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Several  approaches  can  be  found  in  the  literature  to perform  the  identification  of  block  oriented  models
(BOMs).  In  this  sense,  an  important  improvement  is  to achieve  robust  identification  to  cope  with  the
presence  of  uncertainty.

In  this  work,  two  special  and  widely  used  BOMs  are  considered:  Hammerstein  and  Wiener  models.
The  models  herein  treated  are  assumed  to  be  described  by parametric  representations.  The  approach
introduced  in  this  work  for the  identification  of the  multiple  input–multiple  output  (MIMO)  uncertain
iener models
ammerstein models
obust identification

model  is  performed  in a single  step.  The  uncertainty  is  described  as  a set  of  parameters  which  is found
through  the  solution  of  an  optimization  problem.

A  distillation  column  simulation  model  is presented  to illustrate  the  robust  identification  approach.
This  process  is  an  interesting  benchmark  due  to  its well-known  nonlinear  dynamics.  Both  Hammerstein
and  Wiener  models  are  used  to  represent  this  plant  in the  presence  of  uncertainty.  A comparative  study
between  these  models  is  established.
. Introduction

Block oriented models (BOMs) have been proven to be use-
ul as simple nonlinear models for many applications (Juditsky
t al., 1995; Pearson & Pottmann, 2000; Sjöberg et al., 1995). They
onsist of a cascade combination of a linear dynamics block (L)
ith a memoryless nonlinear one (N). A vast type of dynamic
rocesses can be described by such representations consisting of
hese two simple elements usually referred to as subsystems. These

odels have captured the attraction of many researchers because
hey combine simplicity of modeling with good approximation of
he real process behavior. They are a useful approach when the
onlinearity of the plant cannot be ignored and, consequently,

inear models are not appropriate. Moreover, this representa-
ions are restricted complexity models (Ling & Rivera, 1998, 2001)
hich result in an appealing proposal for many applications such

s process control (Bloemen et al., 2001; Fruzzetti, Palazoglu, &
cDonald, 1997; Pajunen, 1992). In general, the low computa-

ional effort and the suitability for design are the most attractive
dvantages of using these models for control.

In this work, two special and widely used BOMs are considered:
ammerstein and Wiener models. In the first case, N  is followed

y L and, in the second one, L is followed by N. Figs. 1 and 2 show
hese structures. Apart from chemical engineering (Fruzzetti et al.,
997; Kalafatis, Arifin, Wang, & Cluett, 1995; Norquay, Palazoglu,

∗ Corresponding author. Tel.: +54 291 4595101; fax: +54 291 4595154.
E-mail address: figueroa@uns.edu.ar (J.L. Figueroa).
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& Romagnoli, 1998; Pajunen, 1987, 1992; Visala, Pitkänen, &
Paanajärvi, 1999; Wigren, 1993; Zhu, 1999), they have been used
in a wide range of applications, such as in the fields of communica-
tions (Hadjiloucas, Izhac, Galvao, Bowen, & Becerra, 2004; Huang,
Tanskanen, & Hartimo, 1998; Stapleton & Bass, 1985), medicine
(Celka & Colditz, 2002) and biology (Hunter & Korenberg, 1986).

There is a vast literature on block oriented systems. The
approach most widely used as regards model construction is the
parametric description, such as in the works by Škrjank, Blažič,
and Agamennoni (2005),  Raich, Zhou, and Viberg (2005),  Lacy and
Bernstein (2002),  Hagenblad and Ljung (2000) and Gómez and
Baeyens (2004).  Although in a smaller proportion, the nonpara-
metric formulation has also been followed (Greblicki, 1992, 1994,
1997).

The models herein treated are assumed to be described by para-
metric representations. Several procedures can be found in the
literature to perform the identification of Hammerstein and Wiener
models for nominal conditions. However, an important improve-
ment is to achieve robust identification to cope with the presence
of uncertainty. This is the approach herein followed, which allows
to describe the uncertainty as a set of parameters that is found
through the solution of an optimization problem.

In this work the starting point is the assumption that an uncer-
tain parametric block oriented model must be identified. Moreover,
the source of such uncertainty is assumed unknown. It is considered

that the structure of the system under study is Wiener or Hammer-
stein type, and that the static nonlinearity entirely determines the
steady state characteristic of the whole model and that some kind
of uncertainty is present in the system. The resulting methodology

dx.doi.org/10.1016/j.compchemeng.2011.05.013
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:figueroa@uns.edu.ar
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Nomenclature

q stands for the forward shift operator
Hm×n

2 (T) represents the space of all the (m × n) transfer
matrices that are both stable and causal

� is the field of real numbers
�m×n is the field of m × n matrices with entries in �
gi(·) : � m → � m is a set of specified basis functions for a non-

linear static mapping. For example, there could be
polynomial, trigonometric or piecewise linear func-
tions

Bi(q) � n → � n is a set of any rational basis in Hn×n
2 (T) (i.e.,

Laguerre, Kautz or any orthonormal basis)
≤, ≥ for scalar the usual meaning and for matrices

applied entry by entry
[]i is the ith entry of a vector or a ith dimension of a set
[] is the element of a matrix on the ith row and the jth
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Fig. 1. Hammerstein model.

Bi(q)u(k) = ⎢⎣ ...
...

. . .
...

0 0 · · · Bin(q, an)u(k)

⎥⎦(3)

1

i,j
column

s robust in the sense that the identified set of parameters is such
hat any of the collected data can be reproduced by at least one
f the models in the set. These set of parameters are obtained by
olving a simple optimization problem. This approach ensures the
xistence of a convex set of models that can describe the whole
ata collected from the process.

A distillation column simulation model is presented to illustrate
he robust identification approach, this process is an interesting
enchmark due to its well-known nonlinear dynamics. Both Ham-
erstein and Wiener models are used to represent this plant in

he presence of uncertainty. A comparative study between these
odels is established.
BOMs have been widely used for modeling distillation columns

DCs). One of the main reasons is real-life DCs are inherently non-
inear and models based on first principles are usually too complex
or application purposes. A continuous-time Hammerstein model
as introduced by Eskinat, Johnson, and Luyben (1991) for a binary
C. Pearson and Pottmann (2000) applied identification of BOMs to

 simulated DC, they based on the assumption of known nonlinear-
ty (the static element) to obtain both Wiener and Hammerstein

odels for this column. A comparative study of the performance
f these models was then accomplished. Bloemen et al. (2001)
sed a Wiener model in the control of a DC. Norquay et al. (1998)
esigned a model predictive controller based on a MIMO  model of a
2-splitter while Gómez and Baeyens (2004) introduced an identi-
cation approach for MIMO  Wiener and Hammerstein models and
sed a simulated DC example to illustrate their method. Janczak
2005) presents the most diffused identification methods of non-
inear systems using the block-oriented approach. He also surveys

any relevant works related application of BOMs to modeling and
ontrol of DC. In a survey paper, Abdullah, Aziz, and Ahmad (2007)
resent many of the reported models that have been implemented

n continuous DCs. They classified these models into three cate-
ories: fundamental models,  empirical models and hybrid models,  and
hey included Wiener and Hammerstein models in the second one.

In this paper, we consider the model developed by Skögestad
or a distillation column. It is referred to as column A and has been
tudied in several papers both for modeling and control purposes
see Skogestad and Morari (1988) and references therein). This is
n appealing model of 82 states which describes a MIMO highly
onlinear process.
The paper is organized as follows. In Section 2, robust block
riented model identification is treated. Both Wiener and Ham-
erstein structures are considered separately. This is the main

ontribution of this paper: a mechanism for uncertain model
Fig. 2. Wiener model.

characterization and identification. In Section 3, the results are
evaluated on the basis of the above mentioned distillation column.
Final remarks are addressed in Section 4.

2. Robust identification

To identify both types of block oriented models, the
parametrization adopted in Gómez and Baeyens (2004) and Falugi,
Giarré, and Zappa (2005) is herein followed.

In the identification of block oriented models there is a scale
factor which can be arbitrarily distributed between the linear
block and the memoryless one without affecting the input–output
characteristics of the model Pottmann and Pearson (1998).  In the
following we either assume p1 = I (or h1 = I) with I the identity
matrix, since that any other value of this gain can be included in
the nonlinear (linear) block.

2.1. Robust identification of Wiener models

Fig. 2 depicts the general structure of Wiener models. It con-
sists of a LTI system L(q) ∈ Hm×n

2 (T) followed by a static nonlinearity
Nw . That is, in the Wiener case, the linear model L maps the
input u(k) ∈ � n into the intermediate signal v(k) ∈ �m, and the over-
all model output is the output of the nonlinear block, i.e., y(k) =
Nw(v(k)) ∈ �m. The present identification algorithm requires that
the static nonlinearity is invertible,1 i.e., the signal v(k) can be writ-
ten as

v(k) = N−1
w (y(k)) =

N∑
i=1

pigi(y(k)) (1)

where gi(·) : � m → � m and pi ∈ � m×m (i = 1, . . .,  N) are the unknown
parameters of the nonlinear block which must be determined. It is
assumed that K sampled data are available, i.e., k = 1, . . .,  K.

From Fig. 2, this signal can also be written as the output of the
linear block,

v(k) = L(q) u(k) =
M∑

i=1

hiBi(q)u(k) (2)

where hi ∈ � m×n(i = 1, . . .,  M),  are the linear block parameters to
be determined and Bi(q)u(k) is a rational basis with the following
structure: ⎡

⎢ Bi1(q, a1)u(k) 0 · · · 0
0 Bi2(q, a2)u(k) · · · 0

⎤
⎥

This restriction is related to the fact that the signal connecting both subsystems
is  not measured. For the robust identification algorithm is required that it holds
for  all possible model in the set of uncertain parameters. However, some of the
reported techniques for nominal identification in the literature allow noninvertible
nonlinearities (Haverkamp, Chou, & Verhaegen, 1998; Lacy & Bernstein, 2002).
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Fig. 3. Uncertainty sets.

here Bij is any element of the function bases. For example,

ij(q, aj) =
1 − a2

j

q − aj

(
1 − ajq

q − aj

)(i−1)

, if Laguerre bases are selected

The parameter matrices to identify are defined as h = [h1, . . .,
M] ∈ � m×nM and p = [p1, . . .,  pN] ∈ � m×mN. To build an uncertain
odel we define a set of parameters H for the linear dynamic block

nd a set P for the parameters of the nonlinear block.

= {h : hl ≤ h ≤ hu} (4)

 = {p : pl ≤ p ≤ pu} (5)

Provided the mentioned description of the system (i.e., Eqs. (1)
nd (2)), and based on a set of input/output data of the process, it
s possible to obtain a nominal model by minimizing a quadratic
riterion (Gómez and Baeyens, 2004; Kalafatis et al., 1995).

However, the proposal of this work is to perform a robust iden-
ification. Now, to determine the parameter bounds in the Wiener

odel, let us first define some sets. At some specific time k, the lin-
ar uncertain system defined by H,  maps a given input datum u(k)
ver an orthotope (Weisstein, 2010).

Vu =
{

v : v ∈ �m, v(k) =
M∑

i=1

hiBi(q) u(k), h ∈ H
}

= {v : v ∈ �m, vl ≤ v(k) ≤ vu}
On the other hand, if we consider the uncertain description for

he parameters in P, a given output y(k) maps at some specific time
 over an orthotope

y =
{

v : v ∈ �m, v(k) =
N∑

i=1

pi gi(y(k)), p ∈ P
}

(6)

his situation is illustrated in Fig. 3 for a unidimensional problem (in
he multivariable case we should make an extension and consider
his situation for each entry). Note that in order to obtain an uncer-
ain model, every input data u(k) should be mapped through the

odel to the corresponding y(k). From the mentioned picture it is
lear that the parameter set will define the uncertainty descriptions
f Vy ∩ Vu /= ∅.  In this way, the input u(k) is mapped onto Vu through
he family of models generated by H.  Then, since Vy ∩ Vu /= ∅,  the
ntermediate value (i.e., v(k)) will result in y(k) through the inverse
f N−1

w .
Now, the condition Vy ∩ Vu /= ∅  involves that this intersection

hould be not empty for each dimension, i.e., [Vy]i ∩ [Vu]i /= ∅  for
very sample k (k = 1, . . .,  K), and i = 1, . . .,  m. Let us analyze this
ituation in order to compute the parameter bounds that satisfy this
ondition. This determination is based on the whole input/output
ata available.

Note that for each input u(k) the linear bases
n

i(q)u(k) ∈ � . Let us group these vectors in a single vec-

or B(q)u(k) = [(B1(q)u(k))T , . . . , (BM(q)u(k))T ]
T
, and let us

efine the vectors with the positive entries of B(q)u(k) as
+(u(k))

	= max(B(q) u(k), 0) and the vectors with negative entries
Fig. 4. Intervals.

as B−(u(k))
	= min(B(q) u(k), 0). Finally, we can define the new vec-

tor �B(k)
	=[(B−(u(k)))T , (B+(u(k)))T ]

T ∈ �2Mn. In this construction
the vector B−(u(k)) keeps all the negative elements in the vector
and puts zero otherwise, while the vector B+(u(k)) keeps all the
positive elements and puts zero otherwise.

In a similar way, since the nonlinear bases gi(y(k)) ∈ � m for
each output y(k), it is possible to repeat the construction of last

paragraph to obtain �g(k)
	=[(g−(y(k)))T , (g+(y(k)))T ]

T ∈ �2Nm where

g+(y(k))
	= max(g(y(k)), 0) and g−(y(k))

	= min(g(y(k)), 0).
Then, it is possible to transform the uncertain identification

problem into a Linear Programming problem with convex feasible
region. This is presented in the following theorem.

Theorem 1. The bounds of the uncertain parameters hl, hu, pl, pu

can be obtained by solving the following optimization problem

min
hl ,hu,pl ,pu

(
˛

M∑
i=1

n∑
k=1

m∑
j=1

([hu
i
]
j,k

− [hl
i
]
j,k

) + (1 − ˛)

N∑
i=1

m∑
k=1

m∑
j=1

([pu
i
]
j,k

− [pl
i
]
j,k

)

)
(7)

subject to

[(hl), (hu), −(pu), −(pl)]

[
�B(k)
�g(k)

]
≥ 0; k = 1, . . . , K (8)

[(hu), (hl), −(pl), −(pu)]

[
�B(k)
�g(k)

]
≤ 0; k = 1, . . . , K (9)

where the parameter  ̨ ∈ (0, 1) is a selected factor which allows to
distribute the weight of the uncertainty between the linear and the
nonlinear blocks. Note that the robust identification requirement
Vy ∩ Vu /= ∅  must be ensured ∀k.

Proof. In order to demonstrate this theorem it is necessary to
see that if the constraints (8) and (9) hold, then the condition Vy ∩
Vu /= ∅  is satisfied. Since the condition Vy ∩ Vu /= ∅  holds if and only
if it holds for each dimension of Vy and Vu ∈ �, i.e., if [Vy]i ∩ [Vu]i /= ∅

for i = 1, . . ., m, it is possible to analyze each dimension separately
to obtain a graphical interpretation. In this way, let us consider the
intersection problem shown in Fig. 4 for the unidimensional case.
Let

[Vu]i = {v : v ∈ �, B ≤ v ≤ A} (10)

[Vy]i = {v : v ∈ �, D ≤ v ≤ C} (11)

for i = 1, . . .,  m. From Figs. 3 and 4, it is straightforward that the
upper bound of [Vu]i as function of the parameter set H is given
as A = [(hl), (hu)]i�B. Consequently, we have that B = [(hu), (hl)]i�B,
C = [(pl), (pu)]i�g and D = [(pu), (pl)]i�g .

Based on these definitions, the condition [Vy]i ∩ [Vu]i /= ∅  will
be satisfied if and only if the upper bound of [Vu]i is greater than

the lower bound of [Vy]i (i.e., A ≥ D), and if the lower bound of [Vu]i

is lower than the upper bound of [Vy]i (i.e., B ≤ C). The constraint
A − D ≥ 0 for i = 1, . . .,  m is the one written in Eq. (8).  Similarly, the
mathematical formulation for C − B ≥ 0 is given in Eq. (9).
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In this way, the optimization problem in (7) will produce an
ncertain model that minimizes the magnitude of the uncertainty
hile ensures the description of the behaviour of all the collected
ata. �

The number of optimization variables is 2(m2N + nmM) and the
umber of constrains is 2mK. Due to the suitable formulation of
hese problem, its solution is obtained in an efficient way.

.2. Robust identification of Hammerstein models

Fig. 1 depicts the structure of a Hammerstein model. It consists
f a static nonlinearity Nh followed by a LTI system L(q) ∈ Hm×n

2 (T).
hat is, in the Hammerstein case, the nonlinear gain maps the input
(k) ∈ � n into the intermediate signal v(k) ∈ �n, and it is mapped
hrough the linear model to produce the output y(k) = L(q) v(k) =
(q) Nh(u(k)) where y(k) ∈ � m.

Using a similar parametrization than the one used for the
iener case, an estimate of the output ŷ(k)  is:

ˆ(k) =
(

M∑
i=1

hiBi(q)

) ⎛⎝ N∑
j=1

pjgj(u(k))

⎞
⎠ (12)

M∑
i=1

N∑
j=1

hipjBi(q)gj(u(k)) (13)

here gj(·) : � n → � n, pj ∈ � n×n, for j = 1, . . .,  N. Bi(q) is a rational
asis and hi ∈ � m×n with i = 1, . . .,  M.

Now, following Gómez and Baeyens (2004) it is possible to write
 linear regression in the parameters as follows:

ˆ(k) = �T �k (14)

here

 = [h1p1, . . . , h1pN, . . . , hMp1, . . . , hMpN]T ∈ �m×nNM (15)

�k = [(B1(q)g1(u(k)))T , . . . , (B1(q)gN(u(k)))T , . . . ,

(BM(q)g1(u(k)))T , . . . , (BM(q)gN(u(k)))T ]
T ∈ �nNM (16)

ote that in this case hipj ∈ � m×n and Bi(q)gj(u(k)) ∈ � m for i = 1, . . .,
 and j = 1, . . .,  N. A nominal estimate of � (and then of hi, i = 1, . . .,
 and pi, i = 1, . . .,  N) can be computed as in Gómez and Baeyens

2004).
In order to characterize the uncertainty present in a Hammer-

tein model, a two step procedure is proposed. First, by considering
he linear regression in Eq. (14), a set of uncertain parameters are
omputed in terms of �, as follows:

 = {� : �l ≤ � ≤ �u} (17)

hen, in a second step, based on the definition of the parameter vec-
or in Eq. (15), the set � is translated to the parametric description
iven by Eqs. (4) and (5).

To solve the first step, the following problem is formulated:

roblem 1. Given a set of data u(k) and y(k) for k = 1, 2, . . .,  K, we
hould compute a set of parameters � such that y(k) ∈ Y  where:

 = {y ∈ �m : y = �T �k, � ∈ �}  (18)

Now, considering that the regressor �k ∈ � nNM for each input
+ 	 − 	
(k), it is possible to split it into �
k
= max(�k, 0) and �

k
= min(�k, 0)

nd form the vector ˚k = [(�−
k

)T
, (�+

k
)T ]

T
.

Then, the following theorem could be used to compute the solu-
ion of Problem 2.
ical Engineering 35 (2011) 2867– 2875

Theorem 2. The bounds �l ∈ � m×nNM, �u ∈ � m×nNM for the uncertain
parameters � can be computed by solving the following optimization
problem

min
�l,�u

nNM∑
i=1

m∑
j=1

([�u]i,j − [�l]i,j) (19)

subject to

[(�l)
T
, (�u)T ]˚k ≥ y(k); k = 1, . . . , K (20)

[(�u)T , (�l)
T
]˚k ≤ y(k); k = 1, . . . , K (21)

Proof. It is similar to the proof of Theorem 1. In this case it is easy
to see that satisfaction of the constraints in Eq. (20) implies the
satisfaction of an upper bound on the data y(k) and the satisfaction
of Eq. (21) implies the satisfaction of a lower bound on the data.
�

Now, the second problem for the identification of the uncertain
Hammerstein model is to obtain the set of parameters H and P as
defined in Eqs. (4) and (5) from the bounds on the � parameters (Eq.
(17)). This can be posed as Problem 2.

Problem 2. Given the set � of parameters � ∈ � m×nNM defined as
Eq. (17), determine the set of parameters H and P such that

P ⊗ H ⊃ � (22)

where the set P ⊗ H is defined as

P ⊗ H={� : � ∈ �m×nNM, �=[h1p, h2p, . . . , hMp]T ; p ∈ P; h ∈ H} (23)

The bilinear relationship between the unknown parameters
is typical of Hammerstein models (Falugi et al., 2005; Gómez &
Baeyens, 2004). Note that we  are looking for a set of parameters H
and P such that they justify the set �.  The physical system (which
has known structure but unknown parameters) is excited by the
input sequence u(k), and gives out y(k). In a first step identifica-
tion, the set � is obtained. As robust identification is performed,
the set of outputs generated using the input process data u(k) and
the identified �,  will include the real collected outputs. In a second
step, and based on the set �,  the set P ⊗ H is determined. The pro-
posed robust identification method is conservative and, as a result,
the output set obtained with P ⊗ H will contain the previous one
(i.e., the one generated by means of �).

Now, considering the expression for � from Eq. (15) and the
bounds �l and �u, it is possible to compute the bounds on the
parameters of the Hammerstein models hl, hu, pu and pl.

To proceed, let us consider the following partition of vector �:

�
	=[�1; . . . ; �N; . . . ; �NM] (24)

where

�N(i−1)+j
	=(hi pj)

T ∈ �m×n (25)

for j = 1, . . .,  N; and i = 1, . . .,  M.
Then, a solution to Problem 2 is provided by means of the fol-

lowing theorem.

Theorem 3. The bounds hl, hu, pl, pu for the uncertain parameters h
and p can be computed by solving the following optimization problem:

M∑ n∑ m∑

i=1 j=1 k=1

+ (1 − ˛)
N∑

i=1

n∑
j=1

n∑
k=1

([pu
i ]

j,k
− [pl

i]j,k
) (26)
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ubject to

h1
i (z, 1 : n) p1

j (1 : n, w))
T ≥ �u

N(i−1)+j(w, z) (27)

h2
i (z, 1 : n) p2

j (1 : n, w))
T ≤ �l

N(i−1)+j(w, z) (28)

l
j ≤ p1

j ≤ pu
j (29)

l
i ≤ h1

i ≤ hu
i (30)

l
j ≤ p2

j ≤ pu
j (31)

l
i ≤ h2

i ≤ hu
i (32)

ith j = 1, . . .,  N; i = 1, . . .,  M;  w = 1, . . . , n; z = 1, . . .,  m, where the
arameter  ̨ ∈ (0, 1) is a selected factor which allows to distribute
he weight of the uncertainty between the linear and the nonlin-
ar blocks. The formulation in Eqs. (26)–(32) is the mathematical
tatement which brings the solution to Problem 2.

roof. Through the statement and solution to Problem 1 robust
dentification of parameters � was accomplished. This gives out the
ower and upper bounds �l

i
and �u

i
. By definition in Eq. (25) we have

N(i−1)+j = (hi pj)T for j = 1, . . .,  N and i = 1, . . .,  M.  Based on these partial
esults, we want now to find the best bounds for the original param-
ters of the Hammerstein model (i.e., h and p). The conservative
riterion stated in Eq. (22), gives rise to the following constraints:

u
N(i−1)+j ≤ ((hipj)

T )
u
, i = 1, . . . , M;  j = 1, . . . , N (33)

l
N(i−1)+j ≥ ((hipj)

T )
l
, i = 1, . . . , M;  j = 1, . . . , N (34)

ue to the bilinearity in hp,  and the possible presence of negative
lements, the right terms in (33) and (34) can be found in the set
enerated by the combinatory of the individual bounds on pj and hi.
his fact was considered by including two auxiliary set of variables
n the optimization problem: h1,h2,p1 and p2.

Therefore, the constraints of Eqs.(27)–(32) ensures the satisfac-
ion of Eqs.(33) and (34). �

Consequently, the general formulation of the robust identifica-
ion problem results in a nonlinear optimization one. In this way,
nding the solution to Problem 2 could be burdensome as well as
ime-consuming.

Note that the step 1 of the proposed technique could be applied
or robust identification of memory polynomial models (Morgan,

a,  Kim, Zierdt, & Pastalan, 2006).

.3. Remarks

The previous examples illustrate how the identification
pproaches herein introduced are accomplished. Note that the pro-
osed identification method for the uncertain Hammerstein model

nvolves a two-step procedure. In a first stage, nominal parame-
ers are determined by solving a Linear Programming (LP) problem
hich involves a number of restrictions proportional to the num-

er of collected process data. Based on these results, bounds for
he original model’s parameters are calculated in a second stage.
he main advantage of this approach is that the first step allows a
ubstantial reduction of the optimization problem which is accom-
lished at the time of the LP step. Then, the nonlinear optimization
roblem, which is solved in a second step, is a reduced one. Oth-

rwise, the NL optimization would include as many constraints
s process data. This would be the drawback of formulating the
ncertain model identification problem as a one-step nonlinear
ptimization one.
Fig. 5. Measured outputs and Wiener model predictions.

3. Case of study: distillation column

This section presents a example to illustrate the application of
the proposed methodology. For this purpose, a distillation column
has been selected. Distillation is the most common unit opera-
tion in the chemical industry. Its relevance and its complex nature
have been the main reasons for being a favorite subject in process
systems engineering field. As regards both modeling and control,
distillation columns have been the focus of many research work.

Column A studied by Skogestad and Morari (1988) and
Skogestad and Postlethwaite (2007) was selected to illustrate the
proposed identification methodology for both Wiener and Ham-
merstein models. The motivation to study the identification of a
distillation column using block oriented models is that there are
used in the literature to model this process equipment.

In this case the LV control structure is used. The input u(k) = [L V]T

is a vector formed by the reflux and the boilup flows, respectively.
On the other hand, the output y(k) = [xD xB]T is a vector formed by
the liquid composition in the distillate product and the liquid bot-
tom composition, respectively. Therefore, a two  input–two output
process is considered for the identification.

3.1. Wiener model identification

To accomplish the identification a Wiener model formed by a
Laguerre system in cascade with a polynomial-type nonlinearity
was considered. Two Laguerre terms with dominant poles in −0.50
and −0.85 were assumed for the linear block. A second order poly-
nomial was  proposed for the nonlinear block. Therefore, M = 2 and
N = 2.

Provided the Wiener model description given in Eqs. (1) and (2),
and based on a set of input/output data of the process, it is possi-
ble to obtain a nominal model by minimizing a quadratic criterion
(Gómez & Baeyens, 2004). Fig. 5 shows the suitability of the pro-
posed Wiener structure for modeling the distillation process herein
considered.

Otherwise, Fig. 6 illustrates the approximation achieved when
only the Laguerre structure is considered as the process model.
Therefore, the improvement due to the inclusion of a nonlinear
block justifies the use of a Wiener model.

However, the proposal of this work is to perform a robust iden-

tification. The solution of the optimization problem in Eqs. (7)–(9)
brought the results shown in Table 1. The structural identifiability
constraint p1,1 = 1 and the design parameter  ̨ = 0.6 were specified.
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Fig. 6. Measured outputs and Laguerre model predictions.

Table 1
Wiener model parameters. (i, j), k means output i, input j and order k.

Parameter Lower bound Upper bound

h(1,1),1 −0.1651 0.0770
h(1,1),2 0.0042 0.0827
h(1,2),1 −0.1594 −0.1594
h(1,2),2 0.0156 0.1339
p(1,1),1 1.0000 1.0000
p(1,1),2 −1.6255 −1.2263
p(1,2),1 −21.5726 −21.5726
p(1,2),2 −52.8544 −52.8544
h(2,1),1 −0.0392 0.1692
h(2,1),2 −0.1050 0.0385
h(2,2),1 0.0295 0.0635
h(2,2),2 −0.0952 −0.0641
p(2,1),1 −0.8929 −0.6080
p(2,1),2 21.2114 21.2133

i
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In a first step, Problem 1 was solved. For this purpose, the prob-
lem stated in Eqs. (19)–(21) was worked out. The optimization
results for � parameters are shown in Table 2. In a second step,

Table 2
Hammerstein model parameters � (Problem 1).

Lower bound Upper bound

−2.3672 −2.3672
−1.7644 −1.7644
−7.6712 −7.6712
p(2,2),1 1.0000 1.0000
p(2,2),2 30.6502 30.6521

Figs. 7 and 8 depict the bounds on the sets Vu and Vy. As described
n Section 2.1,  the solution approach requires that Vu ∈Vy /= ∅,  and

igs. 7 and 8 show this restriction holds in this example for both
ntermediate signals (v1 and v2).
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Fig. 7. Bounds on v1.
Fig. 8. Bounds on v2.

3.2. Hammerstein model identification

In this case, the same distillation process is represented as a
Hammerstein model. A polynomial-type nonlinearity in cascade
with a Laguerre system was assumed for the Hammerstein struc-
ture. Two Laguerre terms with dominant poles in −0.50 and −0.85
were considered for the linear block. A second order polynomial
was proposed for the nonlinear block. Therefore, M = 2 and N = 2.
79.5578 79.5578
0.4629 0.4629
0.3246 0.3246
1.1981 1.1981

−12.3544 −12.3544
−6.3990 −6.3990

4.9344 4.9344
−20.7335 −20.7335
−3.3954 −3.3954

1.2374 1.2374
−0.9590 −0.9590

3.2526 3.2527
0.4874 0.4874
1.9557 1.9557
0.8331 0.8331

10.8939 10.8939
−38.2317 −38.2317
−0.3348 −0.3348
−0.1414 −0.1414
−1.7174 −1.7174

5.9370 5.9370
5.2874 5.2874

−3.7196 −3.7196
29.4466 29.4466

−21.3731 −21.3731
−0.9192 −0.9192

0.6698 0.6698
−4.6341 −4.6339

3.3475 3.3475
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Table  3
Hammerstein model parameters H and P (Problem 2).

Parameter Lower bound Upper bound

h1,1,1 −0.0322 −0.0070
h1,1,2 −0.0589 −0.0253
h1,2,1 −0.0505 −0.0286
h1,2,2 −0.0151 −0.0607
h2,1,1 0.0087 0.0266
h2,1,2 0.0195 0.0837
h2,2,1 0.0594 0.0243
h2,2,2 0.0087 0.0183
p1,1,1 7.3561e+001 7.3561e+001
p1,1,2 1.3384e+003 1.3384e+003
p1,2,1 5.3286e+001 5.3286e+001
p1,2,2 2.4459e+002 2.4459e+002
p2,1,1 5.6495e+002 5.6495e+002
p2,1,2 3.5196e+002 3.5196e+002
p2,2,1 6.3328e+001 6.3328e+001
p2,2,2 1.8288e+002 1.8288e+002
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Fig. 9. Measured outputs and Hammerstein model bounds.

roblem 2 was solved to obtain the bounds for Hand P. These values
re shown in Table 3.

Fig. 9 depicts both measured outputs (xD and xB) as well as

he lower and upper bounds predicted by the robust Hammerstein

odel previously identified. Note that in both cases, the measured
utputs are enclosed inside the bounds region.
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Fig. 10. Bounds on the model parameters.
Fig. 11. Measured outputs and Hammerstein model bounds (for physical con-
straints).

Fig. 10 shows the bounds obtained by solution of Problem 1 (i.e.,
bounds on �)  as well as the bounds for H and P (i.e., solution of
Problem 2).

However, from inspection of Fig. 9 it is clear that the estimated
bounds extend outside the admissible output limits (i.e., y ≤ y(k) ≤
y, with y = 0 and y = 1). This fact can be taken into consideration
by adding the following constraints to the optimization problem
formulated in Eqs. (19)–(21):

[(�l)
T
, (�u)T ]˚k ≤ 1; k = 1, . . . , K (35)

[(�u)T , (�l)
T
]˚k ≥ 0; k = 1, . . . , K (36)

The robust model identified in this way  gives the new bounds
shown in Fig. 11.

Fig. 12 shows the recalculated bounds for � (see values in
Table 4), as well as the bounds for H and P (parameters in Table 5).
These are the new results obtained when admissible values for xD

and xB are taken into account. It should be remarked that including
these physical constraints on the output limits makes the uncer-
tainty bounds increase.

From Table 3 and Fig. 10,  it can be deduced that the lower and

upper bounds on � have only slight differences. However, these
small differences cause substantial differences in the bounds deter-
mined for H. The parameters P does not present disparity between
their bounds.
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Fig. 12. Bounds on the model parameters (for physical constraints).
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Table  4
Parameters � (Problem 1, with physical constraints).

Lower bound Upper bound

−2.0028e+002 −2.0028e+002
−1.4862e−001 −1.4862e−001
4.4008e+002 4.4008e+002
3.4944e+000 3.4944e+000
1.1023e+000 1.1023e+000
−2.5593e−003 −2.5593e−003
3.2030e+001 3.2030e+001
−5.0002e−001 −5.0002e−001
6.5466e+001 6.5466e+001
4.9428e+000 4.9428e+000
−2.1026e+002 −2.1026e+002
4.9316e+001 4.9316e+001
1.2051e+000 1.2051e+000
−9.2335e−001 −9.2335e−001
−4.4605e+000 −4.4603e+000
−7.7016e+000 −7.7016e+000
−1.0749e+003 −1.0749e+003
8.0539e−001 8.0539e−001
−1.1514e+003 −1.1514e+003
−3.9772e+001 −3.9772e+001
−1.0243e+003 −1.0243e+003
−1.1647e−001 −1.1647e−001
4.1168e+002 4.1168e+002
6.1917e+000 6.1917e+000
4.0420e+002 4.0420e+002
−3.8799e+000 −3.8799e+000
4.7442e+002 4.7442e+002
−3.6007e+001 −3.6007e+001
3.7785e+002 3.7785e+002
6.8861e−001 6.8861e−001
−1.5992e+002 −1.5992e+002
5.6266e+000 5.6266e+000

Table 5
Recalculated Hammerstein model parameters H and P (with physical constraints).

Parameter Lower bound Upper bound

h1,1,1 −2.7531e−001 4.4607e−001
h1,1,2 −3.3639e−001 2.0934e−001
h1,2,1 −3.9574e−004 2.7809e−004
h1,2,2 −1.6449e−002 2.2897e−002
h2,1,1 −4.0949e−001 2.8240e−001
h2,1,2 −2.7875e−001 4.1481e−001
h2,2,1 −6.3335e−003 5.0906e−003
h2,2,2 −1.4182e−002 8.1610e−003
p1,1,1 1.2498e+003 1.2499e+003
p1,1,2 5.6735e+003 5.6735e+003
p1,2,1 5.7261e+003 5.72616e+003
p1,2,2 1.2024e+003 1.2024e+002
p2,1,1 3.7456e+002 3.7460e+002
p2,1,2 2.5081e+003 2.5081e+003

p
H

4

a
W
d
s

a
i
W
r

p2,2,1 2.1526e+003 2.1526e+003
p2,2,2 5.6614e+002 5.6617e+002

Therefore, we conclude that for this MIMO  case study, the pro-
osed robust Wiener model is a better description than the robust
ammerstein structure.

. Conclusions

Block oriented models are appealing descriptions for multiple
pplications in many fields. In particular, identification of MIMO
iener and Hammerstein models has been dealt with in this work

ue to the wide acceptance and applicability these systems have
hown.

Noniterative algorithms for the identification of both Wiener

nd Hammerstein uncertain models have been presented. A bound-
ng procedure has been proposed for the identification of uncertain

iener and Hammerstein parametric models. The approach allows
obust identification, in the sense that the whole set of data can be
ical Engineering 35 (2011) 2867– 2875

reproduced by the family of models which is obtained. The suit-
ability of the proposed identification methods has been illustrated
through the example of a 82 states distillation column.
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