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h i g h l i g h t s

• A firm buys imperfectly substitutable inputs from two contractors.
• The buyer announces demand functions and contractors simultaneously bid unit prices.
• We show that the firm has an incentive to announce demands that over-state input substitutability and understate its willingness to pay with respect

to their true values.
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a b s t r a c t

Suppose a firm uses inputs that are substitutes. Each input is supplied by a single contractor. The firm
would like to make suppliers compete. However, since inputs are imperfect substitutes, resorting to
winner-take-all competition may not be an attractive option. We allow the firm to use a modified first-
price auction. It announces demand functions for each input and contractors simultaneously bid unit
prices and sell according to announced input demands. We show that the firm has an incentive to
announce demands that overstate input substitutability and understate its willingness to pay. In the
extreme inputs are treated as perfect substitutes even if goods are independent.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Suppose a firm uses two inputs that are substitutes to generate
output according to a smooth production function. Each input is
supplied by a single contractor subject to linear cost functions. Con-
tractors’ unit costs are their private information. The firm would
like tomake both suppliers compete. However, because their prod-
ucts are imperfect substitutes, it would rather not resort to any
form of winner-take-all competition.

We examine a context where the firm, to which we refer as
‘‘buyer’’, procures those inputs using a modified first-price (re-
verse) auction. There, the buyer announces demand functions for
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each input which depend on both unit prices; given these an-
nounced demand functions, contractors simultaneously bid unit
prices that determine how many units each of them sells.

Thedegree of competition inducedby the auction, and therefore
its profitability for the buyer, depend upon the degree of substi-
tutability between the two inputs and the buyer’s maximum will-
ingness to pay, as reflected in the announced demand functions. If
the degree of substitutability is low, or the maximum willingness
to pay is high, contractorswill choose high bids that translate into a
low profit for the buyer. However, the buyer may strategically en-
gineer or fine-tune the demand functions by announcing demands
that exhibit a higher than true degree of substitutability and/or a
lower than true maximum willingness to pay. Strategically fine-
tuned demand functions can contribute to increase the buyer’s
expected profit by inducing contractors to compete more fiercely;
however, they may also distort the input mix. Therefore, the opti-
mal degree of strategic fine-tuning must trade off its benefits and
costs.

In the present note we allow the buyer to announce demand
functions with parameters that may differ from true demands, so
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as to induce more aggressive bidding. If costs are perfectly corre-
lated the buyer can extract the maximum surplus by extremely
overstating substitutability. Whereas if costs are independent pri-
vate values, full surplus extraction is not feasible, although it is still
optimal to overstate substitutability and understate the buyer’s
maximum willingness to pay.

Although the use of auctions in procuring inputs that are sub-
stitutes has, to the best of our knowledge, not been tackled in the
literature, there are a number of related contributions. Anton and
Yao (1989, 1992) analyze ‘‘split award auctions’’, where a buyer
procures multiple units of a given good from several suppliers.
There, the intention of multiple sourcing is to minimize the impact
of decreasing returns to scale or to maintain future competition
among suppliers,1 whereas in the present study the different sup-
pliers produce different goods.

In another connected line of work Klemperer (2010) studies
product-mix auctionswithmultiple goods. There, suppliers submit
multiple bids, specifying prices for different goods, and the auction
determines which bids are accepted, at most one from each buyer,
whereas in our setting each supplier sells at most one good. Saban
andWeintraub (2015) analyze a government procurement agency
that runs an auction to construct a menu of differentiated goods
with unit prices, which will then be demanded by heterogeneous
buyers.2 There, the trade-off is between the variety of goods in-
cluded in the menu and the intensity of competition among sup-
pliers.

2. The model

A firm (buyer) purchases two inputs from two independent
contractors. Let qi be the quantity of input i bought from contractor
i ∈ {1, 2}. Inputs are imperfect substitutes. To ensure tractability,
the buyer’s revenue function, R, is assumed quadratic,

R(qi, qj) = α(qi + qj) −
β

2(1 + σ )
(q2i + q2j + 2σqiqj). (1)

Thus, profit maximization yields the linear “true” input demand
functions, Q t

i (pi, pj):

Q t
i (pi, pj) =

α

β
−

1
β(1 − σ )

(
pi − σpj

)
. (2)

There, α represents the buyer’s maximum willingness to pay for
each input, and 1/β the size of the market. The parameter σ reflects
input substitutability, and ranges from σ = 0, when inputs
are independent, to σ approaching 1, when they become perfect
substitutes.

The assumed revenue and the associated true demand functions
are borrowed from Shubik and Levitan (1980) who introduced
them in the context of Bertrand market games with differenti-
ated products to remedy an undesirable feature of the often used
Bowley specification (Bowley, 1924; Singh and Vives, 1984), in
which an increase in the measure of substitutability reduces the
size of themarket andmakes it shrink away completely as products
become perfect substitutes.3

Contractors are subject to linear cost functions. Their unit costs
xi are their private information.Wewill examine below two differ-
ent cases, in which X1 and X2 are either perfectly correlated or i.i.d.
random variables, drawn from the continuous c.d.f. F , with support
[c, d], where 0 ≤ c < d < α. As a rule we denote random variables
by capital and realizations by lowercase letters.

1 See alsoKlotz andChaterjee (1995), Inderst (2008) andChaturvedi et al. (2014),
and the critical assessment of second-sourcing in Riordan and Sappington (1989).
2 Albano and Sparro (2008) study a similar setting.
3 We express these demand functions in the slightly more convenient yet

equivalent form, introduced by Collie and Le (2015).

Inputs are procured by a fine-tuned first-price reverse auction.
There, the buyer announces demand functions, Qi(pi, pj),

Qi(pi, pj) =
a
b

−
1

b(1 − s)

(
pi − spj

)
, a > d, b > 0, s ∈ [0, 1),

(3)

defined for a > d, b > 0, s ∈ [0, 1), where the parameters (a, b, s)
may differ from the true demand parameters, (α, β, σ ). Based on
these announced demand functions the buyer asks contractors to
simultaneously bid unit prices, p1, p2. After bids are submitted,
they are revealed, and then contractorsmust deliver the quantities,
Qi(pi, pj) in exchange for payments piQi(pi, pj).

The buyer chooses the parameters of the announced demand
functions, (a, b, s), in such a way that it maximizes its expected
profit.

A special case comes up if the buyerwants to announce demand
functions inwhich inputs are treated as perfect substitutes (s = 1),
in which case the functions (3) are not defined. This is relevant if
costs are perfectly correlated.

3. Results

As a benchmark case, first suppose unit costs are perfectly
correlated and this fact is common knowledge among contractors.
Then, each supplier knows not only his unit cost but also that of his
competitor, while unit costs are unknown to the buyer.

We will show that, by announcing demand functions that treat
inputs as perfect substitutes, the buyer can extract the maximum
surplus. Because the functions (3) are not defined for s = 1, the
announced demand functions require a different format in that
case.

For simplicity, suppose x2 = x1 = x.4 Compute the surplus
maximizing input levels:

q∗(x) = argmax
q

R(q, q) − 2xq =
α − x

β
, (4)

and consider the announced demand functions:

Q c(pi, pj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
b

(a − pi) if pi < pj

1
b

(a − pi) if pi = pj
0 if pi > pj.

(5)

Proposition 1. (Benchmark) If unit costs are perfectly correlated the
buyer can extract the maximum surplus by announcing the demand
functions (5) with the parameter values (a, b, s) = (α, β, 1).

Proof. If the buyer announces these demand functions, p1 = p2 =

x is evidently an equilibrium, and there is no other equilibrium. In
that unique equilibrium, the buyer procures the input quantities
Q c
i (x, x) = (α−x)/β = q∗(x) from each of the two contractors. These

quantities maximize the surplus and fully extract it, at each level
of x. □

This simple mechanism extracts the maximal surplus, regard-
less of the size of the true substitution parameter σ (even if goods
are independent). Given the well-known results in Crémer and
McLean (1988), it is not surprising that one can find mechanisms
that achieve full surplus extraction if costs are correlated. How-
ever, it may be surprising that simple belief-free mechanisms can
achieve that goal, though it relies on correlation being perfect.5

4 If unit costs are perfectly correlated but not the same, one can still achieve full
surplus extraction by ‘‘handicapping’’ the contractor with the lower unit cost.
5 Crémer andMcLean (1988) implies that full surplus extraction is feasible under

the weaker requirement that there is some stochastic dependency between unit
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Now suppose that unit costs are i.i.d. random variables drawn
from the continuous c.d.f. F , with support [c, d], where 0 ≤ c <

d < α.
In this case, an auction cannot possibly achieve full surplus

extraction because prices cannot be driven down to unit cost levels.
In addition, setting s = 1 and stipulating the demand functions as
in (5) is not desirable, because in that case only one good will be
procured, which forgoes the benefit of using both inputs. However,
aswewill show, the buyerwill strategically engineer demand func-
tions and announceQi(pi, pj), with s > σ and a < α. By overstating
substitutability and understating its maximum willingness to pay
for inputs the buyer benefits from inducing bidders to bid more
aggressively.

Because unit costs are contractors’ independent private in-
formation, contractors now face uncertainty concerning their ri-
val’s cost. Therefore, the equilibrium bid strategies, (p1(x1), p2(x2)),
must be a Bayesian Nash equilibrium and solve:

pi(xi) = argmax
p

(p − xi)
∫ d

c
Qi(p, pj(xj))dF (xi) i, j = 1, 2, i ̸= j.

(6)

Solving the best response problem of contractor i gives:

pi(xi) =
1
2

(
a(1 − s) + sE(pj(Xj)) + xi

)
. (7)

Invoking the (symmetric) equilibrium requirement pi(x) = pj(x) =

p(x) yields E(p(X)) =
a(1−s)+x̄

2−s , and one obtains the symmetric
Bayesian Nash equilibrium strategy:

p(x) =
2a(1 − s) + (2 − s)x + sx̄

2(2 − s)
, where x̄ := E(X). (8)

Evidently, the announced market size parameter, b, does not
affect bidding. Therefore, the buyer has no incentive to set b ̸= β ,
and for convenience we normalize b = β = 1.

Given the symmetric equilibrium strategy, the associated equi-
librium quantities supplied are6:

Q e
i (x; a, s) = Qi(p(xi), p(xj)) =

2a − x̄
2(2 − s)

−
xi − sxj
2(1 − s)

, (9)

where x := (x1, x2). The buyer’s profit, as a function of suppliers’
unit costs and announced parameters, is

π0(x; a, s) =R(Q e
1 (x; a, s),Q

e
2 (x; a, s)) − p(x1)Q e

1 (x; a, s)
− p(x2)Q e

2 (x; a, s)

=α

2∑
i=1

Q e
i (x; a, s) −

1
2(1 + σ )(∑

i

Q e
i (x; a, s)

2
+ 2σQ e

1 (x; a, s)Q
e
2 (x; a, s)

)

−

2∑
i=1

p(xi)Q e
i (x; a, s). (10)

The buyer chooses (a, s) to maximize his expected profit:

max
a,s

Π (a, s) :=

∫ d

c

∫ d

c
π0(x; a, s)dF (x1)dF (x2). (11)

costs. However, the mechanisms that achieve this when unit costs are not perfectly
correlated are highly sensitive with respect to the assumed common beliefs, which
limits their application.
6 Note that if xi is significantly larger than xj , itmaybe the case, for somevalues of

a, s, thatQ e
i (x; a, s) becomes negative. Here, we proceed as if equilibriumquantities

were necessarily positive. We will later confirm that there is a sizeable parameter
region where quantities are indeed positive for all cost profiles.

We can now show that the buyer has an incentive to strategi-
cally set parameter values (a, s) that systematically differ from the
true demand parameters (α, σ ).

Proposition 2. The profit maximizing buyer announces demand
functions that exhibit a higher than true substitution parameter, s >

σ , and a lower than true willingness to pay parameter, a < α.

Proof. The first-order conditions of the buyer’s maximization
problem are7:

∂aΠ (a, s) =
2α(2 − s) − 2a(3 − 2s) + x(1 − s)

(2 − s)2
= 0 (12)

∂sΠ (a, s)

=
1
2

(−4a2(1 − s) + 2sx2 + a(2 − s)(4α − 2x) + 2x(2 − 3s)
(2 − s)3

−
2(s − σ )Var(X)
(1 + σ )(1 − s)3

+
(2x − 4α)x
(2 − s)2

)
= 0.

(13)

From (12), it follows that

a =
α(2 − s) + x(1 − s)

3 − 2s
. (14)

Consequently,

a − α =
α(2 − s) + x(1 − s)

3 − 2s
− α = −

(1 − s)(α − x)
3 − 2s

< 0.

Hence, the buyer understates his willingness-to-pay for inputs.
To show that he overstates the measure of substitutability, substi-
tute the solution of a, by (14), in the first-order conditions (13), and
one has:
2(α − x)2

(3 − 2s)2
−

(s − σ )Var(X)
(1 + σ )(1 − s)3

= 0. (15)

It is straightforward to check that the LHS in (15) is positive if
s ≤ σ . Furthermore, as σ < 1, that LHS goes to −∞ when s → 1.
It then follows that (15) will be satisfied for some s > σ . □

The buyer induces stronger competition between suppliers by
announcing a demand system that reflects more substitutability,
and less overall willingness to pay, than would follow from his
actual production technology.

The results described so far have been derived under the im-
plicit assumption that equilibrium input quantities are positive for
all profiles of unit costs. However, as is clear by examining the
expression for equilibrium quantities in (9), that need not be the
case. At least for some values of a and s, if a supplier is significantly
less efficient than its rival, the LHS of (9) may become negative,
which is of course not permitted.

One would like to generalize our results by constraining de-
mands so that input quantities are nonnegative for any parameter
configuration. This, however, would complicate the analysis sub-
stantially. Moreover, examining the case where interior solutions
hold is informative, as the buyer’s and contractors’ incentives are
all that drives the results that follow. Anyway, for any cost distri-
bution, there is a set of parameter values such that input quantities
are indeed positive. We now characterize that set.

Clearly, we have

Q e
i (xi, xj) =

2a − x̄
2(2 − s)

−
xi − sxj
2(1 − s)

≥
2a − x̄
2(2 − s)

−
d − sc
2(1 − s)

= Q e
i (d, c)

7 Note that Y := X1 − X2 gives E(Y 2) = E(Y )2 + Var(Y ) = 2Var(X), using the
fact that X := X1 = X2 are i.i.d. random variables.



118 L. Arozamena et al. / Economics Letters 171 (2018) 115–118

Fig. 1. Feasible sets of (α, σ ) for the uniform distribution with support [0, d].

Therefore, input quantities are positive for all cost profiles if
Q e
i (d, c) ≥ 0.
Whether this inequality holds or not depends on theparameters

(α, σ ), and the probability distribution, particularly the difference
between the boundaries of its support. For any cost distribution,
though, quantities will be positive if α is large and σ is small
enough. When α grows and σ falls, the buyer selects a higher
value of a and a lower value of s, thus making any non-negativity
constraint for input quantities less likely to bind. Fig. 1 depicts
the region of parameter values (α, σ ) where input quantities are
always positivewhen costs are distributed uniformly on [0, d]. This
exercise can easily be replicated for other probability distributions,
because all that matters are its expected value and variance.8

Naturally, the non-negativity issue is less likely to arise the
smaller the distance between the highest and the lowest possible
contractor costs.

We close with an example.

Example 1. Consider the parameter specification (c, d, α, σ ) =

(0.15, 0.3, 1.5, 0.2) and assume uniformly distributed unit costs,
which implies x̄ = 0.225, Var(X) = 0.001875. Then, the

8 See Appendix A for aMathematica file where the feasible sets are computed.

optimal parameters of the announced demand functions are (a, s)
= (1.4146, 0.9226). Equilibrium input quantities are non-negative
for all draws of (x1, x2) because, using the assumed parameters and
optimal values of (a, s): Q e

i (xi, xj) =
2a−x̄
2(2−s) −

xi−sxj
2(1−s) ≥

2a−x̄
2(2−s) −

d−sc
2(1−s) = Q e

i (d, c) = 0.1642 > 0, ∀
(
xi, xj

)
.

Evidently, in this example it is optimal to treat inputs as highly
substitutable, s = 0.9226, even though the true substitution
parameter is as low as σ = 0.2.

Appendix A. Supplementary material

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.econlet.2018.07.021.
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