbins J, Molkentin JD, and Kranias EG. Enhanced myocyte
- contractility and Ca2+ handling in a calcineurin transgenic model of heart failure. *Cardiovasc*

290 *Res* 54: 105-116, 2002.

- 291 3. Chu G, and Kranias EG. Functional interplay between dual site phospholambam
- phosphorylation: insights from genetically altered mouse models. *Basic Res Cardiol* 97 Suppl 1:
 I43-48, 2002.
- 294 4. De Windt LJ, Lim HW, Bueno OF, Liang Q, Delling U, Braz JC, Glascock BJ,

295 Kimball TF, del Monte F, Hajjar RJ, and Molkentin JD. Targeted inhibition of calcineurin

attenuates cardiac hypertrophy in vivo. *Proc Natl Acad Sci U S A* 98: 3322-3327, 2001.

297 5. Degand I, Catty P, Talla E, Thines-Sempoux D, de Kerchove d'Exaerde A, Goffeau

A, and Ghislain M. Rabbit sarcoplasmic reticulum Ca(2+)-ATPase replaces yeast PMC1 and

299 PMR1 Ca(2+)-ATPases for cell viability and calcineurin-dependent regulation of calcium

300 tolerance. *Mol Microbiol* 31: 545-556, 1999.

- 304 7. Friedrich SP, Lorell BH, Rousseau MF, Hayashida W, Hess OM, Douglas PS,
- 305 Gordon S, Keighley CS, Benedict C, Krayenbuehl HP, and et al. Intracardiac angiotensin-

^{301 6.} El-Armouche A, Pamminger T, Ditz D, Zolk O, and Eschenhagen T. Decreased
302 protein and phosphorylation level of the protein phosphatase inhibitor-1 in failing human hearts.
303 *Cardiovasc Res* 61: 87-93, 2004.

- 306 converting enzyme inhibition improves diastolic function in patients with left ventricular
- 307 hypertrophy due to aortic stenosis. *Circulation* 90: 2761-2771, 1994.

308 8. Grote-Wessels S, Baba HA, Boknik P, El-Armouche A, Fabritz L, Gillmann HJ,

- 309 Kucerova D, Matus M, Muller FU, Neumann J, Schmitz M, Stumpel F, Theilmeier G,
- 310 Wohlschlaeger J, Schmitz W, and Kirchhefer U. Inhibition of protein phosphatase 1 by
- 311 inhibitor-2 exacerbates progression of cardiac failure in a model with pressure overload.
- 312 *Cardiovasc Res* 79: 464-471, 2008.
- 313 9. Gupta RC, Mishra S, Yang XP, and Sabbah HN. Reduced inhibitor 1 and 2 activity is
- 314 associated with increased protein phosphatase type 1 activity in left ventricular myocardium of
- 315 one-kidney, one-clip hypertensive rats. *Mol Cell Biochem* 269: 49-57, 2005.
- 316 10. Hill JA, Rothermel B, Yoo KD, Cabuay B, Demetroulis E, Weiss RM, Kutschke W,
- 317 Bassel-Duby R, and Williams RS. Targeted inhibition of calcineurin in pressure-overload
- 318 cardiac hypertrophy. Preservation of systolic function. J Biol Chem 277: 10251-10255, 2002.
- 319 11. Hirotani S, Zhai P, Tomita H, Galeotti J, Marquez JP, Gao S, Hong C, Yatani A,
- 320 Avila J, and Sadoshima J. Inhibition of glycogen synthase kinase 3beta during heart failure is
- 321 protective. *Circ Res* 101: 1164-1174, 2007.
- 322 12. Hittinger L, Mirsky I, Shen YT, Patrick TA, Bishop SP, and Vatner SF.
- 323 Hemodynamic mechanisms responsible for reduced subendocardial coronary reserve in dogs
- 324 with severe left ventricular hypertrophy. *Circulation* 92: 978-986, 1995.
- 325 13. Hittinger L, Shannon RP, Bishop SP, Gelpi RJ, and Vatner SF. Subendomyocardial
- 326 exhaustion of blood flow reserve and increased fibrosis in conscious dogs with heart failure. *Circ*
- 327 *Res* 65: 971-980, 1989.

328 14. Lim HW, De Windt LJ, Mante J, Kimball TR, Witt SA, Sussman MA, and

- 329 Molkentin JD. Reversal of cardiac hypertrophy in transgenic disease models by calcineurin
- 330 inhibition. J Mol Cell Cardiol 32: 697-709, 2000.

331 15. Meguro T, Hong C, Asai K, Takagi G, McKinsey TA, Olson EN, and Vatner SF.

332 Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to

decompensation and heart failure. *Circ Res* 84: 735-740, 1999.

16. Mendoza I, Quintero FJ, Bressan RA, Hasegawa PM, and Pardo JM. Activated

335 calcineurin confers high tolerance to ion stress and alters the budding pattern and cell

336 morphology of yeast cells. *J Biol Chem* 271: 23061-23067, 1996.

337 17. Mizuno Y, Kanou Y, Rogatcheva M, Imai T, Refetoff S, Seo H, and Murata Y.

- 338 Genomic organization of mouse ZAKI-4 gene that encodes ZAKI-4 alpha and beta isoforms,
- 339 endogenous calcineurin inhibitors, and changes in the expression of these isoforms by thyroid
- hormone in adult mouse brain and heart. *Eur J Endocrinol* 150: 371-380, 2004.

341 18. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR,

and Olson EN. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. *Cell*93: 215-228, 1998.

344 19. Mulkey RM, Endo S, Shenolikar S, and Malenka RC. Involvement of a

345 calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. *Nature* 369:
346 486-488, 1994.

347 20. Rothermel BA, McKinsey TA, Vega RB, Nicol RL, Mammen P, Yang J, Antos CL,

348 Shelton JM, Bassel-Duby R, Olson EN, and Williams RS. Myocyte-enriched calcineurin-

349 interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. *Proc Natl Acad Sci U S A* 98:

350 3328-3333, 2001.

351 21. Rothermel BA, Vega RB, and Williams RS. The role of modulatory calcineurin-

352 interacting proteins in calcineurin signaling. *Trends Cardiovasc Med* 13: 15-21, 2003.

353 22. Sadoshima J, Montagne O, Wang Q, Yang G, Warden J, Liu J, Takagi G, Karoor

- 354 V, Hong C, Johnson GL, Vatner DE, and Vatner SF. The MEKK1-JNK pathway plays a
- 355 protective role in pressure overload but does not mediate cardiac hypertrophy. *J Clin Invest* 110:
- 356 271-279, 2002.
- 357 23. Semeniuk LM, Severson DL, Kryski AJ, Swirp SL, Molkentin JD, and Duff HJ.
- 358 Time-dependent systolic and diastolic function in mice overexpressing calcineurin. Am J Physiol
- 359 *Heart Circ Physiol* 284: H425-430, 2003.
- 360 24. Shimoyama M, Hayashi D, Takimoto E, Zou Y, Oka T, Uozumi H, Kudoh S,
- 361 Shibasaki F, Yazaki Y, Nagai R, and Komuro I. Calcineurin plays a critical role in pressure
- 362 overload-induced cardiac hypertrophy. *Circulation* 100: 2449-2454, 1999.
- 363 25. Sulakhe PV, Vo XT, Morris TE, Pato MD, and Khandelwal RL. Protein
- 364 phosphorylation in rat cardiac microsomes: effects of inhibitors of protein kinase A and of
- 365 phosphatases. *Mol Cell Biochem* 175: 109-115, 1997.
- 366 26. Sussman MA, Lim HW, Gude N, Taigen T, Olson EN, Robbins J, Colbert MC,
- 367 **Gualberto A, Wieczorek DF, and Molkentin JD**. Prevention of cardiac hypertrophy in mice by
- 368 calcineurin inhibition. *Science* 281: 1690-1693, 1998.
- 369 27. Vatner SF, Shannon R, and Hittinger L. Reduced subendocardial coronary reserve. A
- 370 potential mechanism for impaired diastolic function in the hypertrophied and failing heart.
- 371 *Circulation* 81: III8-14, 1990.
- 372 28. Vega RB, Bassel-Duby R, and Olson EN. Control of cardiac growth and function by
- 373 calcineurin signaling. *J Biol Chem* 278: 36981-36984, 2003.

29. Watanuki S, Matsuda N, Sakuraya F, Jesmin S, and Hattori Y. Protein kinase C

- 375 modulation of the regulation of sarcoplasmic reticular function by protein kinase A-mediated
- phospholamban phosphorylation in diabetic rats. *Br J Pharmacol* 141: 347-359, 2004.

377 30. Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR,

- and Molkentin JD. Calcineurin/NFAT coupling participates in pathological, but not
- 379 physiological, cardiac hypertrophy. *Circ Res* 94: 110-118, 2004.
- 380 31. Yamamoto K, Masuyama T, Sakata Y, Nishikawa N, Mano T, Yoshida J, Miwa T,
- 381 Sugawara M, Yamaguchi Y, Ookawara T, Suzuki K, and Hori M. Myocardial stiffness is
- determined by ventricular fibrosis, but not by compensatory or excessive hypertrophy in
- 383 hypertensive heart. *Cardiovasc Res* 55: 76-82, 2002.
- 384 32. Yamamoto M, Yang G, Hong C, Liu J, Holle E, Yu X, Wagner T, Vatner SF, and
- 385 Sadoshima J. Inhibition of endogenous thioredoxin in the heart increases oxidative stress and
- 386 cardiac hypertrophy. *J Clin Invest* 112: 1395-1406, 2003.

387 33. Zhai P, Galeotti J, Liu J, Holle E, Yu X, Wagner T, and Sadoshima J. An angiotensin

- 388 II type 1 receptor mutant lacking epidermal growth factor receptor transactivation does not
- induce angiotensin II-mediated cardiac hypertrophy. *Circ Res* 99: 528-536, 2006.
- 390 34. Zhai P, Gao S, Holle E, Yu X, Yatani A, Wagner T, and Sadoshima J. Glycogen
- 391 synthase kinase-3alpha reduces cardiac growth and pressure overload-induced cardiac
- 392 hypertrophy by inhibition of extracellular signal-regulated kinases. J Biol Chem 282: 33181-
- 393 33191, 2007.
- 394
- 395
- 396

397 FIGURE LEGENDS

399	Figure 1. LVED stress, LVED stress/LVEDD, and the E/A wave ratio, are shown in NTg and
400	TgZ mice with and without (sham) aortic banding. In the transgenic group with aortic banding
401	the 2 indices of LV diastolic function was impaired, whereas LV diastolic dimensions did not
402	change, resulting in increases in LV diastolic stress and diastolic stiffness. *p<0.05 TgZ with
403	aortic banding vs NTg with aortic banding.
404	
405	Figure 2. T ¹ / ₂ and IVRT are shown in NTg and TgZ mice with and without (sham) aortic
406	banding. In the transgenic group with aortic banding the 2 indices show an impairment of LV
407	isovolumic relaxation. *p<0.05 TgZ with aortic banding vs NTg with aortic banding.
408	
409	Figure 3. The ratio of PS16 to PLB, SERCA2a, p-ryanodine receptor, and the Na^+/Ca^{2+}
410	exchanger are shown. There is a decrease in all the Ca ²⁺ handling proteins in the TgZ group with
411	aortic banding. PP1 was increased significantly in the TgZ group with aortic banding. There was
412	no difference in PKA activity between the two groups. $p<0.05$ TgZ with aortic banding vs NTg
413	with aortic banding; n=4-5/group
414	
415	Figure 4. NFAT-Luciferase reporter mice (Tg-NFAT-Luc) were crossed with TgZ. Tg-NFAT-
416	Luc and TgZ-NFAT-Luc (bigenic) mice were subjected to either sham or transverse aortic
417	banding. The luciferase activity was measured from heart homogenates and normalized by the
418	protein content. Values are mean \pm SEM. n=4/group.
419	

Table 1. LV Systolic Function and Hemodynamics

	NTg Sham	TgZ Sham	NTg Aortic Banded	TgZ Aortic Banded
LVEF (%)	70 ± 1.1	72 ± 0.7	69 ± 0.8	67 ± 0.9
LV dP/dt (mmHg/Sec)	7756 ± 443	8000 ± 328	9659 ± 714	8798 ± 518
LVSP (mmHg)	92±2.3	91±2.3	168±5.5 [†]	163±3.9 ⁺
MAP (mmHg)	77 ± 2.0	76 ± 1.9	$59\pm3.4^{\dagger}$	$63\pm1.9^{\dagger}$
HR (b/min)	445 ± 16	470 ± 10	472 ± 20	493 ± 22
LVEDD (mm)	3.56±0.07	3.64±0.04	3.56±0.04 [†]	3.58±0.04
LV/BW	2.9±0.0	2.7±0.1	$4.6\pm0.2^{+}$	3.5±0.1* [†]
Lung weight /BW	5.2±0.2	5.9±0.1	$7.8\pm0.4^{\dagger}$	6.7±0.2
EF: Ejection fraction; MAP: mean arterial pressure; HR: heart rate; BW: body weight. *p<0.05 TgZ Banded vs NTg Banded; [†] p<0.05 Aortic Banded vs. Sham. n=10-18				

424 425

428 Table 2. Calcium handling proteins

	NTg Sham	TgZ Sham
PS16/PLB	2.2 ± 0.3	$0.6\pm0.1^{\dagger}$
SERCA2a	9.0 ± 1.4	$3.2\pm0.6^{\dagger}$
Phospho-ryanodine receptor	6.5 ± 1.2	4.1 ± 1.4
Na ⁺ /Ca ²⁺ exchanger	5.6 ± 0.6	$2.4\pm0.2^{\dagger}$
Values are arbitrary units. N=5-6/group. $^{\dagger}p$ <0.05 vs Sham.		

Figure 1

Figure 2

Figure 3

Figure 4