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A B S T R A C T

We constructed a predictive model of the total deactivation rate constant (kt) of singlet oxygen by

heterocyclic compounds that are widespread in biological systems and participate in highly relevant

biologic functions related with photochemical processes, by means of quantitative structure–property

relationships (QSPR). The study of the reactivity of singlet oxygen with biomolecules provides their

antioxidant capability, and the determination of the rate constants allows evaluation of the efficiencies

of these processes. Our optimal linear model based on 41 molecular structures, which have not been used

previously in a QSPR study, consists of six variables, selected from more than thousand geometrical,

topological, quantum-mechanical and electronic types of molecular descriptors. Our recently developed

strategy to determine the optimal number of descriptors in model is successfully applied. As a practical

application of our QSPR model we estimated the unknown kt of several heterocyclic compounds that are

of particular interest for further experimental studies in our research group.
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1. Introduction

Oxygen is ubiquitous, comprising nearly 50% of the Earth’s crust
and is an essential component in the metabolic pathways of all
higher organisms [1]. With two singlet states lying close above its
triplet ground state, the O2 molecule possesses a very unique
configuration, which gives rise to a very rich and easily accessible
chemistry, and also to a number of important photophysical
interactions [2]. The lowest electronic excited state of molecular
oxygen, named singlet oxygen (O2(1Dg), denoted throughout as
1O2), is an electrophilic molecule that has a high capacity to oxidize
a variety of electron-rich organic compounds [3]. This active
species has physical and chemical properties that have intrigued
researchers in several areas of science for more than 70 years [4,5];
participating in reactions that comprise great interest in different
fields of science: environmental chemistry, bromatology, bio-
chemistry, biology, etc. Although 1O2 can be generated by
chemical, enzymatic and photochemical paths, photosensitization
is primarily responsible for the production of 1O2 in vivo [6].
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Moreover, 1O2 is one of the main activated species responsible for
the damaging effects of light on biological systems (photodynamic
effects) [5].

1O2 relaxes to ground state 3O2 by both radiation-less and
radiative pathways:

1O2�!
kd 3O2 (1)

1O2�!
ke 3O2 þ hv (2)

It may also be deactivated by oxidation of an acceptor molecule Q

Q þ 1O2�!
kr

QO2 (3)

and/or the interaction with a physical quencher

Q þ 1O2�!
kq

Q þ 3O2 (4)

Any biological compound that is able to deactivate 1O2 may
efficiently have a protective role against 1O2 in vivo and very likely
against other reactive oxygen species. Therefore, the study of the
reactivity of 1O2 with biomolecules would provide their antiox-
idant capability, and the determination of the rate constants of 1O2

for the total (physical and chemical) quenching (kt = kr + kq) allows
evaluation of the efficiencies of these processes. However,
determination of kt values is experimentally difficult and requires
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specialized equipment to detect the weak 1O2 luminescence
emission in the near infrared [7]. Therefore, despite the biological
importance of the subject and the enormous diversity of
compounds able to interact with 1O2, the kinetic studies on
reactivity of this reactive oxygen species are still scarce.

Heterocyclic compounds are widespread in biological systems
and participate in highly relevant biologic functions. Important
families of biomolecules, such as nucleobases, porphyrins, flavins
and pterins are included in this group of compounds. In particular,
reactivity of 1O2 with pterins has been recently studied [8–10].

Clearly, it is of great interest the prediction of unknown
deactivation constants of 1O2 by a given set of compounds, as well
as attempting to determine the molecular structural parameters
which kt depends on. A generally accepted remedy for overcoming
the lack of experimental data in complex chemical phenomena is
the analysis based on quantitative structure–property relation-
ships (QSPR) [11]. The ultimate role of the different formulations of
the QSPR theory is to suggest mathematical models for estimating
relevant properties of interest, especially when they cannot be
experimentally determined for some reason. These studies simply
rely on the assumption that the physicochemical properties of a
compound are determined solely by its molecular structure. The
molecular structure is therefore translated into the so-called
molecular descriptors through mathematical formulae obtained
from several theories, such as Chemical Graph Theory, Information
Theory, Quantum Mechanics, etc. [12,13]. Currently there are
available in the literature thousands of theoretical descriptors, and
one usually faces the problem of selecting those that are the most
representative of the property under consideration.

The present study reports the predictions of kt for 41
heterocyclic compounds that include different functional groups,
whose experimental data are available in the literature [10,14,15].
Here, this set of molecules is used in a QSPR study for the first time.
A great number of structural molecular descriptors including
definitions of all classes are searched using the recently presented
enhanced replacement method (ERM) [16] to perform the optimal
variable subset selection. With the purpose of testing and
comparison we also apply the well-established replacement
method (RM) [17–20] and genetic algorithm (GA) [21]. As a
practical application of our QSPR model we estimate the unknown
kt of several heterocyclic compounds that are of particular interest
for further experimental studies in our research group.

2. Materials and methods

2.1. Data set

The training set of present study consists of 41 heterocyclic
compounds (which have not been used for this purpose before, as
far as we know) with known total rate constant kt of 1O2 quenching
[10,14,15]. Among the available experimental data, we select only
those ones measured in polar protic solvents at the same
temperature (T = 298 K) and pressure (P = 1 atm). Average of
multiple reported values of the same compound are used.
According to the experimental data available in the literature
[15] we assume that different polar protic solvents would not
affect significantly the measure of the deactivation rate constant.
This premise would be verified by the statistical analysis. Table 1
shows the experimental values of log (kt) for the chosen hetero-
cyclic compounds.

2.2. Molecular descriptors

The structures of the compounds are firstly pre-optimized with
the molecular mechanics force field (MM+) procedure included in
the package Hyperchem 6.03 [22], and the resulting geometries are
further refined by means of the semi-empirical method PM3
(Parametric Method-3) using the Polak–Ribiere algorithm and a
gradient norm limit of 0.01 kcal Å�1. We compute the molecular
descriptors using the software e-Dragon [23], including para-
meters of all types: Constitutional, Topological, Geometrical,
Charge, GETAWAY (Geometry, Topology and Atoms-Weighted
AssemblY), WHIM (Weighted Holistic Invariant Molecular descrip-
tors), 3D-MoRSE (3D-Molecular Representation of Structure based
on Electron diffraction), Molecular Walk Counts, BCUT descriptors,
2D-Autocorrelations, Aromaticity Indices, Randic Molecular Pro-
files, Radial Distribution Functions, Functional Groups, Atom-
Centred Fragments, Empirical and Properties [24]. We add 20
constitutional descriptors and 4 quantum-chemical ones (mole-
cular dipole moments, total energies, homo-lumo energies) not
provided by the program e-Dragon to the pool. We thus end with a
total of D = 1659 descriptors.

2.3. Model search

Our calculations are based on a suite of routines written in the
computer system Matlab 5.0 [25]. It is our purpose to search the set
D of D descriptors for an optimal subset d of d� D ones with
minimum standard deviation S according to multivariable linear
regression (MLR):

S ¼ 1

ðN � d� 1Þ
XN

i¼1

resi
2 (5)

where N is the number of molecules in the training set, and resi the
residual for molecule i, the difference between the experimental
property (p) and the predicted one (ppred). More precisely, we want
to obtain the global minimum of S(d) where d is a point in a space
of D!/[d!(D � d)!] ones. A full search (FS) of optimal variables is
impractical because it requires D!/[d!(D � d)!] linear regressions.
Some time ago we have proposed the replacement method (RM)
[17–20] and more recently the enhanced replacement method
(ERM) [16], both algorithms produce linear regression QSPR–QSAR
models that are quite close the FS ones with much less
computational work. These techniques are able to approach the
minimum of S by judiciously taking into account the relative errors
of the coefficients of the least-squares model given by a set of d

descriptors d = {X1, X2, . . ., Xd}. The RM gives models with better
statistical parameters than the Forward Stepwise Regression
procedure [26] and similar ones to the more elaborated genetic
algorithms [21], and the ERM is an improvement on the RM [16].

A GA is a search technique based on natural evolution where
variables play the role of genes (in this case a set of descriptors) in
an individual of the species. An initial group of random individuals
(population) evolves according to a fitness function (in this case
the standard deviation) that determines the survival of the
individuals. The algorithm searches for those individuals that
lead to better values of the fitness function through selection,
mutation and crossover genetic operations. The selection operators
guarantee the propagation of individuals with better fitness in
future populations. The GAs explore the solution space combining
genes from two individuals (parents) using the crossover operator
to form two new individuals (children) and also by randomly
mutating individuals using the mutation operator. The GAs offer a
combination of hill-climbing ability (natural selection) and a
stochastic method (crossover and mutation) and explore many
solutions in parallel processing information in a very efficient
manner. The practical application of GAs requires the tuning of
some parameters such as population size, generation gap, cross-
over rate, and mutation rate. These parameters typically interact
among themselves nonlinearly and cannot be optimized one at a
time. There is considerable discussion about parameter settings



Table 1
Experimental and predicted (Eq. (7)) log (kt), and residuals.

Number Name log (kt) exp. log (kt) pred. Residual

1 7,8-Dihydrofolic acid 8.74 8.59 0.15

2 7,8-Dihydrobiopterin 8.57 8.28 0.29

3 7,8-Dihydroneopterin 8.66 8.71 �0.05

4 6-Formyl-7,8-dihydropterin 8.32 8.19 0.13

5 Sepiapterin 8.28 8.28 0.00

6 7,8-Dihydroxantopterin 8.83 9.09 �0.26

7 Pterin 6.46 6.92 �0.46

8 6-Methylpterin 6.90 6.91 �0.01

9 6,7-Dimethylpterin 7.60 7.25 0.35

10 6-(Hydroxymethyl)pterin 6.49 6.21 0.28

11 6-Formylpterin 6.15 6.23 �0.08

12 6-Carboxypterin 6.15 6.22 �0.07

13 Biopterin 6.38 6.35 0.03

14 Neopterin 6.36 6.36 0.00

15 Folic acid 7.48 7.52 �0.04

16 Histamine 8.06 8.21 �0.15

17 Imidazole 7.46 7.31 0.15

18 4-Methyl-imidazole 8.11 7.89 0.22

19 Indole 7.65 8.00 �0.35

20 2,3-Dimethy-indole 8.76 8.65 0.11

21 3-Methyl-indol 8.20 8.33 �0.13

22 Indole 3 acetic acid 8.83 8.49 0.34

23 Indole-3-propianamide 7.89 8.07 �0.18

24 Indole-3-propionic acid 7.91 8.31 �0.40

25 2,5-Diphenyl-oxazole 8.20 8.05 0.15

26 2,5-Diphenyl-4-methyl-oxazole 7.53 7.68 �0.15

27 4-Methyl-2-(3-chlorophenyl)-5-phenyl oxazole 7.23 7.23 0.00

28 4-Methyl-2-(4-chlorophenyl)-5-phenyl oxazole 7.28 7.43 �0.15

29 4-Methyl-2-(4-methoxyphenyl)-5-phenyl oxazole 7.72 7.59 0.13

30 4-Methyl-2-(4-methylphenyl)-5-phenyl oxazole 7.57 7.67 �0.10

31 4-Methyl-2-(4-nitrophenyl)-5-phenyl oxazole 7.08 7.01 0.07

32 2,3-Dihydro-1-methyl-4-phenyl-pyridinium 6.23 6.09 0.15

33 1-Methyl-pyridinium 5.81 6.14 �0.33

34 1-Methyl-4-phenyl-pyridinium 5.95 5.83 0.12

35 cis(�)-2,3,4,4a,5,9b-Hexahydro-2,8-dimethyl-pyrido[4,3-b]indole 8.11 8.37 �0.26

36 1,2,3,4-Tetrahydro-2,8-dimethyl-pyrido[4,3-b]indole 8.23 8.46 �0.23

37 1-(1,1-dimethylethyl)-pyrrole 8.08 7.89 0.19

38 2-(1,1-dimethylethyl)-pyrrole 8.18 8.28 �0.10

39 3-(1,1-dimethylethyl)-pyrrole 8.26 8.21 0.05

40 Quinoline 9.00 8.51 0.49

41 1,2-Dihydro-2,2,4-trimethyl-quinoline, homopolymer (Permanax 45) 8.98 8.86 0.12
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and approaches to parameter adaptation in the evolutionary
computation literature; however there does not seem to be
conclusive results on which may be the best [27].

Both the RM and ERM yield the optimal QSPR model with a
given number d of descriptors. We also have to determine the
optimal value dopt of the number of variables of our model. The
Kubinyi function (FIT) [28,29] is a statistical parameter that closely
relates to the Fisher ratio (F), but avoids the main disadvantage of
the latter that is too sensitive to changes in small d values and
poorly sensitive to changes in large d values. The FIT(d) criterion
has a low sensitivity to changes in small d values and a
substantially increasing sensitivity for large d values. The greater
the FIT value the better the linear equation.

Commonly, we expect a plot of FIT vs. d to present a maximum
from which it is possible to calculate the optimal number of
molecular descriptors (dopt) to be included in the linear regression
model. There are some occasions when the maximum is not
reached after adding a reasonable number of descriptors in the
model. For this reason we have recently proposed a variable FIT

equation or VFIT which depends on a semi-empirical constant v
that gives more weight to d in the FIT equation [30]. It reads:

VFIT ¼ R2ðN ��1Þ
ðN þ d2Þð1� R2Þ

(6)

where R is the correlation coefficient for a model with d

descriptors. By means of this equation, we obtain dopt as the
number of descriptors that yields the maximum value of VFIT

(dmax) in the plot of VFIT vs. d. The semi-empirical constant v is
determined by taking incremental values of 0.5 until that
maximum complies with the rule of thumb that at least five data
points should be present for each fitting parameter [31].

As a theoretical validation of all the models we choose the well-
known Leave-One-Out (loo) and the Leave-More-Out Cross-
Validation procedures (l-n%-o) [32], where n% is the number
percent of molecules removed from the training set. We generate
5,000,000 cases of random data removal for l-n%-o, where n% = 30%
(12 heterocyclic compounds).

2.4. Orthogonalization procedure

We employ the orthogonalization procedure introduced several
years ago by Milan Randic [33,34] as a way of improving the
statistical interpretation of the QSPR model that is built by using
interrelated (overlapped) molecular descriptors. From our point of
view, the co-linearity of the molecular descriptors should be as low
as possible, because the interrelatedness among the different
descriptors can lead to highly unstable regression coefficients,
which makes it impossible to know the relative importance of an
index and underestimates the utility of the regression coefficients
of the model. As it is known, the crucial step of an orthogonaliza-
tion process involves the choice of an appropriate order of
orthogonalization. Therefore, we consider plausible to select the
orthogonalization order in such a way that maximises the



Table 2
Values of v and d corresponding to maxima in VFIT.

V d (max.) v d (max.) v D (max.)

1 – 6.5 3 12 2

1.5 – 7 3 12.5 2

2 13 7.5 2 13 2

2.5 13 8 2 13.5 2

3 9 8.5 2 14 2

3.5 8 9 2 14.5 2

4 6 9.5 2 15 2

4.5 6 10 2 15.5 2

5 4 10.5 2 16 2

5.5 4 11 2 16.5 2

6 4 11.5 2 17 1
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correlation coefficient between each calculated orthogonal
descriptor and the observed experimental property values (in
decreasing order).

3. Results and discussion

By means of the ERM we search the total pool of D = 1659
descriptors and obtain optimal models with d = 1, 2, . . ., 15
parameters linking the molecular structure of the heterocyclic
compounds with their total rate constant kt. On increasing v in VFIT

as indicated above we find four maxima at d = 13 (v ¼ 2), d = 9
(v ¼ 3), d = 8 (v ¼ 3:5), and d = 6 (v ¼ 4). The last one is consistent
with the rule of thumb that states that in this case the number of
fitting parameters should be less than 8. Fig. 1 shows the resulting
VFIT with v ¼ 4 that exhibits a maximum at d = dmax = 6. We
assume that this is the optimal value of descriptors in the model.
Fig. 1 also shows that FIT does not present a maximum in the
interval 1 � d � 15. Table 2 shows that dmax = 6 remains stable
under additional increments of v supporting the fact that this is
actually the optimal number of model parameters.

According to the above mentioned results, the optimal QSPR
model according to ERM is

logðktÞ ¼ 7:8611ð�0:4Þ � 1:2329ð�0:2ÞGATS1e

� 1:1219ð�0:1ÞMor16uþ 5:5727ð�0:9Þ E1v

� 32:9421ð�3:8ÞR8mþ � 1:4465ð�0:1ÞnNþ

� 1:1799ð�0:1ÞnArOH (7)

N ¼ 41; R ¼ 0:9727; S ¼ 0:2323; FIT ¼ 7:7689;

p<10�5; Rloo ¼ 0:9609; Sloo ¼ 0:2778;

Rl-30%-o ¼ 0:8793; Sl-30%-o ¼ 0:4892

where the absolute errors of the regression coefficients are given in
parentheses, p is the significance of the model, FIT the Kubinyi
function, and loo and l-30%-o stand for the Leave-One-Out and
Leave-More-Out Cross-Validation techniques, respectively.

Following the same strategy the RM [17–20] yields the
following optimal set of d = 6 descriptors:

logðktÞ ¼ 6:8842ð�0:9Þ þ 0:7754ð�0:1ÞnR10

� 0:803ð�0:2ÞGATS1 pþ 42687ð�1:4ÞE1e

� 23:779ð�4:3ÞR8mþ � 1:5004ð�0:2ÞnNþ

� 0:4449ð�0:03ÞN � 075 (8)
Fig. 1. VFIT (squares, left axe) and FIT (circles, right axe) in terms of the number of

descriptors for the training set.
N ¼ 41; R ¼ 0:9603; S ¼ 0:2797; FIT ¼ 5:2249;

p<10�3; Rloo ¼ 0:9385; Sloo ¼ 0:3474; Rl-30%-o ¼ 0:7993;

Sl-30%-o ¼ 0:6075

For comparison we also derive an optimal model with dopt

descriptors by means of GA. After several runs to optimize the GA
parameters we find: number of individuals = 250; generation
gap = 0.9; single point crossover probability = 0.6; mutation prob-
ability = 0.7/d. The algorithm is stopped when a single individual
occupied more than 90% of the population or when the number of
generations reach 2500. We conclude that the best GA model is

logðktÞ ¼ 7:1903ð�0:5Þ � 1:533ð�0:1ÞC � 032

� 23:733ð�3:9ÞR8mþ � 1:3538ð�0:2ÞnNþ

þ 5:4508ð�1:2ÞDe� 1:1976ð�0:2ÞGATS1 p

þ 0:8661ð�0:1ÞnR10 (9)

N ¼ 41; R ¼ 0:968; S ¼ 0:2515; FIT ¼ 6:5671;

p<10�4; Rloo ¼ 0:9524; Sloo ¼ 0:306; Rl-30%-o ¼ 0:4464;

Sl-30%-o ¼ 7:6249

Present results suggest that the ERM is preferable to the GA and RM
for the search of a large number of descriptors. Table 3 shows a
summary of the linear models with 1 to dopt + 1 parameters for
ERM and dopt parameters for RM and GA, including the Leave-30%-
Out Cross-Validation result. That the predictive power of the linear
model is satisfactory is revealed by its stability upon the inclusion
or exclusion of compounds. The resulting values Rloo = 0.9609 and
l-n%-oRl-30%-o = 0.8793 are in the range of a validated model:
according to the literature Rl-n%-o must be greater than 0.71 [35].
The details of the molecular descriptors of Table 3 are presented in
Table 4. The correlation matrix in Table 5 reveals that the
descriptors of the linear model are not seriously inter-correlated
(Rij < 0.5334), and this fact substantiates the presence of all the
parameters in the equation.

With the purpose of demonstrating that Eq. (7) does not result
from happenstance we resort to a widely used approach to
establish a model robustness: the so-called y-randomization [36]
that consists of scrambling the experimental property p in such a
way that activities do not correspond to the respective compounds.
After analyzing 5,000,000 cases of y-randomization, the smallest S

value that is obtained in this way S = 0.5691 is considerably greater
than the one coming from the true calibration (S = 0.2323). We
thus verify the robustness of the model and show that the
calibration is not a fortuitous correlation but a reliable structure–
activity relationship. This result together with the training and test
statistical parameters are in good agreement with the premise that
different polar protic solvents would not affect significantly the
measure of kt.



Table 4
Symbols for molecular descriptors appearing in the different models.

Molecular descriptor Type Description

C-027 Atom-centred fragments C-027 corresponds to: R–CH–X

nN+ Functional group counts Number of ammonium groups (aliphatic)

N-075 Atom-centred fragments N-075 corresponds to: R–N–R/R–N–X

nR05 Constitutional descriptors Number of 5-membered rings

nR10 Constitutional descriptors Number of 10-membered rings

SRW05 Molecular walk counts Self-returning walk count of

MATS5p 2D Autocorrelations Moran autocorrelation – lag 5/weighted by atomic polarizabilities

GATS8m 2D Autocorrelations Geary autocorrelation – lag 8/weighted by atomic masses

GATS1p 2D Autocorrelations Geary autocorrelation – lag 1/weighted by atomic polarizabilities

Mor16v 3D-MoRSE 3D-MoRSE – signal 16/weighted by atomic van der Waals volumes

nArOH Functional group counts Number of aromatic hydroxyls

GATS1e 2D Autocorrelations Geary autocorrelation – lag 1/weighted by atomic Sanderson electronegativities

Mor16u 3D-MoRSE 3D-MoRSE – signal 16/unweighted

E1v WHIM 1st component accessibility directional WHIM index/weighted by atomic van der Waals volumes

R8m+ GETAWAY R maximal autocorrelation of lag 8/weighted by atomic masses

ATS8m 2D Autocorrelations Broto-Moreau autocorrelation of a topological structure – lag 8/weighted by atomic masses

Mor29e 3D-MoRSE 3D-MoRSE – signal 29/weighted by atomic Sanderson electronegativities

H5u GETAWAY H autocorrelation of lag 5/unweighted

nArNH2 Functional Group Counts Number of primary amines (aromatic)

E1e WHIM 1st component accessibility directional WHIM index/weighted by atomic Sanderson electronegativities

C-032 Atom-centred fragments C-032 corresponds to: X–CX–X

De WHIM D total accessibility index/weighted by atomic Sanderson electronegativities

For atom-centred fragments: R represents any group linked through carbon; X represents any electronegative atom (O, N, S, P, Se, halogens); – represents an aromatic bond as

in benzene or delocalized bonds such as the N–O bond in a nitro group.

Table 3
QSPR models derived from the complete training set of N = 41 compounds. The best relationships found appear in boldface.

Model Descriptors used R S Rl-30%-o Sl-30%-o

M1 C-027 0.664 0.699 0.195 1.099

M2 nN+, N-075 0.864 0.477 0.628 0.762

M3 nR05, nR10, N-075 0.906 0.406 0.350 1.299

M4 nR10, SRW05, MATS5p, N-075 0.939 0.334 0.227 3.258

M5 GATS8m, GATS1p, Mor16v, nN+, nArOH 0.953 0.300 0.789 0.610

M6 GATS1e, Mor16u, E1v, R8m+, nN+, nArOH (Eq. (7)) 0.973 0.232 0.879 0.489

M7 nR05, nR10, ATS8m, Mor29e, E1v, H5u, nArNH2 0.980 0.204 0.509 2.709

M6B nR10, GATS1p, E1e, R8m+, nN+, N-075 (Eq. (8)) 0.960 0.280 0.799 0.608

M6C C-032, R8m+, nN+, De, GATS1p, nR10 (Eq. (9)) 0.968 0.251 0.446 7.625

Table 5
Correlation matrix for the descriptors in Eq. (7) (N = 41).

GATS1e Mor16u E1v R8m+ nN+ nArOH

GATS1e 1 0.1651 0.3444 0.3685 0.3021 0.0160

Mor16u 1 0.5334 0.0566 0.2129 0.2327

E1v 1 0.2439 0.0863 0.3577

R8m+ 1 0.1114 0.2957

nN+ 1 0.1744

nArOH 1

Fig. 2. Predicted versus experimental log (kt). Results from Eq. (7) (circles) and from

Eq. (10) for the test set (rhombus).
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The plot of predicted vs. experimental log (kt) shown in Fig. 2
suggests that the 41 heterocyclic compounds approximately
follow a straight line. Table 1 also includes log (kt) predicted by
Eq. (7) for the set of molecules, and the corresponding residuals.
Fig. 3 shows that the behavior of the residuals in terms of the
predictions follows a normal distribution. No molecule in the set
exhibited a residual larger than 2.5.S that could be considered as
outlier.

As an additional test of the predictive power of our
method we remove six molecules (with varied values of the
property) from the training set and calculate their log (kt). To
this end, we derive the following model with the remaining 35
molecules:

logðktÞ ¼ 7:9238ð�0:5Þ � 1:3282ð�0:2ÞGATS1e

� 1:1456ð�0:1ÞMor16uþ 5:7009ð�1ÞE1v

� 32:2832ð�4:3ÞR8mþ � 1:4369ð�0:1ÞnNþ

� 1:1991ð�0:1ÞnArOH (10)

N ¼ 35; R ¼ 0:9749; S ¼ 0:2352;

FIT ¼ 7:5683; p<10�5 RMSETestSet ¼ 0:2325

Its parameters are similar to those in Eq. (7), and RMSETestSet stands
for root mean squared errors of the calculated values of the
property for the test set of 6 molecules. Figs. 2 and 3 show that the
plot of predicted vs. experimental log (kt) for the 6 heterocyclic



Fig. 3. Dispersion plot of the residuals for the training set (Eq. (7), circles) and test

set (Eq. (10), rhombus).
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compounds approximately follows a straight line. Besides, no
molecule in the test set can be considered as outlier.

With the main purpose of assessing whether the selected test
set of compounds can be used as a true external validation group
for Eq. (10), we carry out a new ERM variable search for the training
set of 35 molecules defined previously. The best model found in
this case is almost identical to Eq. (7) (based on the complete set of
41 molecules) and with similar statistical quality for both the
training and test sets. The only difference is that the descriptor
GATS1v replaces GATS1e. However, these two descriptors have the
same nature, are calculated with the same length of path
connecting the atoms and have similar values. In consequence,
as an increment of the number of data points enables to obtain
more trustful QSPR models, we recommend employing Eq. (7) for
any further prediction of the investigated property because it
encodes experimental information from all the 41 molecules.

The molecular descriptors appearing in the linear Eq. (7)
combine several two- and three-dimensional aspects of the
molecular structure, and can be classified as follows: (i) a 2D
Autocorrelation: GATS1e, Geary autocorrelation – lag 1/weighted
by atomic Sanderson electronegativities; (ii) a 3D-MoRSE descrip-
tor: Mor16u, 3D-MoRSE – signal 16/unweighted; (iii) a WHIM
descriptor: E1v, 1st component accessibility directional WHIM
index/weighted by atomic van der Waals volumes; (iv) a
GETAWAY descriptor: R8m+, R maximal autocorrelation of lag 8/
weighted by atomic masses; finally, two Functional Group Counts:
nN+, number of ammonium groups (aliphatic) and nArOH, number
of aromatic hydroxyls.

The different structural variables introduced by Broto, Moreau,
and Geary [37,38] correspond to bi-dimensional autocorrelations
between pairs of atoms in the molecule, and have been defined in
order to reflect the contribution of a considered atomic property to
the experimental observations under investigation. The atomic
properties that can be adopted to differentiate the nature of atoms
are the mass (m), polarizability (p), electronegativity (e) or the
volume (v). These indices can be readily calculated, i.e.: by
summing products of atomic weights (employing atomic proper-
ties such as atomic polarizabilities, molecular volumes, etc.) of the
terminal atoms of all the paths of a prescribed length. For the case
of GATS1e, the path connecting a pair of atoms has length 1 and
involves the atomic Sanderson electronegativities as weighting
scheme to distinguish their nature.

The 3D-MoRSE (3D Molecule Representation of Structure based
on Electron diffraction) descriptors [39,40] provide 3D information
from the three-dimensional structure of a molecule using a
molecular transform derived from an equation used in electron
diffraction studies. Various atomic properties can be taken into
account giving high flexibility to this representation of a molecule.
The simplified form of the transform is

IðsÞ ¼
XN

i¼2

Xi�1

j¼1

AiA j

sin sri j

sri j

s ¼ 0; . . . ;31:0 Å
�1

(11)

where N is the number of atoms; rij is the distance between atoms i

and j; Ai can be any atomic property of atom i such as atomic
number, mass, partial atomic charge, or atomic polarizability; s is a
reciprocal distance. The value of s is considered only at discrete
positions within a certain range. Normally 32 equidistant values
between 0 and 31 Å�1 are chosen. The choice of the range of s and
the number of values to be considered determines the resolution of
the code for representing the 3D structure. For the case of Mor16u,
an unweighting scheme is used and s is equal to 15 Å�1.

WHIM (Weighted Holistic Invariant Molecular Descriptors)
descriptors [41] are based on statistical indices calculated on the
projections of atoms along principal axes. The aim is to capture 3D
information regarding size, shape, symmetry and atom distribu-
tions with respect to invariant reference frames. To calculate them,
a weighted covariance matrix is obtained from different weighting
schemes for the atoms: the unweighted case, atomic mass, van der
Waals volume, Sanderson atomic electronegativity, atomic polar-
izability and electrotopological state indices. Depending on the
weighting scheme different covariances matrices and hence
different principal axes are obtained. Essentially the WHIM
descriptors provide a variety of principal axes with respect to a
defined atomic property. For each weighting scheme, a set of
statistical indices is calculated on the atoms projected onto the
principal axes (i.e. principal components). Descriptor E1v is a first
component accessibility directional WHIM descriptor that
involves the van der Waals volume as weighting scheme. These
types of descriptors are univariate statistical indices calculated on
the scores of the individual principal components.

The GETAWAY (GEometry, Topology, and Atom-Weights
AssemblY) type of descriptors [42] have been designed with the
main purpose of matching the 3D-molecular geometry. These
numerical variables are derived from the elements hij of the
Molecular Influence matrix (H), obtained through the values of
atomic Cartesian coordinates. The diagonal elements of H (hii) are
called leverages, and are considered to represent the influence of
each atom on the shape of the molecule. For instance, the mantle
atoms always have higher hii values than atoms near the molecule
center, while each off-diagonal element hij represents the degree of
accessibility of the jth atom to interactions with the ith atom. The
Influence/Distance matrix (R) involves a combination of the
elements of H matrix with those of the Geometric Matrix (G).
Descriptor R8m+ involved in Eq. (7) is of the R-GETAWAY type, and
represents an R index of maximal contribution to the autocorrela-
tion in lag 8 (topological distance) and involves the atomic masses
as weighting scheme to distinguish their nature.

Functional Group Counts are, as their name indicates, molecular
descriptors based on the number of chemical functional groups.
They are normally relevant descriptors since the number of a
certain functional group will evidently affect the properties of the
molecule.

Now, by means of a proper orthogonalization of Eq. (7) and
subsequent standardization [26] of the orthogonal regression
coefficients, it is feasible to assign a greater importance to the
molecular descriptors that exhibit larger (absolute) standardized
coefficients. As mentioned previously, the orthogonalization order
is chosen in such a way that maximises the correlation coefficient
between each calculated orthogonal descriptor and the experi-
mental deactivation rate constants (in decreasing order). In this
way, one expects to construct a model based on hierarchical and
independent contributions of structural variables. The calculated



Table 6
Values for descriptors appearing in the QSPR designed together with experimental

log (kt) values.

Number log (kt) exp. nN+ nArOH R8m+ Mor16u E1v GATS1e

1 8.74 0 0 0.013 0.530 0.502 0.847

2 8.57 0 0 0.023 �0.086 0.401 0.934

3 8.66 0 0 0.033 �0.803 0.397 0.953

4 8.32 0 0 0.023 �0.180 0.382 1.008

5 8.28 0 0 0.019 �0.058 0.382 0.934

6 8.83 0 0 0.004 �0.398 0.399 1.062

7 6.46 0 1 0 0.179 0.324 1.105

8 6.90 0 1 0.003 0.168 0.325 1.053

9 7.60 0 1 0.003 0.184 0.381 1.013

10 6.49 0 1 0.025 0.260 0.338 1.008

11 6.15 0 1 0.028 0.132 0.335 1.008

12 6.15 0 1 0.025 0.113 0.312 1.016

13 6.38 0 1 0.029 0.218 0.363 0.934

14 6.36 0 1 0.032 0.149 0.372 0.953

15 7.48 0 1 0.013 0.389 0.493 0.847

16 8.06 0 0 0 0.399 0.401 1.167

17 7.46 0 0 0 0.435 0.283 1.333

18 8.11 0 0 0 0.400 0.363 1.250

19 7.65 0 0 0 0.575 0.339 0.900

20 8.76 0 0 0 0.208 0.386 0.917

21 8.20 0 0 0 0.377 0.362 0.909

22 8.83 0 0 0.004 0.670 0.405 0.603

23 7.89 0 0 0.019 0.510 0.390 0.621

24 7.91 0 0 0.022 0.416 0.426 0.598

25 8.20 0 0 0.010 0.920 0.486 0.941

26 7.53 0 0 0.010 1.148 0.467 0.944

27 7.23 0 0 0.032 1.158 0.493 0.830

28 7.28 0 0 0.034 1.139 0.536 0.830

29 7.72 0 0 0.011 0.919 0.423 1.002

30 7.57 0 0 0.009 1.091 0.448 0.946

31 7.08 1 0 0.011 0.893 0.466 0.517

32 6.23 1 0 0.009 0.590 0.421 1.393

33 5.81 1 0 0 0.351 0.354 1.500

34 5.95 1 0 0.009 0.742 0.406 1.393

35 8.11 0 0 0.002 0.105 0.387 1.188

36 8.23 0 0 0.002 0.228 0.428 1.188

37 8.08 0 0 0 0.337 0.405 1.500

38 8.18 0 0 0 0.519 0.401 1.000

39 8.26 0 0 0 0.425 0.370 1.000

40 9.00 0 0 0 0.172 0.353 0.909

41 8.98 0 0 0 0.007 0.386 0.929

Fig. 4. Structure of b-carbolines acid–base equilibrium in aqueous solution.
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average importance of the involved structural descriptors of Eq. (7)
is the next one:

nNþð0:61Þ>nArOHð0:57Þ>R8mþð0:27Þ>Mor16uð0:26Þ>
E1vð0:24Þ>GATS1eð0:21Þ (12)

where the standardized regression coefficients are shown in
parentheses. Although the inequality of (12) is true, it is
statistically derived. For this reason, one can deduce that the
resulting effect of the 6 involved descriptors on the property being
analyzed depends upon the combination of all of them. However, it
is possible to deduce tendencies for individual descriptors,
according to the order of importance as expressed by inequality
(12). The ranking of contributions given by this inequality suggests
that the functional group counts, the number of aliphatic
ammonium groups and the number of aromatic hydroxyls are
the most relevant parameters for the chosen set of compounds, due
to their standardized coefficients of 0.61 and 0.57, respectively.
Such kind of descriptors have a quite direct interpretation on the
physical property being analyzed, since it is expected that
compounds which do not have ammonium groups nor aromatic
hydroxyls would tend to display higher experimental total
deactivation rate constant of singlet oxygen.

It has to be noticed that all the molecular descriptors appearing
in inequality (12) are positive numerical variables. Therefore,
considering the sign of the regression coefficients in inequality
(12) (all negative with exception for E1v), it is expected that
molecular structures displaying higher positive values for E1v and
lower positive values for descriptors nN+, nArOH, R8m+, Mor16u

and GATS1e would elicit higher predicted log (kt) values. The fact
that lower values of nN+ and nArOH lead to greater values of
log (kt) is in agreement with the experimental observation. This
tendency about the effect of numerical values of descriptors on
the predicted property can be demonstrated, for instance, by the
compounds having the lowest and highest log (kt) values in the
training set, which are 33 (log (kt) = 5.81) and 40 (log (kt) = 9.00)
(for further comparisons among compounds, refer to Table 6
which includes the numerical values for the mentioned theore-
tical descriptors).

Regarding the effect of the remaining descriptors appearing in
Eq. (7), it can be concluded that these numerical variables has a
secondary importance and smaller contribution on determining
the variation of log (kt) values, owing to their smaller standardized
orthogonal coefficients. Their role in the QSAR is to help improving
the prediction of the property in a somewhat better extent. Despite
of this fact, we also provide an interpretation for the effect of these
descriptors on the deactivation rate constants. Lower values for
R8m+, the R maximal autocorrelation of lag 8/weighted by atomic
masses, means that the deactivation constants would tend to
increase for compounds having lower molecular weights, as this
particular geometry based descriptor considers the distribution of
atomic masses located at topological distances of length 8. Lower
values for Mor16u, the 3D-MoRSE – signal 16/unweighted, means
that a lower molecular size of compounds would tend to increase
log (kt) values because of the dependence of this unweighted
descriptor on the magnitude of interatomic distances rij. The
WHIM descriptor E1v, 1st component accessibility directional
WHIM index/weighted by atomic van der Waals volumes, is an
index that contemplates mixed 3D information regarding size,
shape, symmetry and atomic distributions. As previously stated,
higher positive values for E1v would lead to higher values of the
predicted property. Finally, the Geary autocorrelation – lag 1/
weighted by atomic Sanderson electronegativities GATS1e

describes the distribution of atomic electronegativities along
paths connecting atom pairs of length 1. This descriptor
characterizes the importance of charge in electrostatic interactions
during the singlet oxygen deactivation process. Lower positive
values of this charge distribution measure would tend to lead to
higher predicted log (kt).

By means of Eq. (7) we estimate the rate constant kt for a group
of heterocyclic compounds named b-carbolines (Fig. 4). Despite
the fact that they have been suggested as possible antioxidants
[43], to the best of our knowledge there is no experimental (kt) data
for them. In aqueous solution, b-carbolines show an acid–base
equilibrium with pKa around 7. Due to the fact that b-carbolines
are present in a great number of living systems, with a
physiological pH around 7, we decide to calculate the kt for each
acid–base form. The results are shown in Table 7. Our calculation
suggests that kt increases with the electronic activation of the ring
of the b-carboline moieties. Therefore, the electrophilic attack
should be higher on the neutral form of each 1O2 b-carboline rather
than on its cationic form.



Table 7
Log (kt) predicted by Eq. (7) for the group of molecules with unknown experimental

values. The plus sign on the compound name indicates that it is a cation in the acid

form.

Name log (kt) pred. kt (L mol�1 s�1).

42 Norharmane 8.69 4.90E+08

43 Norharmane+ 7.01 1.03E+07

44 Harmane 8.65 4.50E+08

45 Harmane+ 7.12 1.32E+07

46 Harmine 8.30 1.99E+08

47 Harmine+ 6.69 4.89E+06

48 Harmaline 8.17 1.47E+08

49 Harmaline+ 6.46 2.90E+06

50 Harmol 7.65 4.42E+07

51 Harmol+ 6.16 1.43E+06
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4. Conclusions

By means of our searching algorithm ERM we construct a QSPR
model for the prediction of the rate constant of deactivation of
singlet oxygen by heterocyclic compounds. In this study we choose
41 such compounds and find six molecular descriptors that take
into account some 2D- and 3D-aspects of the molecular structure.
Our results suggest that the ERM is preferable to the RM and GA.
The recently developed strategy to determine the optimal number
of descriptors is used successfully. Using the QSPR model we
estimate the unknown kt for a group of heterocyclic compounds,
which have been suggested as antioxidants, named b-carbolines.
The results imply that kt increases with the electronic activation of
the ring of the b-carboline moieties.
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