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This work presents an iterative receiver cancellation technique for mitigating the

inband distortion introduced by a nonlinear wideband transmitter power amplifier

(PA). The proposed decision-based technique employs a Wiener–Hammerstein model

that accounts for the nonlinear transfer function and memory of the PA as well as for

the wireless propagation channel. As such, the mitigation technique can be seen as a

generalization of existing iterative decision-based techniques assuming memoryless PA

nonlinearities. For successful distortion mitigation, the iterative technique requires an

estimate of the nonlinear model that characterizes the PA. We propose to perform this

model identification at the receiver, embedded in an iterative decision-based scheme,

avoiding the nonideal analog-to-digital feedback loop associated with transmitter-

based model identification. A stochastic algorithm is proposed for the model identifica-

tion providing the necessary PA model parameters required for symbol detection. In

addition, we analyze the convergence properties of the proposed technique. Simulation

results confirm that the proposed mitigation technique provides distortion cancellation

at almost the same level to the case of perfect knowledge of the PA model. These results

enable us to employ power amplifiers with more relaxed linearity requirement, moving

the operation point to a region with improved power efficiency while reducing the

system overall degradation.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Transmitter power amplifiers (PAs) should bring the
desired signal to a suitable level with a limited power
consumption and high power efficiency. The use of non-
linear PAs at base stations (BS) and mobile terminals (MT)
can solve the efficiency problem, however, at the expense
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of signal distortion in the form of signal compression and
clipping. The resulting waveform distortion lead to unde-
sired effects in communication systems by introducing
adjacent channel interference and increased bit-error rate
(BER). Considering OFDM-based systems, these effects
are more pronounced due to the high peak-to-average-
power-ratio (PAPR). Furthermore, the problems asso-
ciated with nonlinear PAs are more severe if we need to
account for, in addition to the nonlinear transfer function,
PA memory effects. PA memory effects arise in wideband
(e.g., IEEE 802.11 g, WiMAX) and high-power systems.
The PA memory effects are more pronounced at the BS
side, where the dissipated power changes with the signal
level, creating temperature fluctuations in transistors and
other components [1,2]. On the other side, in mobile
terminals (MT); low-power PAs are required, and memory
effects (appearing in the form of non-flat frequency

www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2011.03.011
mailto:fernando.gregorio@uns.edu.ar
mailto:stefan.Werner@tkk.fi
mailto:jcousseau@uns.edu.ar
mailto:figueroa@uns.edu.ar
mailto:risto.wichman@tkk.fi
dx.doi.org/10.1016/j.sigpro.2011.03.011


F.H. Gregorio et al. / Signal Processing 91 (2011) 2042–2056 2043
response) are due to electrical memory effects, originated
from the bias and coupling impedance networks [3–5].

Power consumption is a key factor in both uplink and
downlink transmission. Operating the power amplifier in
the linear region requires a large back-off to prevent non-
linear distortion. In other words, the PA must operate in a
power inefficient region. Considering a portable unit, a high
power consumption reduces battery life time and, conse-
quently, the system portability. Base stations with high
power consumptions, on the other hand, is a concern when
network costs should be minimized. By increasing the
transmitter complexity, predistortion and peak-to-average
power reduction techniques can be exploited to improve
power efficiency and to reduce the nonlinear distortion
effects. However, a system with predistortion is still subject
to nonlinear effects because, even in the ideal case, the
predistorter-PA cascade is a soft limiter. In other words, there
is a clear trade-off between the allowed nonlinear distortion
level, system complexity and power efficiency.

Nonlinear distortion can be compensated either at the
transmitter side or the receiver side. For the former case,
the signal to be transmitted is modified before the PA, and
among the well-known methods for that purpose are:
predistortion and PAPR reduction techniques. In uplink
transmission, the implementation of transmitter-side
compensation techniques at portable units is constrained
by the limited processing capacity available where, due to
cost and size reasons, additional hardware and signal
processing required cannot be afforded. This problem
motivates the implementation of receiver side compensa-
tion methods that can be justified at base stations where
higher computational complexity, power consumption,
and implementation cost are allowed while the portable
unit is kept simple and power efficient.

The use of a receiver-based mitigation technique is a
viable option to maintain transmitter complexity low, e.g.,
by removing residual interference in uplink when simple
(memoryless) or no predistortion is used in the transmit-
ter. It may also be used in combination with more
complex predistortion techniques (in downlink) [8]. An
early approach to receiver side compensation of nonli-
nearties appears in [6] where a traveling wave tube (TWT)
amplifier is used in single-carrier QAM systems. The
combination of equalization and a nonlinear distortion
compensation for fixed wireless channels have been
presented in [7]. A power amplifier nonlinearity cancella-
tion (PANC) technique was proposed in [8,9] for removing
the distortion originated at the transmitter due to
a memoryless PA, at the expense of some increase in
the receiver complexity. With an initial estimate of
the transmitted OFDM symbols, the distortion effects
can be estimated if the PA model is known. After that
estimation, the nonlinear distortion can be removed from
the received signal and new and improved symbol esti-
mates can be obtained. This procedure can be repeated in
an iterative manner to obtain almost undistorted esti-
mates in two or three iterations. This concept was applied
in [10] to a single-user wireline system using adaptive
OFDM with a large number of carriers. More recently,
novel receiver side compensation techniques have been
presented in [11,12] for MIMO OFDM systems employing
memoryless PAs. In [13] a compensation technique
for single-carrier frequency-division multiple access
(SC-FDMA) is proposed to remove the interference of
adjacent users. This implementation assumes that the
receiver has perfect knowledge of transmitter power
amplifier nonlinearities of the different users which are
considered memoryless. To the best of our knowledge,
earlier literature dealing with receiver-based (iterative)
mitigation techniques is restricted to the case of memory-
less PA. Considering the case of wideband PAs with
memory, the above techniques [8–11] do not present
adequate performance. This paper deals with more com-
plicated memory structures, which will not only compli-
cate the mitigation technique but also the associated
model estimation.

Previous works with PANC techniques have assumed
that the PA model is known, or that its parameters are
estimated at the transmitter and sent to the receiver
during the initialization. In this work we consider the
more practical problem of estimating and tracking the PA
model parameters at the receiver. As a consequence, we
chose a composite Wiener–Hammerstein (WH) model to
describe the corresponding dynamics of the parameter
estimation problem at hand. The WH model consists of a
static nonlinearity with a linear filter preceding its input
and another linear filter at its output. The WH model
has been found useful for describing many practical non-
linear systems, see, e.g., the exhaustive bibliography on
nonlinear system identification [14]. Early approaches to
WH model identification, see, e.g., [15–17], were based on
correlation analysis. In these methods, the identification
of the linear systems and the static nonlinearity is
decoupled, requiring training sequences that restrict its
application to a particular system. Other approaches
employing stochastic gradient (SG) algorithms have been
proposed [18,19]. When linear (FIR) filter is used, a
conventional SG algorithm will identify a scaled version
of the convolution of the input and output linear filters of
the WH system [18]. This result was later used in a three-
step identification scheme where the static nonlinearity
was modeled using Hermite polynomials [19].

In [20,21] techniques for identifying the parameters of
an AM/AM PA model, for an OFDM-based communication
system, have been proposed. These techniques are con-
strained to the transmitter side and assume time-invariant
linear filters. That is a very restrictive scenario. A recursive
algorithm, where the linear and nonlinear blocks of the
WH model are identified simultaneously, is presented in
[22]. However, this approach has as drawback an estima-
tion scheme with slow parameter convergence.

The concept of frequency-domain and time-domain-
based WH model identification has been explored to
obtain good initial conditions for elaborated identification
algorithms [23–25]. Despite the use of similar conceptual
information, these methods cannot be directly applied to
the problem considered in this work, because they are not
able to track time-varying wireless channels.

This paper generalizes the ideas in [8–10] and pro-
poses a PANC technique that not only takes into account
the nonlinear transfer function of the PA, but also its
memory effects. For that purpose, an algorithm to
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estimate the parameters of the nonlinear PA model
embedded in PANC scheme is presented. Looking for
algorithm simplicity and at the same time good perfor-
mance, we propose a combined time- and frequency-
domain identification approach that is especially suitable
for implementation in OFDM systems, providing a good
trade-off between algorithm convergence and computa-
tional burden. Our simplified estimation strategy consists
of two steps that provide the necessary PA model para-
meters required for symbol detection with the general
decision-directed technique. A stochastic algorithm is
proposed for the model identification, and its convergence
properties are studied.

In summary, the contributions of the paper are:
�
 The extension of the PANC technique in [10] to include
a more general model for nonlinear wideband PA
effects. The technique can serve as an alternative or
in combination with a transmitter-based mitigation
technique, e.g., a predistorter. Compared to a polyno-
mial-based (Volterra) equalizer, the proposed PANC
technique attains a lower bit-error rate and does not
suffer from an error floor due to clipping noise.

�
 A new frequency- and time-domain strategy for WH

model identification that is compatible with the PANC
technique. The new approach allows us to develop a
simple stochastic gradient algorithm for the estima-
tion of the necessary PA model parameters. Compared
to existing Wiener–Hammerstein algorithms [19,22],
our identification approach features fast convergence,
and low implementation complexity.

�
 The convergence properties of the proposed stochastic

algorithm are studied.

The work is organized as follows. Section 2 introduces
the OFDM system and PANC technique using a basic PA
static model to put in evidence the decision-directed
criterion concepts used. The new PANC technique for the
extended wideband PA model, in addition to a two-step
procedure to estimate the related parameters, is presented
in Section 3. In that section we introduce a simplified time-
and frequency-domain WH identification structure, which
allows the parameter estimation to be carried out at the
receiver. A simple stochastic gradient algorithm is pro-
posed and tailored for the unknown variables of the PANC
technique. We also provide, in Section 4, an analysis of the
local convergence properties of this algorithm. In Section 5,
the performance of the proposed adaptive WH identifica-
tion scheme and its combination with PANC is validated
via simulations. Comparison with other mitigation and
identification techniques is also done in this section.
Conclusions are given in Section 6.
Fig. 1. Basic OFDM system model includ
2. System model and problem formulation

The OFDM transmission model used in this paper is
illustrated in Fig. 1. The system under consideration has
N subcarriers. Let fXðkÞgN�1

k ¼ 0 2 C denote the modulated
data symbols associated with carrier k. The transmitted
time-domain OFDM symbols {x(n)}n¼0

N�1
are then obtained

via the inverse discrete Fourier transform (IDFT)

xðnÞ ¼
1ffiffiffiffi
N
p

XN�1

k ¼ 0

XðkÞej2pkðn=NÞ, n¼ 0,1, . . . ,N�1 ð1Þ

After IDFT, a cyclic prefix is added to the block
½xð0Þxð1Þ � � � xðN�1Þ� to avoid intersymbol interference
(ISI) and simplify equalization. The OFDM symbols x(n)
are then passed through a nonlinear PA with memory
whose output is described by

zðnÞ ¼ f ½xðnÞ,xðn�1Þ, . . . ,xðn�Lf Þ� ð2Þ

where f ð�Þ is a nonlinear mapping of the current and Lf

past input symbols.
Under the assumption that the channel impulse

response c(n) remains constant over at least one OFDM
block (block fading model) and can be modeled as an FIR
filter of order Lc, the received signal can be written as

yðnÞ ¼
XLc

m ¼ 0

cmzðn�mÞþnðnÞ ð3Þ

where nðnÞ is additive noise, assumed Gaussian circular
symmetric with variance s2

n . Finally, the frequency-
domain version of (3) is obtained via the discrete Fourier
transform (DFT), i.e.,

YðkÞ ¼
1ffiffiffiffi
N
p

XN�1

n ¼ 0

yðnÞe�j2pnðk=NÞ, k¼ 0,1, . . . ,N�1 ð4Þ

In what follows we will consider an iterative (decision-

based) approach to recover the transmitted symbols X(k)
from the received signal Y(k) in (4). Our power amplifier
nonlinearity cancellation (PANC) technique can be seen as
an extension of the one in [10], which assumes a mem-
oryless PA (i.e., z(n)¼ f[x(n)]), to the more general case
when the PA has memory, see (2). In our derivation of
PANC, we need to first choose a proper model for f ð�Þ that
not only enables iterative processing but also accurately
describes the system in a compact form (small number of
parameters). We shall see that for successful operation,
PANC requires knowledge of the assumed model f ð�Þ and,
hence, we also develop a two-step estimation technique
for obtaining the unknown parameters at the receiver.

Remark 1. A conceptually simpler approach would be to
directly, from transmit–receive signals, design a nonlinear
ing a nonlinear PA with memory.
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equalizer that is linear in the unknown parameters, e.g.,
based on memory polynomials or generalized polyno-
mials. There are many advantages of using an iterative
approach over a simple Volterra-based equalizer, e.g., a
significant reduction in parameters (i.e., significant com-
plexity reduction), convergence speed, robustness, and
performance. More importantly, a simple polynomial-
based (Volterra) equalizer is not able to mitigate clipping
noise (from saturated signals) and, therefore, requires a
large back-off to avoid problems associated with the
equalization of a saturating (non-invertible) function. This
is confirmed by our simulations provided in Section 5.

3. Power amplifier nonlinearity cancellation
technique for general PA models

This section presents an iterative approach for remov-
ing the nonlinear PA effects at the receiver. It is an
extension of the iterative ML-based technique in [10] to
the case of nonlinear PAs with memory and time-varying
transmission channels. For proper operation, the PANC
technique, as presented in the following, requires knowl-
edge of an assumed PA model. Receiver-based estimation
of the PA model parameters are considered in Section 4.

In order to derive the PANC technique we model the
nonlinear PA with memory using a Wiener–Hammerstein
structure [1]. The Wiener–Hammerstein model is fre-
quently used to model broadband PAs and is formed by
a cascade of a linear filter A(z), a nonlinear static function
g½��, and another linear filter B(z). The filters, A(z) and B(z),
are here modeled as FIR filters of orders La and Lb,
respectively. The static nonlinearity is here modeled with
a polynomial (see Remark 3 below). The transmitted
signal z(n) can now be expressed as

zðnÞ ¼
XLb

m ¼ 0

bmg½sðn�mÞ� ð5Þ

where

sðnÞ ¼
XLa

m ¼ 0

amxðn�mÞ ð6Þ

In order to detect the data symbols X(k) and express
the effects of the nonlinear distortion, it is common and
useful to represent the output of the nonlinear static
block g½�� as a sum of two uncorrelated components [26]

g½sðnÞ� ¼ KLsðnÞþdðnÞ

E½s�ðnÞdðnÞ� ¼ 0 ð7Þ

The first term in (7) is just a scaled version of the input
signal ðKLr1Þ, while d(n) is an additive distortion term.
This model is valid assuming that the input signal is a
stationary Gaussian process, which is a reasonable
assumption for an ODFM signal with a large number of
subcarriers [26]. Substituting (7) in (5) and assuming the
effective channel length L¼LaþLbþLc falls within the
cyclic prefix, (4) reduces to

YðkÞ ¼ CðkÞBðkÞ½KLAðkÞXðkÞþDðkÞ�þVðkÞ, k¼ 0, . . . ,N�1

ð8Þ
where for subcarrier k, V(k) is the additive noise, D(k) is
the nonlinear distortion (DFT of {d(n)}n¼0

N�1
), and A(k), B(k)

and C(k) denote the responses of the linear filters of the
PA model and the wireless channel, respectively.

In order to detect the uncoded X(k) from the received
signal in (8), we can consider the following Maximum
Likelihood (ML) decision rule

X̂ ðkÞ ¼ arg min
XðkÞ

HLðkÞ XðkÞ�
YðkÞ

HLðkÞ
þ

DðkÞ

AðkÞKL

� �����
����2

( )
k¼ 0,1, . . . ,N�1

ð9Þ

where

HLðkÞ ¼ KLAðkÞBðkÞCðkÞ ð10Þ

Assuming that HL(k), A(k), and D(k) are all known at
the receiver, the ML estimate is given by the symbol X(k)
with the minimum distance to Y(k)/HL(k)�D(k)/(A(k) KL).
Knowing the static nonlinear function g½�� allows us to
estimate D(k) through (7) as

dðnÞ ¼ g½sðnÞ��KLsðnÞ, n¼ 0, . . . ,N�1

DðkÞ ¼
1

N

XN�1

n ¼ 0

dðnÞe�j2pnðk=NÞ, k¼ 0,1, . . . ,N�1 ð11Þ

We see from (6) that s(n) depends on both {X(k)}k¼0
N�1

and
A(z). Following the approach in [10], we can use an iterative
technique that employs tentative decisions X̂ ðkÞ for mitigat-
ing the nonlinear distortion effects. The technique, depicted
in Fig. 2, is summarized in Table 1. Our simulation study,
which is presented in Section 5, suggests that two or three
iterations (Imax in Table 1) are usually sufficient. The PANC
technique requires, in addition to the tentative decisions
X̂ ðkÞ, the estimates ĤLðkÞ, ÂðkÞ and ĝ ½��, see Section 4.

Remark 2. Parameter KL depends in general on the back-
off and clipping levels used with the PA. For most
practical cases KLffi1, as it was assumed in Table 1. The
specific value of KL is in fact embedded in the parame-
trization of g[.] which is discussed below.

Remark 3. The static nonlinearity g½�� can be character-
ized by any nonlinear static model, as for example a
polynomial model or even a piecewise linear model. For
illustration purposes we choose g½�� to be modeled as a Pth
order polynomial with coefficients {g2kþ1}k¼0

K
, where, to

fit the nonlinear PA characteristics, the number of poly-
nomial coefficients is given by 2Kþ1¼P if P is even, or
2Kþ1¼P�1 if P is odd. We may consider also conven-
tional or orthogonal (Legendre-based) polynomial basis
functions. In case of conventional polynomials, g[s(n)] is
modeled as [27]

g½sðnÞ� ¼
XK

k ¼ 0

g2kþ1f2kþ1½sðnÞ� ð12Þ

f2kþ1½sðnÞ� ¼ sðnÞjsðnÞj2k ð13Þ

Using Legendre-based polynomials, g[s(n)] is modeled
as [28]

g½sðnÞ� ¼
XK

k ¼ 0

g2kþ1c2kþ1½sðnÞ� ð14Þ



Table 1
Power amplifier nonlinearity cancellation (PANC).

PANC

Initialization:

D̂
ð0Þ
ðkÞ ¼ 0, k¼ 0, . . . , N�1

for m¼1 to Imax

{

Symbol decoding:

X̂
ðmÞ
ðkÞ ¼ argminXðkÞ HLðkÞ XðkÞ�

YðkÞ

HLðkÞ
þ

D̂
ðm�1Þ
ðkÞ

AðkÞ

" #�����
�����
2

8<
:

9=
;

Time domain:

x̂
ðmÞ
ðnÞ ¼

1ffiffiffiffi
N
p

PN�1
k ¼ 0 XðmÞðkÞej2pkn

N

Estimate s(n):

ŝ
ðmÞ
ðnÞ ¼

PLa

l ¼ 0 alx̂
ðmÞ
ðn�lÞ

Estimate distortion d(n):

d̂
ðmÞ
ðnÞ ¼ g½ŝ

ðmÞ
ðnÞ��KLŝ

ðmÞ
ðnÞ

Distortion in frequency domain D(k)

D̂
ðmÞ
ðkÞ ¼ 1ffiffiffi

N
p
PN�1

n ¼ 0 dðmÞðnÞe�j2pnk
N

}

Fig. 2. Power amplifier nonlinearity cancellation (PANC) with the proposed PA distortion model.
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c2kþ1½sðnÞ� ¼
Xk

l ¼ 0

ð�1Þk�l

ffiffiffiffiffiffiffiffiffiffiffi
kþ1
p

ðlþ1Þ!

k

l

� �
f2lþ1½sðnÞ� ð15Þ

Orthogonal (Legendre-based) basis is particularly useful
with OFDM signals, which are approximately complex
Gaussian distributed [28]. There are many other advan-
tages of employing orthogonal polynomials, e.g.,
improved numerical stability and robustness to quantiza-
tion noise and finite-precision errors [29]. It will also
facilitate the analysis of the adaptive PA model estimation
algorithm that is carried out in Section 4.3.

Remark 4. We note that the Wiener model (linear filter
followed by a static nonlinearity) is frequently used in
literature to model the PA. The Wiener–Hammerstein
model adopted in this work has different modelling
capabilities than the Wiener model, hence, applies to a
wider range of problems. Furthermore, even though we
model the PA using a Wiener model, the end-to-end
system would still be a Wiener–Hammerstein system
due to the presence of the wireless channel. As a con-
sequence, the new estimation technique, presented in
Section 4, cover both Wiener and Wiener–Hammerstein
PA models. Extensive studies available allows to consider
these kind of models general enough to include PA
memory effects in addition to behavioral nonlinearities
[30,20,21].

4. Estimation of power amplifier model at the receiver

This section proposes a two-step procedure for obtain-
ing estimates of HL(k), A(k), and g½�� to be used with the
proposed PANC in Section 3. The first step employs training
symbols with low PAPR that allow us to estimate HL(k)
without the influence of the nonlinear static block g½��. The
obtained estimate of HL(k) is then used in a second step
where the static nonlinearity g½�� and the linear block A(k)
are identified using another set of training symbols.
4.1. Step 1: Estimation of HL(k)

It is important that training symbols are not affected
by g½�� in order to obtain a reliable estimate of HL(k). If
only a group ToN carriers are active while the remaining
N�T subcarriers carry no data, the variance of the OFDM
signal can be reduced (low PAPR) so that the PA mostly
operates in the linear region.

Just to illustrate the general methodology, we employ
the standard interpolation technique in [31], which is
based on a comb-type pilot arrangement where a set of
T dedicated pilot carriers are reserved for pilot data. The
channel frequency response on the pilot subcarriers with-
out nonlinear distortion D(k)¼0 (i.e., low PAPR symbols)
is obtained as

ĤLðkÞ ¼
YðkÞ

XðkÞ
, 8k 2 T ð16Þ

where T ¼ fk1, . . . ,kT g denotes the index set specifying the
T pilot carriers with {ki}i¼1

T
taken from the set {1,y, N}.

The whole frequency-domain channel response is obtained
through interpolation using truncated DFT matrices. The
obtained channel estimate ĤLðkÞ is re-estimated periodically.

We note that, as an alternative to the interpolation-
based technique presented above, low PAPR techniques
may be applied for pilot symbol design. That allows
(16) to be used with all N subcarriers, e.g., the use of
Frank–Zadoff–Chu sequences [11]. Our simulation results,
presented in Section 5, confirm that the number of pilot
carriers is not critical. In case of higher mobility, the
channel may need to be tracked on an OFDM block-by-
block basis. In such situation, the low PAPR necessary for
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the tracking of HL(k) cannot be guaranteed, and we need
to consider alternative estimation strategies, see, e.g., [8].

4.2. Step 2: Estimation of gð�Þ and A(z)

The estimate ĤLðkÞ is used in PANC to yield the time
and frequency-domain signals

~Y ðkÞ ¼
YðkÞ

ĤLðkÞ
ð17Þ

where ~yðnÞ ¼ ð1=NÞ
PN�1

n ¼ 0
~Y ðkÞej2pkðn=NÞ. In practice, the

zero-forcing (ZF) equalizer in (17) may be substituted by
a minimum-mean-squared-error (MMSE) equalizer in
order to reduce possible noise enhancement.

In the absence of noise and assuming a perfect channel
estimate ĤLðkÞ ¼HLðkÞ, the two sequences x(n) and ~yðnÞ
are related via the cascaded system AðzÞ : g½�� : A�1ðzÞ (this
equivalent system is obtained by cascading B(z)C(z) with
HL
�1

(z)). This observation enables us to adaptively esti-
mate A(z) and g½�� using the structure in the right scheme
of Fig. 3. The proposed algorithm estimates the inter-
mediate signal u(n)¼g[s(n)] by forming the following
error

eðnÞ ¼ û1ðnÞ�û2ðnÞ ð18Þ

where, following the scheme of Fig. 3,

û1ðnÞ ¼
XLa

m ¼ 0

â
�

mðnÞ ~yðn�mÞ ð19Þ

û2ðnÞ ¼
XK

k ¼ 0

ĝ
�

2kþ1ðnÞf2kþ1½ŝðnÞ� ð20Þ

ŝðnÞ ¼
XLa

m ¼ 0

âmðnÞxðn�mÞ ð21Þ

To avoid ambiguity in the filter gain, â0ðnÞ � â0 is
anchored to a fixed value [17,18]. The error to be mini-
mized can now be written as

eðnÞ ¼ û1ðnÞ�û2ðnÞ ¼ a�0 ~yðnÞ�hH
ðnÞuðnÞ ð22Þ

where hðnÞ 2 CðKþ Laþ1Þ	1 and uðnÞ 2 CðKþLaþ1Þ	1 are
given by

hðnÞ ¼ ½ĝ
T
ðnÞ â

T
ðnÞ�T uðnÞ ¼ f�/½sðnÞ�T ~yT

ðnÞgT ð23Þ
Fig. 3. Model identification providing estimation of the linear cascade A(z):B(z)
with

ĝðnÞ ¼ ½ĝ1ðnÞ ĝ3ðnÞ � � � ĝ2Kþ1ðnÞ�
T

âðnÞ ¼ ½â1ðnÞ â2ðnÞ � � � âLa
ðnÞ�T

/½ŝðnÞ� ¼ ff1½ŝðnÞ� f3½ŝðnÞ� � � � f2Kþ1½ŝðnÞ�g
T

~y ¼ ½ ~yðn�1Þ ~yðn�2Þ � � � ~yðn�LaÞ�
T ð24Þ

Using the instantaneous squared error jeðnÞj2 as an
objective function, a stochastic gradient algorithm that
updates hðnÞ is given by

hðnþ1Þ ¼ hðnÞ�me�ðnÞrh½eðnÞ� ð25Þ

where m is a step size controlling the convergence speed
and algorithm stability. The gradient in (25) is given by

rh½eðnÞ� ¼
�rĝ ½û2ðnÞ�

râ ½û1ðnÞ��râ ½û2ðnÞ�

" #
ð26Þ

where

rĝ ½û2ðnÞ� ¼/½ŝðnÞ� ð27Þ

râ ½û1ðnÞ� ¼ ~yðnÞ ð28Þ

râ ½û2ðnÞ� ¼ � ĝ1ðnÞþ
XK�1

k ¼ 0

ð2kþ3Þĝ2kþ3ðnÞf2kþ1½ŝðnÞ�

 !
xðnÞ

ð29Þ

and xðnÞ ¼ ½xðn�1Þ � � � xðn�L1Þ�
T. The verification of (29)

is given in Appendix A.
The approach to define the error in (22), is similar to

that used in [32] for the identification of a nonlinear
Wiener-type system. Since the error, defined in (22), is
linear in the parameters, a simple stochastic gradient
algorithm (25) is proposed to obtain the estimates.
Despite of that, other updating strategies can also be used
with different trade-off in terms of computational com-
plexity and convergence speed.

4.3. Local convergence analysis

In order to study the local convergence of the
estimation algorithm proposed in Section 4, we first
introduce the basic relationship between conventional
:C(z) with a low PAPR symbol (left figure) and A(z) and g½�� (right figure).
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and orthogonal polynomial bases. Thereafter, we ana-
lyze the basic conditions for convergence of the pro-
posed stochastic gradient algorithm.

4.3.1. Conventional and orthogonal polynomial basis

Let the vectors /P and wP both of dimensions P	1
contain the respective P basis functions of the conven-
tional and orthogonal polynomials in (13) and (15), i.e.,

/P ½zðnÞ� ¼ ff1½zðnÞ�,f3½zðnÞ�, . . . ,f2Kþ1½zðnÞ�g
T ð30Þ

wPðzðnÞÞ ¼ fc1½zðnÞ�,c3½zðnÞ�, . . . ,c2Kþ1½zðnÞ�g
T ð31Þ

Then from (13) and (15) we can relate both bases as

wP ½zðnÞ� ¼KP/P½zðnÞ� ð32Þ

where KP ¼ ½llk� is a P	 P lower triangular matrix whose
non-zero elements are given by

llk ¼ ð�1Þk�l

ffiffiffiffiffiffiffiffiffiffiffi
kþ1
p

ðlþ1Þ!

k

l

� �
ð33Þ

It is straightforward to show that for a unit-variance
Gaussian z(n) we have [28]

EfwPw
H
P g ¼ I ð34Þ

The one-to-one mapping in (32) and the unitary property
in (34) will be exploited in the convergence study
presented below.

4.3.2. Convergence study

Local convergence analysis of the proposed algorithm
can be performed using the ordinary differential equation
(ODE) method [33–35]. The general ODE approach comes
from the field of stochastic approximation theory, and
enables us to convert the study of convergence of a
stochastic nonlinear equation into the study of the stabi-
lity of the solutions of a deterministic differential
equation.

The analysis is based on the following assumptions:
(A1)
 Input signal x(n) is a zero-mean unit-variance cir-
cular complex Gaussian-distributed process.
(A2)
 The true nonlinear PA is described by a Wiener–
Hammerstein model except for a measurement
noise nðnÞ
Assumption A1 is not very restrictive, since the prob-
ability density function (pdf) of an OFDM symbol may be
well approximated by a Gaussian pdf for a large number
of subcarriers N. One might argue that choosing x(n) to be
uniformly distributed is better from the perspective of
convergence speed g½�� [36]. However, for the application
at hand, the training signals will be transmitted over a
channel, causing interference on neighboring channels.
Fig. 4 illustrates the power spectral density for an OFDM
system when x(n) is approximately uniformly and Gaus-
sian distributed. We see that Gaussian training signal is
preferable from an interference point-of-view. Uniformly
distributed signals seem more appropriate when applying
the identification algorithm for predistorter design.
The ODE associated with the stochastic algorithm in
(25) is given by

@hs

@t
¼�Efrh½eðnÞ�e

�ðnÞg ð35Þ

where e(n) is defined in (22) and rh½eðnÞ� is given in (26).
Under assumption A2, it can be verified that a stationary
point hs of the proposed algorithm corresponds to the
solution of Efrh½eðnÞ�e

�ðnÞg ¼ 0. Following the approach in
[34], we now consider a linearization of (35) in a neigh-
borhood of the stationary point, i.e.,

@hs

@t
ffi�

@Efrh½eðnÞ�e
�ðnÞg

@hs

����
hs

ðhs�hsÞ

¼ �E
@rh½eðnÞ�

@hs
e�ðnÞ

� 	����
hs

ðhs�hsÞ

�E rh½eðnÞ�
@e�ðnÞ

@hs

� 	����
hs

ðhs�hsÞ

¼ �E rh½eðnÞ�
@e�ðnÞ

@hs

� 	����
hs

ðhs�hsÞ ¼ PsðhsÞðhs�hsÞ ð36Þ

where the first term in (36) is zero due to the orthogon-
ality principle and

PsðhsÞ ¼�Efrh½eðnÞ�r
H
h ½eðnÞ�gjhs

ð37Þ

Thus, local convergence is guaranteed if the eigen-
values of PsðhsÞ are negative or, equivalently, that �PsðhsÞ

is positive definite. Details of this verification can be
found in Appendix B.

In the convergence analysis we assumed AIðzÞ ¼PnaI

n ¼ 0 aIðnÞz
�n to be an unbiased estimate of A�1(z). As

mentioned above, the true A�1(z) in Fig. 3 depends both
on how HL(z) is obtained and the type of equalizer used to
produce ~Y ðkÞ in (17). For example, using an MMSE equal-
izer will reduce noise enhancement at low SNR at the
expense of bias. Although local convergence can be
assured under general conditions, our simulations indi-
cate that bias in this initial step leads to a biased



0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15
Orthogonal MMSE
Conventional MMSE
Orthogonal ZF
Conventional ZF

M
SE

 (d
B

)

SNR (dB)

Fig. 5. MSE versus SNR for model identification employing conventional

and orthogonal polynomials. The results are shown for the case when ZF

and MMSE equalizers are used prior to the model identification. Wiener-

Hammerstein type PA was considered where g½�� is given by (39) with

p¼2 and g¼ 4 dB.

F.H. Gregorio et al. / Signal Processing 91 (2011) 2042–2056 2049
estimation of the second-step parameters A(z) and g½��. On
the other hand, when employing the obtained estimates
with the proposed extended PANC technique, the final
performance will be similar for ZF and MMSE equalizers.
The reason is that PANC is a decision-based technique,
which requires medium-to-high SNR. In that case the
MMSE estimates approaches the ZF estimates.

5. Simulations

The performance of the proposed extended iterative
decision-based technique is evaluated in an OFDM system
with 16-QAM modulation on N¼512 subcarriers. The carrier
frequency is f0¼5 GHz and the bandwidth is B¼20 MHz. The
length of the cyclic prefix is equal to 64. The channel is
Rayleigh fading with independent propagation paths, each
generated according to a Jake’s Doppler spectrum. The power
loss and delay profiles of the channel are: [0,�1,�3,�9] dB
and ½0,1,2,3� ms corresponding to an urban scenario. The
terminal speed is set to 2 km/h.

The unknown wideband PA that is to be estimated is
modeled as a WH system, where the linear filters (IIR) are
given by [30]

AðzÞ ¼
1þ0:1z�2

1�0:1z�1
and BðzÞ ¼

1�0:1z�1

1�0:2z�1
ð38Þ

and the static nonlinearity is implemented as a solid state
power amplifier (SSPA) represented by a Saleh model
[37], i.e.,

g½xðnÞ� ¼
jxðnÞj

1þ jxðnÞj
As


 �2p
� �1=p

exp½j+xðnÞ� ð39Þ

where the parameter p adjusts the smoothness of the
transition from the linear region to the saturation region,
and As is the amplifier input saturation point. The results
are evaluated for different clipping levels g defined as

g¼ Asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EnfjxðnÞj

2g

q ð40Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EnfjxðnÞj

2g

q
is the RMS value of the OFDM signal.

The algorithm in Section 4.2 used Laþ1¼5 taps in the FIR
filter ÂðzÞ and the static nonlinearity ĝ ½�� is tested using
both conventional and orthogonal polynomial models of
order P¼4.

5.1. Estimation of g½�� and A(z)

The algorithm of Section 4 was used to estimate the
prefilter A(z) and static nonlinearity g½��. Before the iden-
tification algorithm can start, the received signal needs to
be equalized by ĤLðkÞ, which is estimated as in (16).
Results are shown for both ZF and MMSE equalizers.
Initially, we used T¼32 pilot carriers for estimating HL(k).

The MSE, E½jeðnÞj2� with e(n) defined in (22), is mea-
sured as a function of the SNR. The results are obtained
by averaging the squared error magnitude jeðnÞj2 over
three consecutive OFDM blocks after convergence of the
algorithm. Fig. 5 shows the results for orthogonal and
conventional polynomial models using ZF and MMSE
equalizers. The MSE values are obtained after the con-
vergence of the algorithm. As expected, the MMSE equal-
izer outperforms the ZF equalizer at low SNR values. The
results also confirm that model identification with ortho-
gonal polynomials performs better than with conven-
tional polynomials.

On the other hand, PANC techniques operate in med-
ium-to-high SNRs due to the use of tentative decisions.
Therefore, the performance of PANC will be similar for both
equalizers or either polynomial type. This is also confirmed
via simulations in the next section. Fig. 6 shows the
relative parameter error E(n) for vectors a(n) and g(n),
employed to model the linear filter and the static non-
linearity, for SNR¼15 dB, SNR¼30 dB, and without chan-
nel noise, where for the linear part we have defined

EaðnÞ ¼
JaðnÞ�a1ð1ÞJ

Ja1ð1ÞJ
ð41Þ

with a1 being the converged vector in the absence of noise
and with perfect knowledge of HL(k) and a similar expres-
sion Eg(n) for the vector g(n). The error floor in the relative
parameter error curves is set by the channel noise. For the
noise-free case, undermodelling effects, i.e., insufficient
memory and/or polynomial order, and model mismatch
give the error floor in the relative parameter error curves.

Fig. 7 illustrates how the accuracy of the initial
estimate HL(z) affects the estimation of A(z) and g½�� by
varying the number of pilot carriers T used in the estima-
tion. We see that the proposed model identification
technique is robust with respect to the initial channel
estimation step. Increasing the number of pilot subcar-
riers leads to a small improvement in the identification
performance. Thus, the number of pilot symbols is not
critical to the identification as long as the number of
pilots is larger than the length of the impulse response of
the linear cascade.
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5.2. Comparison with existing Wiener–Hammerstein

identification techniques

Considering the system in Fig. 1(b), we may apply
standard Wiener–Hammerstein techniques where A(z),
gð�Þ, and B(z)C(z) are identified from the input–output
signals {x(n),y(n)}. After forming HL(z), the identified
blocks can be used with PANC in Table 1. In the following
the proposed two-step estimation algorithm in Section 4
is compared with two state-of-the-art algorithms [19,22].
The first algorithm [22] is a single-step recursive method
based on the output estimation error, where the linear
and nonlinear blocks are identified simultaneously. The
second algorithm [19] identifies the blocks in three steps:
(1) identification of gð�Þ, (2) identification of a scaled
version of the cascade of the linear filters A(z)B(z)C(z),
and, (3) sequential identification of the individual filter
taps of A(z) and B(z)C(z). For a more detailed description
of the algorithms, see [19,22].

The algorithms were applied to the identification of
two different Wiener–Hammerstein models. The first
model is described by (38) and (39) (Model 1), and the
second, defined in [19] (Model 2), has linear blocks
given by

AðzÞ ¼ 0:9184þ0:3674z�1þ0:1469z�2 ð42Þ

BðzÞ ¼ 0:9184þ0:5510z�1þ0:3306z�2 ð43Þ

and a static nonlinearity taken as an Hermite polynomial
with coefficients [0,1.5,0.3,0.6]. Comparing the proposed
algorithm with the one in [22], Figs. 8 and 9 show the
learning curves, i.e., E½jeðnÞj2� with e(n) defined in (22) and
convergence of the tap estimates of linear filter A(z). We
see that the proposed estimation algorithm achieves
faster convergence to a lower steady-state estimation
error for the first PA model. Therefore, the proposed
approach may employ a shorter OFDM training sequence
for the PA model identification. For the second PA model,
our method shows lower convergence speed, four OFDM
symbols are required to reach the steady-state, than the
one in [22]. However, the method proposed [22] gives a
large steady-state estimation error.

Fig. 10 illustrates the convergence behavior of the
three-step method in [19]. Steps 1 and 2, which can be
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executed simultaneously, require approximately eight
OFDM blocks to reach steady-state. After that, a third
step is executed to obtain the coefficients of the individual
filter (here A(z) and B(z)C(z)) via three intermediate
variables W0, W1, W2 using a number of algebraic opera-
tions (see [19], Section 4-E). This last step requires more
than 20 OFDM blocks to reach convergence as seen from
Fig. 10. Therefore, the method in [19] is not feasible for
the application at hand due to its slow convergence.
Moreover, the set of algebraic operations that follows
the third step, the conversion from the intermediate
variables to A(z) and B(z)C(z), will increase the overall
implementation complexity.

5.3. Performance of PANC with receiver-based

model identification

In order to evaluate the extended PANC technique
employing model estimation, we consider an initial train-
ing phase for carrying out the model identification: one
OFDM block for estimating HL(k) and three OFDM blocks
for estimating A(z) and g½�� (as was done above). After the
initial training phase, the estimated PA model is
employed with PANC to mitigate the nonlinear distortion.
The wireless channel variations are tracked through the
re-estimation of HL(k) once in every seven OFDM blocks
resulting in a signaling overhead of 12.5%. In case of
higher mobility, alternative channel estimation techni-
ques can be employed that track HL(k) for each OFDM
block using dedicated pilot symbols [8,38].

Fig. 11(a) and (b) show the BER versus SNR for two
different clipping levels, g¼ 3 and 4 dB. We see that the
PANC technique employing receiver-based model estima-
tion performs almost identically to a solution having perfect
knowledge of the PA model. Curves for a linear PA with
channel estimation and channel state information (CSI),
nonlinear PA without PANC, and PANC with perfect PA
model estimation are included for reference. The channel
estimation technique used with the linear PA was the same
as the one used for estimating HL(z). We see that the
performance with MMSE and ZF equalizers (for removing
the effect of HL(k)) are similar and reach BER close to that of
a linear PA. BER results are plotted for the case when HL(z) is
estimated using T¼16, 32, and 64 pilot subcarriers. We see
that the BER results for T¼64 pilot subcarriers is only
slightly better than for T¼16 and 32 pilot subcarriers.

Simulation results (not included) confirm that BER
results using approximately Gaussian training signals
(i.e., normal OFDM symbols) of four, five and six OFDM
blocks and uniformly distributed training sequence of
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four OFDM blocks are almost identical. It verified that
there is no performance loss due to the use of Gaussian
training signals.
To compare the performance of PANC with existing
methods, we implemented a nonlinear equalizer [39,40]
using memory polynomials [2]. That is, the output of the
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nonlinear equalizer is given by

x̂ðnÞ ¼
XK

k ¼ 1

XQ

q ¼ 0

cqkyðn�qÞjyðn�qÞjk�1 ð44Þ

where cqk are the equalizer coefficients, x̂ðnÞ and y(n) are
the respective output and input of the equalizer, K and Q

define the polynomial order and the memory length,
respectively. Given a training sequence, the equalizer
coefficients are easily obtained using a least-squares
approach, see, e.g., [41].

Fig. 12 shows the resulting BER curves for the non-
linear equalizer (44) and PANC both using a training
sequence of four OFDM symbols. The memory polynomial
was implemented using Q¼5 and K¼5 (only odd terms)
which gives an equalizer with 15 coefficients. The PA is a
Wiener–Hammerstein model g½�� defined by (39) with
p¼2 and clipping level g¼ 3 dB. We see that the PANC
technique presents a significant BER improvement when
compared with the nonlinear equalizer. The error floor
associated with the nonlinear equalizer is due to the
inability to mitigate clipping distortion.

In order to reach tolerable BER levels when a nonlinear
PA is employed, power back-off can be applied to linearize
the system, at the expense of a decreased power effi-
ciency. The input back-off (IBO) is defined as the ratio of
the average power at the PA input and the input
saturation power.

Total degradation (TD) quantifies the allowed level of
nonlinear distortion and power efficiency. It is defined as
TDdB¼SNRNL

dB�SNRL
dBþ IBOdB, where SNRNL

dB is the SNR
required to obtain a fixed BER target in presence of PA
nonlinearities with a fixed IBO, and SNRL

dB expresses the
SNR required in the case of linear PA. The BER target is
typically set to BER¼10�4. Total degradation curves for a
nonlinear PA with and without PANC shown in Fig. 13. We
see that the best operating point for a system with PANC
is IBO¼1 dB with a TD¼1 dB. Without applying PANC, the
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optimal point is IBO¼3.5 dB with a TD¼3.5 dB. Assuming
a Class-A PA, the optimal points define a power efficiency
of ZPANC ¼ 30% with PANC and ZNL ¼ 15% without PANC.

Finally, in order to evaluate the effects of model
mismatch between the PA employed and the model
assumed by the identification algorithm (W–H model),
we use a PA modeled with a three-branch parallel Wiener
model [44]. This structure was successfully employed to
model class AB (low-power amplifier) and class B (high
efficiency ) amplifiers [45]. The linear blocks of the
parallel Wiener model are given by [44]

H1ðzÞ ¼ 1, H2ðzÞ ¼
1þ0:3z�1

1�0:1z�1
, H3ðzÞ ¼

1�0:2z�1

1�0:4z�1
ð45Þ

The memoryless nonlinearity of branch i is modeled
using a polynomial given

yiðnÞ ¼
XK

kodd
k ¼ 1

dkiviðnÞjviðnÞj
k�1 ð46Þ

where vi(n) is the output of the linear filter Hi(z). The
polynomial coefficients are

d11 ¼ 1:0018þ0:0858j, d31 ¼ 0:0879�0:1583j,

d51 ¼�1:0992�8891j

d12 ¼ 0:1179þ0:0004j, d32 ¼�0:1818þ0:0391j,

d52 ¼ 0:1684þ0:0034j

d13 ¼ 0:0473�0:0058j, d33 ¼ 0:0395þ0:0283j,

d53 ¼�0:1015�0:0196j ð47Þ

BER curves for the parallel Wiener model are shown in
Fig. 14. We see that the PANC technique presents a
significant BER improvement when compared to the case
without compensation.
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Fig. 14. BER versus SNR for PANC with model estimation in an OFDM

system with 16-QAM modulation on N¼512 subcarriers, for the case of

linear PA and NL PA. The mobile speed is set to v¼2 km/h. A parallel

Wiener type nonlinear PA was considered that emulates a class AB PA

with IBO¼6 dB. Results are shown for ZF equalization of HL(z) which was

estimated during one OFDM block using T¼32. The model identification

was performed during 4 OFDM blocks.
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6. Conclusions

This paper proposed a receiver-based approach for
modeling and compensating the distortion from nonlinear
power amplifiers (PAs) with memory. A power amplifier
nonlinearity cancellation (PANC) technique was proposed
to reduce the harmful effects of wideband PAs in OFDM
systems. Our technique is very useful to minimize the
impact of wideband nonlinear amplifiers on the system
performance, that it is the special relevance for mobile
terminals, allowing for a more efficient usage of the
power amplifier. The proposed technique estimates
the nonlinear distortion by passing tentative decisions
through a wideband PA model. The memory effects of
the PA are taken into account by modeling the PA as a
Wiener–Hammerstein system. The PANC technique is
suitable for systems where reduced implementation com-
plexity is required in the transmitter and can be combined
with other distortion mitigation techniques, e.g., predis-
tortion. We, thereafter, addressed the problem of identi-
fying and tracking the Wiener–Hammerstein PA model
parameters at the receiver. The approach greatly simpli-
fies implementation complexity as the need for a compu-
tationally complex PA identification step at the
transmitter is avoided. The proposed PA model identifica-
tion scheme consists of two steps, where an initial
channel estimation and equalization step in frequency-
domain is followed by a time-domain identification of a
simplified Wiener–Hammerstein model. A stochastic
algorithm was derived for identifying the PA model
parameters and its convergence properties were analyzed.
Comparison with other methods showed that the pro-
posed identification technique exhibits faster conver-
gence speed and lower complexity.

Our simulation results verify a minimal performance
loss, in terms of BER, when comparing the performance of
the PANC technique using estimated and perfect PA
models. BER close to those observed for the case of a
linear PA are obtained which allows for a more power
efficient transmission. Furthermore, the PANC technique
avoids the error floor due to clipping noise associated
with polynomial-based nonlinear equalizers. Moreover,
the robustness of our method again model mismatch was
verified given very good results. The proposed technique
can be extended for a system including channel coding in
order to get reliable results in a low SNR scenario. The
combination of PANC and channel coding has been
addressed with very good results in [46].
Appendix A. Verification of =â ½û2ðnÞ�

Verification of râ ½û2ðnÞ� in (29) is straightforward, as
follows: Using (23) and (24), it is possible to obtain

râ ½u2ðnÞ� ¼
@û2ðnÞ

@ŝðnÞ
�
@ŝðnÞ

@â
¼
@û2ðnÞ

@ŝðnÞ
xðnÞ ð48Þ

To proceed, we employ the basic passband representation
of the conventional polynomial model that is described by

�u2ðnÞ ¼
XP

k ¼ 0

�gk �s
k
ðnÞ ð49Þ

where �ð�Þ is the notation for passband signal and coeffi-
cients, and P is the order of the polynomial model [42]. To
obtain @û2ðnÞ=@sðnÞ and avoid the problem of baseband
model differentiation, we first differentiate (49) and then
transform the result to baseband. Differentiation of (49)
with respect to �s gives

@ �u2ðnÞ

@�sðnÞ
¼
XP

k ¼ 1

k �gk �s
k�1
ðnÞ ð50Þ

The baseband form of (50), assuming s to be a narrow-
band signal with respect to the carrier frequency, is then
given by [43]

@u2ðnÞ

@sðnÞ
¼ g1þ

XK�1

k ¼ 0

g02kþ3fs
kþ1ðnÞ½ðs�ðnÞÞk�g

¼ g1þ
XK�1

k ¼ 0

ð2kþ3Þ g2kþ3jsðnÞj
2ksðnÞ ð51Þ

We see that, except for the constant g1 and the order of
the polynomial, the derivative has the same form as the
memoryless polynomial model. Since we have used an
arbitrary bandpass memoryless polynomial model for
�u2ðnÞ [42], we have avoided the difficulties with differ-
entiation that arise when adopting an odd-order poly-
nomial approximation in baseband. Finally, replacing
coefficients gk by their estimates ĝ kðnÞ, the gradient
râ ½u2ðnÞ� is obtained.
Appendix B. Local convergence proof

By definition, the matrix �PsðhsÞ is positive semidefi-
nite. For this purpose we use the orthogonal basis
description of the memoryless polynomial model. Let us
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rewrite PsðhsÞ as

�PsðhsÞ ¼
R1 R3

RH
3 R2

" #
ð52Þ

To show that�PsðhsÞ40, it is sufficient to show that R1 and
R2 are positive definite matrices, see, e.g., [47, Lemma A.3]
or [34, Lemma G.1]. Using the orthogonal basis /P ¼K�1

P wP

and (34), we get

R1 ¼K�1
P EfwPw

H
P gK

�H
P ¼K�1

P K�H
P ð53Þ

Therefore, R1 is positive definite because KP matrix is lower
triangular, i.e., non singular. KP in Eq. (53) acts as a
similarity transformation on R1. i.e., LPR1K

H
P ¼ I. Then, R1

is positive definite. We now turn to matrix R2 which is
given by

R2 ¼ Efrâ ½û1�r
H
â ½û1�gþEfrâ ½û2�r

H
â ½û2�g

�Efrâ ½û1�r
H
â ½û2�g�Efrâ ½û2�r

H
â ½û1�g ð54Þ

Element (i,j) of the second term in (54) is obtained using
(15), (21) and (21) as

½Efrâ ½û2�r
H
â ½û2�g�i,j ¼ jĝ1j

2Efxðn�iÞx�ðn�jÞg

þE
XK�1

k ¼ 0

ð2kþ3Þ ĝ2kþ3f2kþ1ðŝðnÞÞ

" #
xðn�iÞ

(

	x�ðn�jÞ
XK�1

k ¼ 0

ð2kþ3Þ ĝ2kþ3f
�

2kþ1ðŝðnÞÞ

" #)
ð55Þ

where the cross-terms in ½Efrâ ½û2�r
H
â ½û2�g�i,j are zero

because they can be written in terms of odd-order moments
of zero-mean Gaussian random variables. Using the ortho-
gonal basis representation for the derivative polynomial
Model,1 /P�1 ¼K�1

P�1wP�1, we obtain

½Efrâ ½û2�r
H
â ½û2�g�i,j ¼ jĝ1j

2Efxðn�iÞx�ðn�jÞg

þ
XK�1

k ¼ 0

jlkkj
2Efc2kþ1ðŝðnÞÞxðn�iÞx�ðn�jÞc�2kþ1ðŝðnÞÞg

ð56Þ

where lkk are the diagonal values of the matrix K�1
P�1. By

employing the following property of high-order moments of
Gaussian random variables [48]

Efz1z2z�3z�4g ¼ Efz1z�3gEfz2z�4gþEfz2z�3gEfz1z�4g ð57Þ

the second expectation in (56) is simplified to

Efc2kþ1ðŝðnÞÞxðn�iÞx�ðn�iÞc�2kþ1ðŝðnÞÞg

¼ Efc2kþ1ðŝðnÞÞc
�

2kþ1ðŝðnÞÞg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ 1

Efxðn�iÞx�ðn�iÞg

þEfc2kþ1ðŝðnÞÞxðn�iÞgEfx�ðn�iÞc�2kþ1ðŝðnÞÞg ð58Þ

Note that the second term Efc2kþ1ðŝðnÞÞxðn�iÞg ¼ Efskþ1

ðs�Þkxðn�iÞg in (58) is zero because it is an odd-order
moment of a zero-mean Gaussian variable [48]. Thus,
Efrâ ½û2�r

H
â ½û2�g40 if the input correlation matrix Rx ¼

½Efxðn�iÞx�ðn�jÞg�i,j is positive definite, which is naturally
fulfilled.

Let us now consider the first term of R2 in (54). In
order to proceed we let faIðnÞg

naI

n ¼ 0 be the unbiased
1 Same as for the conventional polynomial model except for the

order, see (51).
estimates of the coefficients associated with the inverse
system A�1(z), which appears in Fig. 3 as a result of (17).
Component (i,j) is then given by

½Efrâ ½û1�r
H
â ½û1�g�i,j ¼ E

XnaI

p ¼ 0

XK

k ¼ 0

aIðpÞĝ2kþ1f2kþ1½sðn�iþpÞ�

 !(

	
XnaI

q ¼ 0

XK

m ¼ 0

a�I ðqÞĝ2mþ1f
�

2mþ1½sðn�jþqÞ�

 !)
ð59Þ

Replacing the conventional polynomial bases with the
orthogonal basis, we get

½Efrâ ½û1�r
H
â ½û1�g�i,j ¼

XnaI

p ¼ 0

XK

k ¼ 0

XnaI

q ¼ 0

XK

m ¼ 0

aIðpÞa
�
I ðpÞlkkl

�

mm

	Efc2kþ1½sðn�iþpÞ�c�2mþ1½sðn�jþqÞ�g ð60Þ

Furthermore, making use of (34) and (60) reduces to

½Efrâ ½û1�r
H
â ½û1�g�i,i ¼

XK

k ¼ 0

XnaI

p ¼ i

jaIðpÞj
2jlkkj

2 ð61Þ

which is positive definite. Finally, using also the orthogo-
nal basis description for the conventional and the deriva-
tive polynomial models, the last term of R2 in (54),
Efrâ ½u1�r

H
â ½u2�g can be written in terms of odd moments

of Gaussian variables and, as a consequence, its contribu-
tion to R2 is zero. Therefore, R2 is positive definite. This
concludes the local convergence proof.
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