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Abstract: Soil microbial communities are essential in the cycling of nutrients that affect crop
production. Our goal was to characterize the microbial community structure following 34 years of
nitrogen (N) fertilization treatments in continuous maize production in highly fertile soils. Using 16S
rRNA gene-based analysis of the V4 region via Illumina HiSeq2500 technology with downstream
bioinformatics processing and analysis with QIIME 2.0, we aimed to characterize the prokaryotic
communities under three increasing N fertilization rates. Factor analyses indicated that a high N
level decreased the diversity of soil bacterial and archaeal communities and altered the relative
abundance (RA) of the dominant (>1% RA) and minor (<1% RA) phyla. Among the 12 major phyla,
we determined increases in Gemmatimonadetes, Proteobacteria, and Euryarchaeota, accompanied
by reductions in Cyanobacteria, Chloroflexi, Firmicutes, and Planctomycetes with increasing N.
Within the 29 minor phyla, N fertilization led to increases in Aquificae, WPS2, Parvarchaeota, AD3,
FCPU426, Armatimonadetes, TM7, Chlamydiae, and OD1, along with reductions of Nitrospirae,
WS3, Tenericutes, Lentisphaerae, OP3, Synergistetes, Thermotogae, and prokaryotes that could not
be reliably assigned to a phylum (classified as Other).
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1. Introduction

Nitrogen fertilizers have been a major contributor to the impressive crop yield increases realized
since the 1950s [1], widely used to maintain soil fertility and crop productivity [2]. Soil microbial
communities provide many benefits including assimilation of nutrients, plant disease resistance, and
stabilization of the soil ecosystem [3,4]. In agronomic systems, these functions positively shift the soil
quality and productive capacity over the long term [5]. Therefore, investigating the effects of nitrogen
(N) fertilizers on soil microbial communities is of vital importance due to the critical part that microbes
play in biochemical processes. Nitrogen additions directly affect plant residue quantity, quality, and
rate of decomposition, thus shifting soil nutrient content [6] which can influence the size, structure,
and function of microbial communities. Modern approaches, using phylogenetic surveys of bacteria
employing universal primers, allow for characterization and comparison of the microbial diversity in
different soil environments as well as the comparative analysis of changes in community structure due
to management practices [7,8]. Although numerous studies have examined the influence of N fertilizer
on the soil microbiome [9–12], most of these studies compared responses to organic and inorganic
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fertilizers; only a few studies examined the response of the soil microbiome to increasing N fertilizer
rates in an agroecosystem [11,13–17].

Changes in nutrients and type of fertilizer (mineral vs. organic) can cause a shift in
bacterial communities in soils subjected to fertilization, favoring more active, copiotrophic microbial
communities [14,18]. Intensive agricultural management practices, including fertilization levels, are
generally considered to lead to simpler, less diverse, soil food webs [19] with varied impact on microbial
biomass [20,21]. Therefore, nitrogen enrichment, as shown in many experiments [22], usually leads to
declines in microbial community diversity and species richness. In addition to diversity, phylogenetic
shifts of the soil microbial community have also been observed in response to N fertilization [14]. In a
recent meta-analysis, Geisseler and Scow [20] researched these influential factors using a dataset based
on 64 long-term field trials from across the world. Urea or ammonium salts were the most commonly
used fertilizers and the durations of these trials ranged from 5 to 130 years, while the N fertilization
rates ranged from 10 to 650 kg N/ha, averaging 136 kg N/ha. The authors concluded that long-term
repeated mineral N applications can alter microbial community composition.

Well-maintained long-term field experiments can provide insights into the long-term effects of
agricultural practices on soil properties [23]. Field trials of N fertilization rates on continuous corn
in this study were established in 1981, which presents a unique opportunity to characterize the bulk
soil microbiome and to test whether microbial shifts occur under increasing N fertilization levels.
An improved understanding of the microbial community can help translate beneficial effects on the
soil environment such as reducing nitrate runoff and greenhouse gas emission [24,25], into actionable
practices. However, baseline characterization of the soil biological component and microbial shifts
under N fertilization is currently lacking in Illinois. Therefore, the objective of this study was to
characterize the prokaryotic community structure under long-term N rates applied to continuous corn
plots using DNA sequencing and bioinformatics analyses.

2. Materials and Methods

2.1. Site Descriptions and Soil Sampling

The detailed set up for this field trial was described previously [25]. This study was established
in 1981 at the Northwestern Illinois Agricultural Research and Demonstration Center in Monmouth,
IL (40◦90′ N, 90◦73′ W) to study the effects of N fertilization on crop yields. The soils are Muscatune
series (fine-silty, mixed, superactive, mesic, Aquic Argiudolls) with surface soil being usually dark,
greyish brown and granular in structure. The field trial consisted of three N fertilization rates (0, 202,
and 269 kg N/ha) in continuous corn (CCC) arranged in a randomized complete block design (RCBD)
with three replications. These rates represent the current average (202 kg N/ha) annual application of
N and what can be considered an overapplication of N (269 kg N/ha) for continuous corn production.
Total experimental units include 3 × 3 = 9 plots. The main plots in this trial were 12 m × 9 m. We
continued the agronomic practices that have been in use in this long-term trial [25]. Tillage consists of
primary tillage with a chisel plow 20–25 cm deep in the fall after harvest, and secondary tillage with a
field cultivator before planting in the spring. Corn is planted in April or early May each year, in 76-cm
rows at a density of about 75,000 seeds/ha. The N fertilizer at 0, 202, and 269 kg N/ha rates for corn
was injected at 10–15 cm depth before planting using urea ammonium nitrate solution (28% N). Weed
control was achieved by using recommended rates and timing of appropriate herbicides along with
hand weeding if necessary. Plots were maintained weed free during the study period.

Soil sampling of this study was conducted immediately after harvest and before fall tillage in
2015, following 34 years of N rate treatments in the same plots each year. Three composite subsamples
(~500 g each) per plot were collected to 10 cm depth using an Eijkelkamp grass plot sampler. Each
composited subsample was collected walking in a zig-zag pattern and contained about 10 pushes of
the soil sampler probe. Samples were preserved with ice packs in the field, and frozen to −20 °C upon
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arrival to our lab facilities. Results from laboratory analyses and determinations were averaged to get
one value per plot per block, thus n = 3 for each N rate treatment.

2.2. Soil Characterization

After determining gravimetric water content for each soil sample, field moist soil was analyzed
for available N, NO3

−, and NH4
+ (mg/kg) using KCl extraction (1:5 ratio). Concentrations of NH4

+

and NO3
− from soil extracts (1 M KCl) were measured colorimetrically by flow injection analysis with

a Lachat Quick-Chem 8000 (Lachat Quickchem Analyzer, Lachat Instruments, Loveland, CO, USA).
Soil samples were then air-dried, sieved (<2 mm), and sent to a commercial laboratory (Brookside
Laboratories, Inc., New Bremen, OH, USA). Cation exchange capacity (CEC, cmol/kg) was determined
by the summation method of exchangeable cations (Ca2+, Mg2+, K, Na, and H+); soil organic matter
(SOM, %) by loss on ignition; and soil pH (1:1, soil:water) with potentiometry.

2.3. Soil DNA Extraction, qPCR, and Sequencing

Total genomic DNA from the soil samples was extracted employing the Power Soil DNA isolation
kit (MoBio Inc., Carlsbad, CA, USA) from 0.25 g of the composited soil samples, with the soils
carefully homogenized before subsampling. The extracted DNA quantity and quality were checked
with a Nanodrop 1000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA) following the
manufacturer’s protocol. The extracted DNA samples were stored at −20 ◦C until analysis. An
amplicon library with individual barcodes for each sample and compatible with the Illumina HiSeq
was constructed. To build the amplicon library, 25 µL PCR reactions were performed using a BioRad
T100 thermal cycler in 25 µL volumes with 1× buffer (GoTaq® Flexi buffer; Promega Corp.), with the
following composition: 2.5 mM MgCl2, 200 µM dNTPs, 0.4 µM each primer (forward and reverse),
1.0 µL template DNA (pooled amplicons), and 1.0 unit of GoTaq polymerase. PCR parameters were:
initial denaturation at 95 ◦C for 10 min, followed by 34 cycles of amplification (45 secs at 95 ◦C; 45 s at
58 ◦C; 45 s at 72 ◦C), and a final extension at 72 ◦C for 10 min. PCR products were visualized on a
1.3% agarose gel containing GreenGlo™ Safe DNA dye (Denville Scientific, Inc. Metuchen, NJ, USA)
under UV illumination. The 16S rRNA gene (V4 region) was amplified using the primer set 515F
(GTGYCAGCMGCCGCGGTAA) and 806R (GGACTACNVGGGTATCTAAT) [26]. The primers were
designed as 5′-PCR-specific + gene region + 3′-PCR-specific + 10 nt barcode and the Fluidigm platform
utilized two primer sets simultaneously to create the final DNA amplicon.

The resulting amplicon libraries were quantitated with a Qubit Fluorometer and run on a
bio-analyzer to evaluate the profile of fragment lengths. The barcoded libraries were pooled in
equimolar concentrations and diluted to 10 nM. The diluted libraries were sequenced at the Roy Carver
Biotechnology Center Functional Genomics lab at the University of Illinois at Urbana-Champaign
(Urbana, IL, USA) using paired-end sequencing on the Illumina HiSeq2500 (Illumina, San Diego, CA,
USA) in rapid mode yielding reads 250 nt in length.

2.4. Bioinformatic Analysis

The prokaryotic community composition and diversity were analyzed using the V4 region of 16S
rRNA gene sequences. Quality control of the paired-end sequences included trimming of low-quality
bases at the extreme of the sequences and filtering of sequences that had an average PHRED quality
score <20, sequence length <200 nt or >800 nt, presence of ambiguous nucleotides, primer mismatch,
and errors in the barcode. The primers on both forward and reverse reads were trimmed using the
software Trimmomatic-0.36 [27]. The overlapping paired-end reads were joined using the fastq-join
program [28]. The quality of reads was assessed using FASTQC. The chimera checking of the sequences
was performed with USEARCH v5.2 [29] using GOLD as a reference database [30] and sequences
identified as chimeric were filtered. The high-quality sequences were assigned to samples according to
the barcodes. Sequences were clustered into operational taxonomic units (OTUs) using open reference
OTU picking at 97% similarity threshold and clustered against the Greengenes 16S rRNA database [31].
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The most abundant sequence of each OTU served as a representative sequence and was aligned
using the Python Nearest Alignment Space Termination (PyNAST) algorithm with a minimum 80%
identity [32]. Annotation of the taxonomic unit to representative OTU was based on classifications
from the Ribosomal Database Project (RDP) and an OTU table was generated. Downstream processing
of sequences was completed using the python programs built in the QIIME (Quantitative Insights into
Microbial Ecology) pipeline v1.9.1 [33]. The rarefaction plot of the three treatments was generated
following the QIIME tutorial protocols. The generated OTU table was rarefied to an even depth (135,639
sequences per sample) using the single_rarefaction.py script, thus all samples were retained for further
analyses. The OTUs with a number of sequences <0.005% of the total number of sequences were
discarded using filter_otus_from_otu_table.py script. Alpha diversity metrics including chao1 [34],
Shannon’s index, Abundance-Based Coverage Estimator (ACE) and Fisher’s alpha [35] were extracted
using alpha_diversity.py in the QIIME pipeline and compared among N fertilization rates as detailed in
the statistical analysis subsection. To assess overall variation in community structure among treatments
(i.e., beta-diversity), rarefied data from metabarcoding profiles were subjected to multivariate analysis
using weighted UniFrac distances [36]. Ordination was performed using a principal coordinate analysis
(PCoA) through_plot.py script in the QIIME pipeline to create data visualization of the relationships
between samples from three increasing N fertilization rates. Non-parametric testing of beta diversity
was performed employing jackknife resampling based on 5000 sequences per sample. A permutational
multivariate analysis of variance using distance matrices to assess beta diversity was conducted in
ADONIS (R built in to compare categories.py in the QIIME pipeline) [37].

2.5. Statistical Analysis

Linear mixed models were fit to each of the measured soil properties of pH, CEC, SOM, and
available N forms using PROC GLIMMIX in SAS 9.4 (SAS Institute Inc., 2012); using the N rates and
block factors as fixed and random terms, respectively. To analyze the prokaryotic community changes
under increasing N fertilization rates, we deployed multivariate techniques followed by linear mixed
models in SAS. The data set included 41 variables, which represented the relative abundances (RA,
%) of each phylum extracted with the bioinformatics pipeline. Pearson’s correlation coefficients were
calculated using the CORR procedure in SAS to explore the correlation among soil prokaryotes (data
not shown). Correlations between variable pairs were found to be >|0.3| (moderate to high range) in
most cases which indicated the need to deploy a data reduction technique such as principal component
analysis (PCA) to avoid problems of multicollinearity by compiling the information into a new smaller
set of uncorrelated variables. PCA was performed using the PROC FACTOR procedure with the priors
= 1 option [38]. The analysis resulted in 13 principal components (PCs) with eigenvalues >1 together
explaining 88% of the variability of the data set. Only those PCs that in addition explained >5% of
the variability were included in subsequent analyses. Next, linear mixed models were fit to the PCs
extracted using PROC GLIMMIX to evaluate the effect of N fertilization rates on the RA of the main
phyla now summarized within the PCs. Blocks were considered a random effect and N rates as fixed
effects. When appropriate, least square means were separated using the lines option of the lsmeans
statement, setting the probability of Type I error at 0.05(α). Figure 3 was built in Sigma Plot 12.5 (Systat
Software, Inc.) plotting the standard error of treatment means as inferential error bars [39].

3. Results

3.1. General Surface Soil Properties

Table 1 shows the results for the general soil characteristics of pH, CEC, SOM, and available N
forms (NO3

− and NH4
+) under continuous corn production and in response to increasing N fertilization

rates following 34 years of treatments. Results showed a gradual and statistically significant reduction
in soil pH with increasing N fertilization rates, with a parallel increase in CEC. Soil organic matter
(SOM) was not found to be affected by N additions, yet both available N forms showed statistically
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significant responses to fertilization. Nitrate levels (NO3
−) increased under the maximum N rate with

no statistical differences detected between the 0 and the 202 kg N/ha fertilization rates. On the other
hand, NH4

+ concentration showed a gradual increase with increasing N rates.

Table 1. General surface soil characteristics following 34 years of nitrogen (N) fertilization at rates
of 0, 202, and 269 kg N/ha. Values represent treatment means of pH, cation exchange capacity (CEC,
cmol/kg), soil organic matter (SOM, %), and available N forms (NO3

− and NH4
+, mg/kg). Probability

values for the analysis of variance (ANOVA) for the effects of N fertilization rates (N rate, kg N/ha) are
shown below for each variable. Within a column, values followed by the same letter are not significantly
different from each other (α = 0.05).

N Rate
(kg N/ha) pH CEC

(cmol/kg)
SOM
(%)

NO3−

mg/kg
NH4

+

mg/kg

0 6.33 a 18.96 b 3.62 a 11.01 b 2.71 b
202 6.04 ab 19.93 ab 3.93 a 12.63 b 3.68 ab
269 5.42 b 22.51 a 3.98 a 24.47 a 4.28 a

p-value 0.0178 0.0490 0.2414 0.0045 0.0480

3.2. Sequencing Summary

After the elimination of low-quality sequences using Trimmomatic and chimeras using USEARCH,
a total of 6,459,949 bacterial 16S rRNA sequences were obtained with a range of 107,802 to 350,409 and
a mean of 239,257 sequences per sample. To measure the quality and sufficiency of sequences in the
samples of each treatment, a rarefaction plot was generated (Figure 1). In this study, all rarefaction
curves tended to approach the saturation plateau indicating that only the rarest species remained to be
sampled, and thus the sequences obtained were enough to capture the diversity information of the
prokaryotic community within our samples.
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Figure 1. Rarefaction curves of the different soil DNA samples analyzed through Illumina HiSeq. The
number of operative taxonomic units (OTUs) of prokaryotes is indicated for an increasing sampling
effort (“sample size”) under each N rate treatment. Error bars are standard errors of treatment means
at each increasing sampling effort; since all subsamples are considered in the creation of these plots, n =

9 for each fertilization rate.

3.3. Soil Prokaryotic Community Diversity

After the upstream bioinformatics analysis, a rarefied and filtered OTU table was generated
using QIIME (data not shown). Table 2 shows the observed OTUs, phylogenetic diversity, and other
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estimators of alpha diversity and richness of the soil prokaryotic community. Statistically significant
reductions were determined in the number of observed OTUs and all richness (Chao1 richness estimate
and ACE diversity index) and diversity (phylogenetic diversity (PD), Fisher’s alpha, and Shannon’s
diversity) parameters at the highest fertilization level (269 kg N/ha) compared to the parameters
calculated from the control (0 kg N/ha) and the intermediate rate of 202 kg N/ha (Table 2).

Table 2. Alpha diversity metrics for soil DNA samples following 34 years of N fertilization at rates of 0,
202, and 269 kg N/ha. Values represent treatment means of observed OTUs, phylogenetic diversity
(PD), Chao1 richness estimate (Chao1), and Shannon’s, Abundance-Based Coverage Estimator (ACE),
and Fisher’s alpha diversity indexes. Probability values for the analysis of variance (ANOVA) for the
effects of N fertilization rates (N rate) are shown below for each variable. Within a column, values
followed by the same letter are not significantly different from each other (α = 0.05).

N Rate
(kg N/ha)

Observed
OTUs PD Chao1 Shannon’s ACE Fisher’s

0 2258 a 122.0 a 2379 a 10.00 a 2340 a 420.3 a
202 2245 a 120.8 a 2367 a 9.93 a 2336 a 414.0 a
269 2055 b 111.7 b 2191 b 9.62 b 2151 b 370.3 b

p-value 0.0193 0.0034 0.0385 0.0007 0.0274 0.0102

To characterize the overall effect of N rates on the beta diversity of the total bacterial phyla, PCoA
was applied to calculate the pairwise distances between the communities at 0, 202, and 269 kg N/ha N
fertilization levels. The results of PCoA are shown in Figure 2 demonstrating a contrasting separation
between the three N fertilization levels.

Agronomy 2019, 9, x FOR PEER REVIEW 6 of 16 

 

parameters calculated from the control (0 kg N/ha) and the intermediate rate of 202 kg N/ha (Table 
2). 

Table 2. Alpha diversity metrics for soil DNA samples following 34 years of N fertilization at rates of 
0, 202, and 269 kg N/ha. Values represent treatment means of observed OTUs, phylogenetic diversity 
(PD), Chao1 richness estimate (Chao1), and Shannon’s, Abundance-Based Coverage Estimator (ACE), 
and Fisher’s alpha diversity indexes. Probability values for the analysis of variance (ANOVA) for the 
effects of N fertilization rates (N rate) are shown below for each variable. Within a column, values 
followed by the same letter are not significantly different from each other (α = 0.05). 

N Rate  
(kg N/ha) 

Observed 
OTUs PD Chao1 Shannon’s ACE Fisher’s 

0  2258 a 122.0 a 2379 a 10.00 a 2340 a 420.3 a 
202  2245 a 120.8 a 2367 a 9.93 a 2336 a 414.0 a 
269  2055 b 111.7 b 2191 b 9.62 b 2151 b 370.3 b 

p-value 0.0193 0.0034 0.0385 0.0007 0.0274 0.0102 

To characterize the overall effect of N rates on the beta diversity of the total bacterial phyla, 
PCoA was applied to calculate the pairwise distances between the communities at 0, 202, and 269 kg 
N/ha N fertilization levels. The results of PCoA are shown in Figure 2 demonstrating a contrasting 
separation between the three N fertilization levels. 

 
Figure 2. Principal coordinate analysis (PCoA) plots based on weighted UniFrac distances generated 
for the soil 16S rRNA gene sequences from samples under each N rate treatment: 0 kg N/ha (red 
squares), 202 kg N/ha (blue circles), and 269 kg N/ha (orange triangles). 

The three axes of the PCoA respectively explained 26.81%, 5.66%, and 4.50% of the total variance. 
Furthermore, the results of the permutational multivariate analysis of variance using weighted 
UniFrac distance matrices showed that the increasing N fertilization levels had a significant effect on 
the dispersion of beta diversity within the soil archaeal and bacterial communities (R2 = 0.34, p < 
0.001). 

3.4. Soil Prokaryotic Community Composition 

Forty-one different phyla including three archaea phyla were identified from the samples. The 
community structure expressed as relative abundances (RA, %) of the 41 phyla following 34 years of 
N fertilization at 0, 202, and 269 kg N/ha is shown in Table 3 and 4. Table 3 shows those phyla with 
>1% RA (12 groups) together accounting for about 95% of the total OTUs. Ordered from highest to 
lowest abundance, Table 4 shows the remaining 29 phyla detected in our samples that had <1% RA 
and accounted for the remaining 5% of the RA. 

Figure 2. Principal coordinate analysis (PCoA) plots based on weighted UniFrac distances generated
for the soil 16S rRNA gene sequences from samples under each N rate treatment: 0 kg N/ha (red
squares), 202 kg N/ha (blue circles), and 269 kg N/ha (orange triangles).

The three axes of the PCoA respectively explained 26.81%, 5.66%, and 4.50% of the total variance.
Furthermore, the results of the permutational multivariate analysis of variance using weighted UniFrac
distance matrices showed that the increasing N fertilization levels had a significant effect on the
dispersion of beta diversity within the soil archaeal and bacterial communities (R2 = 0.34, p < 0.001).

3.4. Soil Prokaryotic Community Composition

Forty-one different phyla including three archaea phyla were identified from the samples. The
community structure expressed as relative abundances (RA, %) of the 41 phyla following 34 years of N
fertilization at 0, 202, and 269 kg N/ha is shown in Tables 3 and 4. Table 3 shows those phyla with
>1% RA (12 groups) together accounting for about 95% of the total OTUs. Ordered from highest to
lowest abundance, Table 4 shows the remaining 29 phyla detected in our samples that had <1% RA
and accounted for the remaining 5% of the RA.
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Table 3. Mean values (mean), and standard errors of the means (SEM) of relative abundances measured
for the dominant taxa (>1% relative abundance (RA)) determined under each N fertilization rate (0,
202, and 269 kg N/ha) following 34 years of N treatments.

N Rate 0 202 269

Variable Mean SEM Mean SEM Mean SEM

Proteobacteria 29.02 0.84 31.96 0.72 34.90 0.82
Acidobacteria 17.45 0.81 16.56 0.60 15.76 0.76
Bacteroidetes 11.83 0.67 12.53 0.96 10.22 0.53

Actinobacteria 9.22 0.87 7.59 0.49 8.24 0.72
Chloroflexi 5.85 0.43 4.59 0.30 4.07 0.20

Verrucomicrobia 5.57 0.20 5.99 0.18 5.09 0.23
Gemmatimonadetes 5.19 0.36 6.02 0.28 7.23 0.31

Planctomycetes 4.26 0.08 4.03 0.11 3.60 0.12
Euryarchaeota 1.87 0.07 2.25 0.06 2.39 0.13
Crenarchaeota 1.74 0.18 1.43 0.10 1.56 0.17
Cyanobacteria 1.45 0.33 0.50 0.14 0.23 0.03

Firmicutes 1.25 0.06 1.05 0.07 0.92 0.07

Cumulative RA 94.70 94.50 94.21

Table 4. Mean values (mean), and standard errors of the means (SEM) of relative abundances measured
for the non-dominant taxa (<1% RA) determined under each N fertilization rate (0, 202, and 269 kg
N/ha) following 34 years of N treatments.

N rate 0 202 269

Variable Mean SEM Mean SEM Mean SEM

WS3 0.980 0.110 0.640 0.050 0.270 0.050
Nitrospirae 0.850 0.080 0.450 0.050 0.330 0.040

Armatimonadetes 0.580 0.050 0.780 0.090 0.810 0.060
Parvarchaeota 0.340 0.040 0.860 0.130 1.070 0.160

Aquificae 0.180 0.040 0.460 0.090 0.700 0.110
Tenericutes 0.621 0.037 0.441 0.048 0.274 0.032

Other 0.568 0.063 0.415 0.034 0.427 0.062
Elusimicrobia 0.292 0.046 0.334 0.041 0.324 0.045

Chlorobi 0.181 0.024 0.174 0.024 0.222 0.055
Spirochaetes 0.143 0.033 0.149 0.030 0.119 0.018
Fibrobacteres 0.083 0.029 0.115 0.079 0.062 0.015

OP3 0.075 0.019 0.034 0.010 0.026 0.006
AD3 0.072 0.031 0.212 0.057 0.327 0.061

Thermi 0.070 0.015 0.040 0.011 0.047 0.011
Lentisphaerae 0.070 0.024 0.004 0.002 0.001 0.001
Thermotogae 0.051 0.013 0.036 0.013 0.009 0.004

FCPU426 0.043 0.019 0.110 0.028 0.137 0.027
Synergistetes 0.033 0.009 0.011 0.003 0.004 0.003

WS2 0.019 0.009 0.007 0.003 0.001 0.000
BRC1 0.014 0.005 0.007 0.002 0.013 0.007
EM19 0.014 0.006 0.009 0.003 0.011 0.008
TM6 0.010 0.006 0.020 0.010 0.017 0.006
TM7 0.008 0.006 0.053 0.018 0.240 0.089

Deferribacteres 0.007 0.004 0.004 0.002 0.007 0.003
OD1 0.005 0.003 0.016 0.006 0.040 0.015

Chlamydiae 0.002 0.002 0.007 0.003 0.039 0.012
WPS2 0.002 0.001 0.105 0.026 0.219 0.048
OP11 0.001 0.001 0.007 0.004 0.019 0.012
OP8 0.001 0.000 0.006 0.003 0.018 0.008

Cumulative RA 5.32 5.50 5.78

Thus, Table 3 shows that members of the phyla Proteobacteria, Acidobacteria, and Bacteroidetes
dominated all treatment levels, with these three groups accounting for over 58% of the 94% total OTU
abundance, collectively represented by the 12 phyla listed therein. On the other hand, for the minor
groups listed in Table 4, the highest representation (1%–0.5% RA) within the 0 kg N/ha was determined
for WS3, Nitrospirae, and Armatimonadetes, together accounting for 2.4% of the remaining 5.3% total
OTUs. Phyla Parvarchaeota, Armatimonadetes, and WS3 were also within the top groups with an
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intermediate rate of N added (202 kg N/ha) and Aquificae appeared within the top three groups at the
highest N level (269 kg N/ha) following Parvarchaeota and Armatimonadetes.

To avoid issues of multicollinearity in our results we conducted a PCA on the relative abundances
of the 41 main phyla. The PCA on 41 variables rendered a set of 13 uncorrelated variables (PC 1 to PC
13) with eigenvalues larger than 1 that explained about 88% of the variability contained in the main
phyla database. Only the initial five PCs extracted by this technique contributed more than 5% of
explained variance and are thus presented in Table 5.

Table 5. Principal component analysis results for the identified soil prokaryotic taxa showing eigenvalues
and cumulative proportion of the variability explained by each of the five principal components (PCs)
extracted with eigenvalues >1 and explaining >5% of the data set variability. Component correlation
scores (eigenvectors) with loadings greater than |0.5| are in bold. Probability values for the analysis of
variance (ANOVA) for the effects of N fertilization rates (N rate) are shown below for each extracted PC.

PC1 PC2 PC3 PC4 PC5

Eigenvalue 11.99 3.81 3.37 2.75 2.55
Cum. Proportion 0.29 0.39 0.47 0.53 0.60

Microbial group Eigenvalues

Acidobacteria 0.1 0.0 0.5 0.3 0.4
Actinobacteria 0.2 −0.1 −0.9 0.1 −0.2

AD3 −0.7 −0.5 0.0 0.0 0.0
Aquificae −0.8 −0.5 0.0 0.1 −0.1

Armatimonadetes −0.6 −0.1 −0.2 0.3 −0.3
Bacteroidetes 0.4 −0.1 0.3 −0.6 −0.3

BR−C1 0.2 0.3 0.0 0.2 −0.2
Chlamydiae −0.6 0.6 −0.1 0.1 0.1

Chlorobi −0.2 0.7 0.1 0.0 0.1
Chloroflexi 0.7 0.1 −0.6 0.1 0.3

Crenarchaeota 0.4 0.2 0.2 0.5 −0.4
Cyanobacteria 0.7 0.0 −0.3 0.0 −0.1
Deferribacteres 0.1 0.4 0.2 0.3 −0.2
Elusimicrobia −0.1 −0.5 0.3 0.5 0.2

EM19 0.1 −0.4 0.3 0.1 0.6
Euryarchaeota −0.6 0.2 0.2 0.2 0.0

FCPU426 −0.7 0.0 0.0 −0.2 0.3
Fibrobacteres 0.2 0.3 −0.1 0.1 0.0

Firmicutes 0.7 0.2 −0.1 0.2 0.0
Gemmatimonadetes −0.7 −0.3 −0.1 0.4 0.1

Lentisphaerae 0.6 0.2 0.4 0.3 −0.2
Nitrospirae 0.8 −0.1 0.2 0.4 0.2

OD1 −0.5 0.2 0.0 −0.1 0.1
OP11 −0.3 −0.2 0.5 0.0 0.4
OP3 0.6 0.0 −0.2 0.1 0.3
OP8 −0.4 −0.3 −0.1 0.0 −0.3

Other 0.5 0.0 −0.1 0.2 −0.5
Parvarchaeota −0.7 0.3 −0.1 0.2 0.0

Planctomycetes 0.7 −0.4 −0.1 −0.1 −0.1
Proteobacteria −0.7 0.3 0.2 −0.3 0.2
Spirochaetes 0.2 0.4 0.5 −0.3 −0.1
Synergistetes 0.6 −0.1 −0.4 0.0 0.5
Tenericutes 0.8 0.0 0.0 0.2 0.2

Thermi 0.4 0.5 0.0 −0.1 0.2
Thermotogae 0.6 0.1 −0.1 −0.4 0.1

TM6 −0.2 0.1 0.4 0.2 −0.1
TM7 −0.6 0.6 −0.2 0.0 0.2

Verrucomicrobia 0.4 −0.3 0.4 −0.3 −0.5
WPS2 −0.8 0.0 −0.2 0.3 −0.2
WS2 0.3 −0.1 0.0 −0.3 0.2
WS3 0.8 0.0 0.4 0.3 0.0

Factor p-values

N rate <0.0001 0.6047 0.3156 0.3707 0.6335
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The first PC1 had the largest eigenvalue (11.99) and explained about 29% of the community
taxonomic variability while including both dominant and minor taxa (Table 5). Among the dominant
taxa, PC1 included high positive loadings (>0.5) for Chloroflexi, Cyanobacteria, Firmicutes, and
Planctomycetes, and high negative loadings (<−0.5) for Gemmatimonadetes, Proteobacteria, and
Euryarchaeota. For the minor taxa, PC1 included high positive loadings (>0.5) for Nitrospirae, WS3,
Tenericutes, Lentisphaerae, OP3, Synergistetes, Thermotogae, and prokaryotes that could not be
reliably assigned to a phylum (grouped as “Other”), as well as high negative loadings (<−0.5) for
Aquificae, WPS2, Parvarchaeota, AD3, FCPU426, Armatimonadetes, TM7, Chlamydiae, and OD1.

As shown in Table 5, PC2 had an eigenvalue of 3.81 and explained an additional 10% of the
variability in the dataset; PC2 eigenvector had high positive loadings for Chlamydiae, Chlorobi, Thermi,
and TM7, and high negative loadings for AD3, Aquificae, and Elusimicrobia. The eigenvalue for PC3
was 3.37 and explained an additional 8% of the total variability. The PC3 eigenvector included high
positive loadings for Acidobacteria, OP11, and Spirochaetes while including negative loadings for
Actinobacteria and Choloroflexi (Table 5). The eigenvalue for PC4 was 2.75 and explained an additional
6% of the total variability. The PC4 eigenvector included high positive loadings for Crenarchaeota,
and Elusimicrobia while including a negative loading for Bacteroidetes. The eigenvalue for PC5 was
2.55 and explained an additional 7% of the total variability. Lastly, the PC5 eigenvector included a
high positive loading for EM19 and negative loadings for Other and Verrucomicrobia. Each of these
PCs were used as independent variables in follow up analysis of variance (ANOVA) to test the effect
of N fertilization levels on the RA of the phyla represented by each PC. The probability values and
degrees of freedom associated with the ANOVA for the effects of N rate are shown in the lower portion
of Table 5 for each extracted PCs. The N fertilization effect was statistically significant for PC1 but not
statistically significant for any of the remaining PCs.

Thus, PC1 mean value under no N fertilization (1.12) was statistically and significantly different
(LSD0.05 = 0.41) from the mean value measured under 202 kg N/ha (−0.9), which was also statistically
different that the PC1 mean value following 34 years of N fertilization at a rate of 269 kg N/ha (−1.13).
Thus, the phyla represented within PC1 showed a clear and gradual response to the increased N
application. Scheme 1 depicts the changes in RA% of dominant and minor prokaryotic phyla with
increasing N rates following 34 years of management as summarized by the measured changes in
PC1 scores.
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Scheme 1. An illustration of changes in the relative abundance (RA) of dominant (increased size font)
and minor (regular font size) prokaryotic phyla brought about by increasing N fertilization levels after
long-term N fertilization management. Phyla in green font show increases in their RA, while phyla in
blue font show decreased RA with increasing N.
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Specifically, for the Proteobacteria phyla, Figure 3 shows the changes in the RA of the main classes
under increasing N additions. Thus, Alphaproteobacteria and Gammaproteobacteria showed gradual
and statistically significant increases in their RAs with each additional N rate (p < 0.0001 and p = 0.0028,
respectively). While the RA of Deltaproteobacteria decreased with the rates of 202 kg N/ha and 269 kg
N/ha (p = 0.0009), Betaproteobacteria and Epsilonproteobacteria were not affected by N fertilization.
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Figure 3. Changes in the relative abundance of classes of Proteobacteria under increasing N rate
treatments: 0 kg N/ha, 202 kg N/ha, and 269 kg N/ha. Error bars represent standard error of the
treatment means (n = 3). Within a given class, bars with the same lowercase letter are not statistically
different (p = 0.05). Likewise, “ns” for a class indicates no N rate effect for that group.

4. Discussion

A number of previous studies have revealed that N application level significantly influences
microbial biomass, community composition, and function [14,15,40]. While many studies on 25
grassland sites across the world detected changes in soil bacterial communities across the N gradient
over the long-term [41], research on Illinois agricultural field sites was missing in this regard. Using
a long-term fertilization field experiment established in 1981, we monitored the structure of soil
prokaryotic communities. We chose sequencing the V4 locus of 16S ribosomal RNA genes of
prokaryotes in order to characterize the community shifts associated with long-term N-fertilization
treatment. While the analysis of the response of microbial communities within this low level of
taxonomic resolution (phylum) is done under the (false) assumption that all members of a phylum
have similar biochemical and metabolic capabilities, it is however a convenient and commonly adopted
approach to look for patterns within a manageable number of groups. Moreover, despite the enormous
amount of phylogenetic and physiological diversity within the main bacterial phyla, functional diversity
may be broadly mapped across major phyla of Bacteria and Archaea [42,43].

The highest rate of N fertilization caused a decline in all alpha diversity indexes after a 34-year
treatment, which coincides with other research studies [43,44]. Direct effect of increased N input on
prokaryotic community structure may be linked to the indirect effect of pH changes when soil nutrient
availability and pH are concomitantly altered by fertilization [16]. Ding et al. [44] observed significant
reduction of alpha diversity indexes in N P K fertilization treatment compared to unfertilized soil
cropped with maize–wheat–soybean rotation. These contrasting changes are mainly associated with
reduced soil pH [43], due to the long-term application of urea and ammonium fertilizers [45]. Likely,
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high N levels in mineral fertilizer have resulted in intensified soil acidification through nitrification
of the ammonium applied [17]. Intermediate levels of N may not reflect pronounced shifts in soil
pH, given that some of the acidity produced by nitrification is neutralized when plants take up more
nitrate than cations [46]. Our results demonstrate a similar point, in that there is a significant difference
between the intermediate and high N rate group on all alpha diversity and richness indicators, while
no significant differences were found between the control and intermediate N rate group (Table 2).
Shifts in the prokaryotic community structure could be attributed not only to pH changes but also to
the change of the C/N ratio brought about by long-term N fertilization [47].

Results from our PCA showed that soil prokaryotic communities significantly differed among the
three levels of N input, along the PC1. The variability among samples was explained by seven dominant
taxa (with RA >1%) and 15 minor taxa (RA <1%). Therefore, we focused the analysis of composition
shifts in that subset of phyla. Phyla showing negative correlations with PC1 are those that increased
in RA under increased N input. Conversely, the phyla that have positive correlations with the PC1
diminished in their RA with increasing N levels. We found that the relative abundance of 11 bacterial
and two archaeal groups increased with increasing N rates. The major bacterial group affected was
Proteobacteria. This phylum comprises more than one third of the species that have been characterized
up to date [42], and their members display enormous metabolic diversity. Increased nutrient inputs
stimulate the growth of potential copiotrophic bacteria, while impairing oligotrophs [14]. It is of no
surprise, then, that the overall group responded to increasing levels of N as most members of this group
fall in the copiotrophic and generalist lifestyle, demanding high nutrient levels [48]. Moreover, the
main steps in the biogeochemical N cycle such as N fixation, denitrification, and nitrification, are driven
by Proteobacteria [42]. At the finer level of resolution of classes, N fertilization increased the relative
abundances of the so-called copiotrophic Alphaproteobacteria and Gammaproteobacteria, while
Deltaproteobacteria diminished and Betaproteobacteria and Epsilonproteobacteria were unaffected
by N inputs (Figure 3). Our results are in agreement with those reported by Li et al. [43], in soil
cultivated with maize with different N levels, as well as with similar patterns observed in soil under
wheat–maize–soybean crop rotation and fertilized with inorganic N [44].

The phylum Gemmatimonadetes was the second largest group responding positively to N
fertilization. This phylum is one of the most commonly detected phyla in 16S rRNA gene libraries from
soil [49]. Other authors have previously reported increased relative abundance of Gemmatimonadetes
in fertilized soils of distinct origin [50–52]. Under changing environments, it has been proposed that
these microorganisms are able to fine-tune their C and N intake according to their metabolic needs,
suggesting a generalist ecological strategy [52]. In that way, Gemmatimonadetes may be able to take
advantage of the higher nutrient input provided with the highest N rate.

Aquificae and Armatimonadetes were among the bacterial groups which positively responded to
long-term inorganic N input. Aquificae harbors some species that display autotrophic, chemolitotrophic,
and microaerophilic growth, and some of them are able to use nitrate as an electron acceptor conducive
to denitrification [42], while in previous studies, Armatimonadetes responded positively to the addition
of inorganic NPK fertilizer [50]. These responses might help explain their higher abundance under
high N levels in the present study.

Other bacterial groups that comprised a small proportion of total diversity, with RA<0.1%
also responded positively to N input, namely Chlamydia, FCPU-426, WPS-2, AD3, TM7, and OD1
(Parcubacteria). Phylum Chlamydia comprises few species within a single order Chlamydiales, all of
which are obligate intracellular parasites of eukaryotes, and are ubiquitous in nature within free living
amoeba [42]. The rest of those groups are candidate phyla, with no cultivated representatives, that are
collectively designated as the “microbial dark matter”; they remain to be characterized [53]. However,
they have been detected previously in fertilized soils at comparable relative abundances (<1%) [49].

Both Euryarchaeota, which showed RA slightly higher than 1%, and Parvarchaeota (RA <1%),
responded positively to N input. The Euryarchaeota is the largest archaeal phyla and the most
metabolically diverse. This group includes strictly anaerobic methanogens; obligate aerobic extreme
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halophiles, and the acidophiles Thermoplasma and Ferroplasma, that thrive in low pH environments
growing as chemolithotrophs oxidizing ferrous iron [42]. Members of Euryachaeota are capable of
both N2 fixation and denitrification, so it is not surprising that their relative abundance increases under
higher N input. Parvarchaeota members are characterized by their small size and limited metabolic
capabilities, as they lack biosynthetic pathways for all amino acid synthesis, and thus, they must
scavenge them from the environment contributing to the N cycling. Studied representatives have
been shown to closely interact with Thermoplasmatales (Euryarchaeota) which possibly act as a host
providing amino acids and thus explain the co-occurrence in our study and others [54].

Groups that decreased under increasing N levels belong to four dominant bacterial phyla
(Chloroflexi, Cyanobacteria, Firmicutes, and Planctomycetes) and eight minor taxa with RA <1%.
Chloroflexi, Cyanobacteria, and Firmicutes are frequent inhabitants in the soil environment, contributing
to the main steps of the N cycle (N fixation and denitrification), while members of the Planctomycetes
phylum are responsible for the anaerobic ammonia oxidation. Their RA in our study where comparable
to the reported values in Chinese black soils during the maize growing season [43]. Relative abundances
of Cyanobacteria [55] and Planctomycetes [50] were reported to decrease with inorganic N fertilization
compared to unfertilized control or organic fertilization. Both Chloroflexi and Planctomycetes were
reported among the most abundant phyla in soils of the Argentine Pampas, with higher RA in pristine
soil in comparison to fertilized agricultural soil [52].

Among the less abundant taxa (RA <1%) the phylum Nitrospirae was also negatively affected by
increasing N inputs. This phylum comprises species that oxidize nitrite autotrophically, and have been
classified as K-strategist, oligotrophic bacteria with a high affinity for nitrite scavenging. Thus, it can be
argued that high levels of N fertilization may negatively affect the growth of this group by favoring the
growth of other competing nitrite oxidizers, such as Nitrobacter with an r-strategist lifestyle [53]. The
RA of candidate phylum Latescibacteria (WS3) was highest in unfertilized soils (0.98%). In contrast to
our results, Latescibacteria sequences showed higher RA in fertilized agricultural soil samples from
the Pampas region (4%) in comparison to pristine soil [9,52]. Both phyla have been shown to correlate
positively to soil pH [16], thus the high N ratio might have indirectly reduced their RA by decreasing
soil pH. Relative abundances of Tenericutes, Lentisphaerae, OP3, Synergistetes, and Thermotogae also
decreased with increasing N fertilization, yet their RA was well below 1%. Little is known about these
groups and their physiological and ecological roles, so discussion of the observed results is limited by
the available information.

Usually, as it occurs in our study, data reporting prokaryotic community structure refer to relative,
not absolute, abundances. As such, decreases in the relative abundance of certain groups could
mean no change at all in the absolute number of these taxa, especially right after incorporation
of crop residues and/or nutrient inputs that may greatly increase the abundance of fast-growing
copiotrophic prokaryotes but not necessarily result in reduced abundance of other groups [47]. This
present study was conducted after continuous corn was fertilized annually for 34 years, however, soil
sampling was done immediately after harvest. Thus, we can safely attribute the detected changes in
prokaryotic community structure among treatments to the long-lasting effects of fertilization on the
soil environment.

Although we are aware that the prokaryotic community response may be better assessed by
refining the analysis and examining bacterial and archaeal composition at a lower taxonomic level (at
genus or OTU level), the broad taxonomic level used in this first exploratory analysis was efficient and
sensitive enough to disclose the large impact of long-term N fertilization on overall prokaryotic diversity.

Our results suggest that main responding taxa may be those driving key steps in the N cycle. This
hypothesis is partially supported by a recent research conducted to quantify genes encoding N cycle
functions in the same field trial [13]. However, it should be confirmed by our future work towards
prediction of functions based on 16S rRNA gene sequences by in silico analysis (with tools such as
PiCrust or Tax4Fun).



Agronomy 2019, 9, 574 13 of 16

5. Conclusions

Long-term N fertilization treatments have resulted in differences in the structure of soil prokaryotic
communities modifying the relative abundance of archaeal and bacterial groups. A more complete
understanding of the long-term interactions and feedback between fertilization practices, soil properties,
and diversity of prokaryotic communities is essential for enabling the design of optimal agronomic
practices that improve agricultural sustainability.

Author Contributions: Conceptualization, M.B.V., S.R.-Z., and M.C.Z.; methodology, R.S., P.Z., C.W.R., M.C.Z.
and S.R.-Z.; formal analysis, R.S., P.Z., M.B.V., and S.R.-Z.; resources, M.B.V., S.R.-Z. and C.W.R.; data curation,
M.B.V., S.R.-Z., R.S. and C.W.R.; writing—original draft preparation, R.S., M.C.Z. and M.B.V.; writing—review and
editing, M.B.V. and M.C.Z.; supervision, M.B.V., and S.R.-Z.; project administration, M.B.V.; funding acquisition,
M.B.V.

Funding: This research was partially funded by a HATCH Grant (no. ILLU-802-947) and by Award No. AG
2018-67019-27807, both from the USDA National Institute of Food and Agriculture.

Acknowledgments: We are thankful to Alvaro Hernandez and Mark Band from the Roy Carver Biotechnology
Center for Functional Genomics lab at the University of Illinois at Urbana-Champaign for their assistance with the
creation of soil DNA libraries. We appreciate the contributions of Greg Steckel, and Marty Williams in managing
the experimental site, and the everyday help of Samuel Kato, and Gevan Behnke, with field and lab activities.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Robertson, G.; Vitousek, P.M. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annu.
Rev. Environ. Resour. 2009, 34, 97–125. [CrossRef]

2. Shen, J.P.; Zhang, L.M.; Guo, J.F.; Ray, J.L.; He, J.Z. Impact of long-term fertilization practices on the
abundance and composition of soil bacterial communities in Northeast China. Appl. Soil Ecol. 2010, 46,
119–124. [CrossRef]

3. Figueiredo, M.; Seldin, L.; Araujo, F.; Mariano, R. Plant Growth Promoting Rhizobacteria: Fundamentals
and Applications. In Plant Growth and Health Promoting Bacteria. Microbiology Monographs; Springer:
Berlin/Heidelberg, Germany, 2010.

4. Gupta, V.V.S.R.; Germida, J.J. Soil aggregation: Influence on microbial biomass and implications for biological
processes. Soil Biol. Biochem. 2015, 80, A3–A9. [CrossRef]

5. LeBauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is
globally distributed. Ecology 2008, 89, 371–379. [CrossRef] [PubMed]

6. Zhong, W.H.; Gu, T.; Wang, W.; Zhang, B.; Lin, X.G.; Huang, Q.R.; Shen, W.S. The effects of mineral fertilizer
and organic manure on soil microbial community and diversity. Plant Soil 2010, 326, 511–522. [CrossRef]

7. Daniel, R. The metagenomics of soil. Nat. Rev. Microbiol. 2005, 3, 470–478. [CrossRef]
8. Myrold, D.D.; Zeglin, L.H.; Jansson, J.K. The Potential of Metagenomic Approaches for Understanding Soil

Microbial Processes. Soil Sci. Soc. Am. J. 2014, 78, 3–10. [CrossRef]
9. Paul Chowdhury, S.; Babin, D.; Sandmann, M.; Jacquiod, S.; Sommermann, L.; Sorensen, S.J.; Fliessbach, A.;

Mader, P.; Geistlinger, J.; Smalla, K.; et al. Effect of long-term organic and mineral fertilization strategies
on rhizosphere microbiota assemblage and performance of lettuce. Environ. Microbiol. 2019, 21, 2426–2439.
[CrossRef]

10. Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. Organic Amendments:
Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven
by Long-Term Fertilization Strategies. Front. Microbiol. 2016, 7, 1446. [CrossRef]

11. Babin, D.; Deubel, A.; Jacquiod, S.; Sørensen, S.J.; Geistlinger, J.; Grosch, R.; Smalla, K. Impact of long-term
agricultural management practices on soil prokaryotic communities. Soil Biol. Biochem. 2019, 129, 17–28.
[CrossRef]

12. Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct soil microbial diversity under long-term
organic and conventional farming. ISME J. 2015, 9, 1177–1194. [CrossRef] [PubMed]

http://dx.doi.org/10.1146/annurev.environ.032108.105046
http://dx.doi.org/10.1016/j.apsoil.2010.06.015
http://dx.doi.org/10.1016/j.soilbio.2014.09.002
http://dx.doi.org/10.1890/06-2057.1
http://www.ncbi.nlm.nih.gov/pubmed/18409427
http://dx.doi.org/10.1007/s11104-009-9988-y
http://dx.doi.org/10.1038/nrmicro1160
http://dx.doi.org/10.2136/sssaj2013.07.0287dgs
http://dx.doi.org/10.1111/1462-2920.14631
http://dx.doi.org/10.3389/fmicb.2016.01446
http://dx.doi.org/10.1016/j.soilbio.2018.11.002
http://dx.doi.org/10.1038/ismej.2014.210
http://www.ncbi.nlm.nih.gov/pubmed/25350160


Agronomy 2019, 9, 574 14 of 16

13. Huang, L.; Riggins, C.; Rodríguez-Zas, S.; Zabaloy, M.; Villamil, M. Long-term N fertilization imbalances
potential N acquisition and transformations by soil microbes. Sci. Total Environ. 2019, 691, 562–571.
[CrossRef] [PubMed]

14. Fierer, N.; Lauber, C.L.; Ramirez, K.S.; Zaneveld, J.; Bradford, M.A.; Knight, R. Comparative metagenomic,
phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J.
2012, 6, 1007–1017. [CrossRef] [PubMed]

15. Yevdokimov, I.; Gattinger, A.; Buegger, F.; Munch, J.C.; Schloter, M. Changes in microbial community
structure in soil as a result of different amounts of nitrogen fertilization. Biol. Fertil. Soils 2008, 44, 1103–1106.
[CrossRef]

16. Zhang, Y.; Shen, H.; He, X.; Thomas, B.W.; Lupwayi, N.Z.; Hao, X.; Thomas, M.C.; Shi, X. Fertilization Shapes
Bacterial Community Structure by Alteration of Soil pH. Front. Microbiol. 2017, 8, 1325. [CrossRef] [PubMed]

17. Zhao, S.; Qiu, S.; Cao, C.; Zheng, C.; Zhou, W.; He, P. Responses of soil properties, microbial community
and crop yields to various rates of nitrogen fertilization in a wheat–maize cropping system in north-central
China. Agric. Ecosyst. Environ. 2014, 194, 29–37. [CrossRef]

18. Ramirez, K.S.; Craine, J.M.; Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities
and processes across biomes. Glob. Chang. Biol. 2012, 18, 1918–1927. [CrossRef]

19. Bender, S.F.; Wagg, C.; Van Der Heijden, M.G. An Underground Revolution: Biodiversity and Soil Ecological
Engineering for Agricultural Sustainability. Trends Ecol. Evol. 2016, 31, 440–452. [CrossRef]

20. Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol.
Biochem. 2014, 75, 54–63. [CrossRef]

21. McDaniel, M.D.; Tiemann, L.K.; Grandy, A.S. Does agricultural crop diversity enhance soil microbial biomass
and organic matter dynamics? A meta-analysis. Ecol. Appl. 2014, 24, 560–570. [CrossRef] [PubMed]

22. Suding, K.N.; Collins, S.L.; Gough, L.; Clark, C.; Cleland, E.E.; Gross, K.L.; Milchunas, D.G.; Pennings, S.
Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl. Acad.
Sci. USA 2005, 102, 4387–4392. [CrossRef] [PubMed]

23. Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited
potential of no-till agriculture for climate change mitigation. Nat. Clim. Chang. 2014, 4, 678–683. [CrossRef]

24. Kramer, S.B.; Reganold, J.P.; Glover, J.D.; Bohannan, B.J.M.; Mooney, H.A. Reduced nitrate leaching and
enhanced denitrifier activity and efficiency in organically fertilized soils. Proc. Natl. Acad. Sci. USA 2006,
103, 4522–4527. [CrossRef] [PubMed]

25. Jagadamma, S.; Lal, R.; Hoeft, R.G.; Nafziger, E.D.; Adee, E.A. Nitrogen fertilization and cropping systems
effects on soil organic carbon and total nitrogen pools under chisel-plow tillage in Illinois. Soil Tillage Res.
2007, 95, 348–356. [CrossRef]

26. Fierer, N.; Jackson, J.A.; Vilgalys, R.; Jackson, R.B. Assessment of soil microbial community structure by use
of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 2005, 71, 4117–4120. [CrossRef]

27. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics
2014, 30, 2114–2120. [CrossRef]

28. Aronesty, E. Comparison of Sequencing Utility Programs. Open Bioinform. J. 2013, 7, 1–8. [CrossRef]
29. Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461.

[CrossRef]
30. Reddy, T.B.; Thomas, A.D.; Stamatis, D.; Bertsch, J.; Isbandi, M.; Jansson, J.; Mallajosyula, J.; Pagani, I.;

Lobos, E.A.; Kyrpides, N.C. The Genomes OnLine Database (GOLD) v.5: A metadata management system
based on a four level (meta) genome project classification. Nucleic Acids Res. 2015, 43, D1099–D1106.
[CrossRef]

31. DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.;
Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with
ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [CrossRef]

32. Caporaso, J.G.; Bittinger, K.; Bushman, F.D.; DeSantis, T.Z.; Andersen, G.L.; Knight, R. PyNAST: A flexible
tool for aligning sequences to a template alignment. Bioinformatics 2010, 26, 266–267. [CrossRef]

33. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.;
Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data.
Nat. Methods 2010, 7, 335–336. [CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2019.07.154
http://www.ncbi.nlm.nih.gov/pubmed/31325856
http://dx.doi.org/10.1038/ismej.2011.159
http://www.ncbi.nlm.nih.gov/pubmed/22134642
http://dx.doi.org/10.1007/s00374-008-0315-1
http://dx.doi.org/10.3389/fmicb.2017.01325
http://www.ncbi.nlm.nih.gov/pubmed/28769896
http://dx.doi.org/10.1016/j.agee.2014.05.006
http://dx.doi.org/10.1111/j.1365-2486.2012.02639.x
http://dx.doi.org/10.1016/j.tree.2016.02.016
http://dx.doi.org/10.1016/j.soilbio.2014.03.023
http://dx.doi.org/10.1890/13-0616.1
http://www.ncbi.nlm.nih.gov/pubmed/24834741
http://dx.doi.org/10.1073/pnas.0408648102
http://www.ncbi.nlm.nih.gov/pubmed/15755810
http://dx.doi.org/10.1038/nclimate2292
http://dx.doi.org/10.1073/pnas.0600359103
http://www.ncbi.nlm.nih.gov/pubmed/16537377
http://dx.doi.org/10.1016/j.still.2007.02.006
http://dx.doi.org/10.1128/AEM.71.7.4117-4120.2005
http://dx.doi.org/10.1093/bioinformatics/btu170
http://dx.doi.org/10.2174/1875036201307010001
http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1093/nar/gku950
http://dx.doi.org/10.1128/AEM.03006-05
http://dx.doi.org/10.1093/bioinformatics/btp636
http://dx.doi.org/10.1038/nmeth.f.303


Agronomy 2019, 9, 574 15 of 16

34. Chao, A. Nonparametric-Estimation of the Number of Classes in a Population. Scand. J. Stat. 1984, 11,
265–270.

35. Walther, B.A.; Moore, J.L. The concepts of bias, precision and accuracy, and their use in testing the performance
of species richness estimators, with a literature review of estimator performance. Ecography 2005, 28, 815–829.
[CrossRef]

36. Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl.
Environ. Microbiol. 2005, 71, 8228–8235. [CrossRef] [PubMed]

37. Warton, D.I.; Wright, S.T.; Wang, Y. Distance-based multivariate analyses confound location and dispersion
effects. Methods Ecol. Evol. 2012, 3, 89–101. [CrossRef]

38. Yeater, K.M.; Villamil, M.B. Chapter 14: Multivariate Methods for Agricultural Research, in Applied Statistics in
Agricultural, Biological, and Environmental Sciences; American Society of Agronomy, Crop Science Society of
America, and Soil Science Society of America, Inc.: Madison, WI, USA, 2018; pp. 371–400. [CrossRef]

39. Cumming, G.; Fidler, F.; Vaux, D.L. Error bars in experimental biology. J. Cell Biol. 2007, 177, 7–11. [CrossRef]
40. Lu, M.; Yang, Y.; Luo, Y.; Fang, C.; Zhou, X.; Chen, J.; Yang, X.; Li, B. Responses of ecosystem nitrogen cycle

to nitrogen addition: A meta-analysis. New Phytol. 2011, 189, 1040–1050. [CrossRef]
41. Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberán, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.;

Hofmockel, K.S.; Knops, J.M.H.; et al. Consistent responses of soil microbial communities to elevated
nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967–10972. [CrossRef]

42. Madigan, M.T.; Martinko, J.M.; Bender, K.S.; Buckley, D.H.; Stahl, D.A. Brock Biology of Microorganisms, 14th
ed.; Pearson: Boston, MA, USA, 2015.

43. Li, H.; Zhang, Y.; Yang, S.; Wang, Z.; Feng, X.; Liu, H.; Jiang, Y. Variations in soil bacterial taxonomic profiles
and putative functions in response to straw incorporation combined with N fertilization during the maize
growing season. Agric. Ecosyst. Environ. 2019, 283, 106578. [CrossRef]

44. Ding, J.; Jiang, X.; Ma, M.; Zhou, B.; Guan, D.; Zhao, B.; Zhou, J.; Cao, F.; Li, L.; Li, J. Effect of 35 years
inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil
of northeast China. Appl. Soil Ecol. 2016, 105, 187–195. [CrossRef]

45. Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.;
Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [CrossRef]
[PubMed]

46. Barak, P.; Jobe, B.O.; Krueger, A.R.; Peterson, L.A.; Laird, D.A. Effects of long-term soil acidification due to
nitrogen fertilizer inputs in Wisconsin. Plant Soil 1997, 197, 61–69. [CrossRef]

47. Chávez-Romero, Y.; Navarro-Noya, Y.E.; Reynoso-Martínez, S.C.; Sarria-Guzmán, Y.; Govaerts, B.;
Verhulst, N.; Dendooven, L.; Luna-Guido, M. 16S metagenomics reveals changes in the soil bacterial
community driven by soil organic C, N-fertilizer and tillage-crop residue management. Soil Tillage Res. 2016,
159, 1–8. [CrossRef]

48. Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88,
1354–1364. [CrossRef] [PubMed]

49. Debruyn, J.M.; Nixon, L.T.; Fawaz, M.N.; Johnson, A.M.; Radosevich, M. Global biogeography and
quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol. 2011, 77, 6295–6300.
[CrossRef] [PubMed]

50. Van Der Bom, F.; Nunes, I.; Raymond, N.S.; Hansen, V.; Bonnichsen, L.; Magid, J.; Nybroe, O.; Jensen, L.S.
Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial
communities in the field. Soil Biol. Biochem. 2018, 122, 91–103. [CrossRef]

51. Nemergut, D.R.; Townsend, A.R.; Sattin, S.R.; Freeman, K.R.; Fierer, N.; Neff, J.C.; Bowman, W.D.; Schadt, C.W.;
Weintraub, M.N.; Schmidt, S.K. The effects of chronic nitrogen fertilization on alpine tundra soil microbial
communities: Implications for carbon and nitrogen cycling. Environ. Microbiol. 2008, 10, 3093–3105.
[CrossRef]

52. Carbonetto, B.; Rascovan, N.; Álvarez, R.; Mentaberry, A.; Vazquez, M.P. Structure, composition and
metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine
Pampas. PLoS ONE 2014, 9, e99949. [CrossRef]

53. Rinke, C.; Schwientek, P.; Sczyrba, A.; Ivanova, N.N.; Anderson, I.J.; Cheng, J.-F.; Darling, A.; Malfatti, S.;
Swan, B.K.; Gies, E.A.; et al. Insights into the phylogeny and coding potential of microbial dark matter.
Nature 2013, 499, 431–437. [CrossRef]

http://dx.doi.org/10.1111/j.2005.0906-7590.04112.x
http://dx.doi.org/10.1128/AEM.71.12.8228-8235.2005
http://www.ncbi.nlm.nih.gov/pubmed/16332807
http://dx.doi.org/10.1111/j.2041-210X.2011.00127.x
http://dx.doi.org/10.2134/appliedstatistics.2015.0083
http://dx.doi.org/10.1083/jcb.200611141
http://dx.doi.org/10.1111/j.1469-8137.2010.03563.x
http://dx.doi.org/10.1073/pnas.1508382112
http://dx.doi.org/10.1016/j.agee.2019.106578
http://dx.doi.org/10.1016/j.apsoil.2016.04.010
http://dx.doi.org/10.1126/science.1182570
http://www.ncbi.nlm.nih.gov/pubmed/20150447
http://dx.doi.org/10.1023/A:1004297607070
http://dx.doi.org/10.1016/j.still.2016.01.007
http://dx.doi.org/10.1890/05-1839
http://www.ncbi.nlm.nih.gov/pubmed/17601128
http://dx.doi.org/10.1128/AEM.05005-11
http://www.ncbi.nlm.nih.gov/pubmed/21764958
http://dx.doi.org/10.1016/j.soilbio.2018.04.003
http://dx.doi.org/10.1111/j.1462-2920.2008.01735.x
http://dx.doi.org/10.1371/journal.pone.0099949
http://dx.doi.org/10.1038/nature12352


Agronomy 2019, 9, 574 16 of 16

54. Chen, L.X.; Méndez-García, C.; Dombrowski, N.; Servín-Garcidueñas, L.E.; Eloe-Fadrosh, E.A.; Fang, B.Z.;
Luo, Z.H.; Tan, S.; Zhi, X.Y.; Hua, Z.S.; et al. Metabolic versatility of small archaea Micrarchaeota and
Parvarchaeota. ISME J. 2018, 12, 756–775. [CrossRef] [PubMed]

55. Poulsen, P.H.; Abu Al-Soud, W.; Bergmark, L.; Magid, J.; Hansen, L.H.; Sørensen, S.J. Effects of fertilization with
urban and agricultural organic wastes in a field trial—Prokaryotic diversity investigated by pyrosequencing.
Soil Biol. Biochem. 2013, 57, 784–793. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41396-017-0002-z
http://www.ncbi.nlm.nih.gov/pubmed/29222443
http://dx.doi.org/10.1016/j.soilbio.2011.12.023
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Site Descriptions and Soil Sampling 
	Soil Characterization 
	Soil DNA Extraction, qPCR, and Sequencing 
	Bioinformatic Analysis 
	Statistical Analysis 

	Results 
	General Surface Soil Properties 
	Sequencing Summary 
	Soil Prokaryotic Community Diversity 
	Soil Prokaryotic Community Composition 

	Discussion 
	Conclusions 
	References

