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Eragrostis curvula (Schrad.) Nees (weeping lovegrass) is an apomictic species native to
Southern Africa that is used as forage grass in semiarid regions of Argentina. Apomixis
is a mechanism for clonal propagation through seeds that involves the avoidance of
meiosis to generate an unreduced embryo sac (apomeiosis), parthenogenesis, and
viable endosperm formation in a fertilization-dependent or -independent manner. Here,
we constructed the first saturated linkage map of tetraploid E. curvula using both
traditional (AFLP and SSR) and high-throughput molecular markers (GBS-SNP) and
identified the locus controlling diplospory. We also identified putative regulatory regions
affecting the expressivity of this trait and syntenic relationships with genomes of other
grass species. We obtained a tetraploid mapping population from a cross between a
full sexual genotype (OTA-S) with a facultative apomictic individual of cv. Don Walter.
Phenotypic characterization of F1 hybrids by cytoembryological analysis yielded a 1:1
ratio of apomictic vs. sexual plants (34:27, X2 = 0.37), which agrees with the model
of inheritance of a single dominant genetic factor. The final number of markers was
1,114 for OTA-S and 2,019 for Don Walter. These markers were distributed into 40
linkage groups per parental genotype, which is consistent with the number of E. curvula
chromosomes (containing 2 to 123 markers per linkage group). The total length of the
OTA-S map was 1,335 cM, with an average marker density of 1.22 cM per marker. The
Don Walter map was 1,976.2 cM, with an average marker density of 0.98 cM/marker.
The locus responsible for diplospory was mapped on Don Walter linkage group 3, with
other 65 markers. QTL analyses of the expressivity of diplospory in the F1 hybrids
revealed the presence of two main QTLs, located 3.27 and 15 cM from the diplospory
locus. Both QTLs explained 28.6% of phenotypic variation. Syntenic analysis allowed
us to establish the groups of homologs/homeologs for each linkage map. The genetic
linkage map reported in this study, the first such map for E. curvula, is the most saturated
map for the genus Eragrostis and one of the most saturated maps for a polyploid forage
grass species.
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INTRODUCTION

Apomixis, a clonal mode of reproduction through seeds,
occurs in numerous plant families and in organisms from
other kingdoms (Asker and Jerling, 1992). Apomixis can
be divided in two main types based on the origin of the
clonal embryos. During adventitious embryony or sporophytic
apomixis, the embryo develops directly from a somatic cell
in the ovule (usually the nucellus or integument) outside
of the sexual embryo sac. Survival of the apomictic embryo
depends on the successful fertilization of the meiotically
derived embryo sac and its ability to grow sufficiently to gain
access to the endosperm (Koltunow and Grossniklaus, 2003).
During gametophytic apomixis, unreduced embryo sacs form
by mitosis of a megaspore mother cell that avoids meiosis
(diplospory) or via a mitotic division of a nucellar cell (apospory)
(Koltunow and Grossniklaus, 2003). The embryo then forms
by fertilization-independent embryogenesis (parthenogenesis),
and the endosperm develops autonomously or after fertilization
of the polar nuclei (pseudogamy) (Koltunow et al., 2013).
This mode of reproduction is present in more than 400 plant
species, representing approximately 40 families. The occurrence
of adventitious embryony has been reported in 148 genera,
apospory has been reported in 110 genera, and diplospory
has been reported in 68 genera (Hojsgaard et al., 2014). The
apomictic trait has a polyphyletic origin, and the genes and
mechanisms involved in its expression and regulation are diverse.
Therefore, research on this reproductive mechanism should focus
specifically on each apomictic species (Crane, 2001).

Apomixis has great potential for enhancing plant breeding
and seed production, as it enables the fixation and unlimited
propagation of complex, heterozygous genotypes (Spillane
et al., 2001). Despite the efforts that have been made toward
transferring this trait to crop species using various approaches,
such attempts have thus far been unsuccessful (Kandemir and
Saygili, 2014). Although transgenesis appears to be an optimum
way to transfer this trait to crops, it is imperative to determine
the molecular pathways and genes responsible for apomixis.
Several strategies have been used to gain insight into the genetic
basis of apomixis, including interspecific hybridizations between
sexual crops and apomictic wild relatives (Savidan et al., 2001),
unraveling its genetic control in natural apomicts (Albertini et al.,
2005; Corral et al., 2013; Siena et al., 2014; Conner et al., 2015;
Pellegrini, 2016; Garbus et al., 2017; Selva et al., 2017), identifying
mutants of sexual species that mimic apomixis components
(Garcia-Aguilar et al., 2010; Olmedo-Monfil et al., 2010), and
recreating an apomictic phenotype in a sexual background (Ravi
et al., 2008; d’Erfurth et al., 2009).

Analyses of segregating populations derived from crosses
between sexual (as the female parent) and apomictic (as the
pollen donor) genotypes have led to the development of
several models to explain the inheritance of the trait and its
components (apomeiosis and parthenogenesis) (Ozias-Akins and
van Dijk, 2007). The proposed mechanisms differ in terms of
the number and functions of genes and allelic relationships,
as well as the effects of dominance over sexuality (Carman,
1997; Grimanelli et al., 2001; Koltunow and Grossniklaus, 2003).

Nevertheless, most of these studies agree that one or a few
Mendelian factors control the transference and expression
of apomeiosis and its components in most species (Ozias-
Akins and van Dijk, 2007; Pupilli and Barcaccia, 2012). By
contrast, molecular and cytogenetic analyses suggest that this
trait is controlled in a complex genetic manner involving
restricted recombination around the apomixis locus, trans-
elimination of gametes, supernumerary chromatic structures,
DNA rearrangements, and the presence of transposons in several
species (reviewed by Albertini et al., 2010 and Ortiz et al., 2013).
These characteristics have been the main drawback preventing
the isolation of apomixis determinants in natural species.

Eragrostis curvula (Schrad.) Nees (weeping lovegrass) is a
pseudogamous apomictic grass species native to Southern Africa
(Streetman, 1963) that is used as forage in the United States,
Australia and Argentina. The E. curvula complex includes
cytotypes with different ploidy levels (e.g., 2×–8×) displaying
obligate apomixis, facultative apomixis, and sexual reproduction
(Voigt and Bashaw, 1976; Voigt et al., 2004). This grass is
considered to be an allopolyploid species, although multivalent
formation has been recorded in some polyploid genotypes
(Vorster and Liebenberg, 1977; Poverene, 1988). Moreover,
Burson and Voigt (1996) have shown that this grass behaves as
segmental allotetraploid.

The genus Eragrostis has a unique diplosporous apomictic
type (Eragrostis type) characterized by the lack of meiotic
stages in which the megaspore mother cell undergoes two
rounds of mitotic division, leading to the formation of an
unreduced 4-nucleate embryo sac containing an egg, two
synergids, and one polar nucleus (Meier et al., 2011). Following
parthenogenetic development of the unreduced egg cell to
form a maternal embryo, the endosperm forms after the
polar nucleus is fertilized (pseudogamy). Thus, the apomictic
seed maintains the same embryo:endosperm genomic ratio
(2:3) as the sexual seed (Crane, 2001). Genetic analysis
using segregating populations has led to the proposal of a
simple genetic model for the inheritance of apomixis in this
species in which apomixis is dominant over sexuality and
is controlled by a single locus (Voigt and Bashaw, 1972;
Voigt and Burson, 1992). In previous reports (Voigt and
Bashaw, 1972; Voigt and Burson, 1992) the apomixis inheritance
was evaluated only by progeny tests, having information of
the complete process. At the moment the knowledge about
the number of regions affecting apomixis in Eragrostis is
limited due to the difficulties to evaluate parthenogenesis.
The apomeiosis and parthenogenesis components of apomixis
in other grasses are usually inherited together as a single
dominant locus [apospory-specific genomic region (ASGR)]
(Ozias-Akins and van Dijk, 2007), corresponding to a physically
large hemizygous region of reduced recombination (Ozias-Akins
et al., 1998; Stein et al., 2007). More recently, Conner et al.
(2015) have found as a candidate gene for parthenogenesis
in Cenchrus/Pennisetum an ASGR-BABY BOOM-like (ASGR-
BBML). Recently, BBM was combined with other edited genes
to produce an astounding progress in the transference of clonal
reproduction to rice (Khanday et al., 2019; Wang et al., 2019)
demonstrating the possibility of engineering key components
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of plant reproduction to allow the multiplication of heterotic
combination through seeds.

For the past few years, we have been studying the molecular
mechanisms involved in E. curvula reproduction, primarily using
transcriptomic approaches. As a result, several differentially
expressed genes between sexual and apomictic genotypes have
been detected (Cervigni et al., 2008a,b; Selva et al., 2012,
2017; Garbus et al., 2017). Moreover, we demonstrated that
the proportion of sexual embryo sacs in facultative apomicts
increases under stress conditions, indicating that epigenetic and
genetic mechanisms underlie the expression of apomixis in this
species (Zappacosta et al., 2014; Rodrigo et al., 2017).

Genetic maps including molecular markers allow genetic
regions linked to phenotypic characters to be identified and
are therefore critical for genetic improvement (Collard et al.,
2005). Single-nucleotide polymorphisms (SNPs) are currently
the most widely used markers due to their abundance in the
genome and the increasing ability to sequence large numbers of
individuals in a cost-effective manner (Deschamps et al., 2012).
Furthermore, in the past few years, genotyping-by-sequencing
(GBS) has emerged as a new concept in marker development. The
main advantages of GBS are its potential to detect SNP markers
in numerous individuals and to combine genome reduction and
barcode technology using a rapid, efficient, low-cost protocol for
population mapping studies (Elshire et al., 2011). Worthington
et al. (2016) developed the first saturated linkage maps for a
polyploid apomict grass species (Brachiaria decumbens) using
SNP markers generated by GBS. This saturated map has been
used to assess synteny with foxtail millet and to identify flanking
markers linked to the ASGR.

In this study, we constructed the first saturated linkage map
at the tetraploid level for the diplosporous apomictic grass
species E. curvula by combining traditional AFLP, SSR, and
high-throughput molecular markers (GBS-SNP) and identified
the localization of the diplospory controlling locus. We also
used the saturated map to analyze the presence of regulatory
regions affecting the expression of diplospory and the syntenic
relationships with related grass species, shedding light on this
agronomically important trait.

MATERIALS AND METHODS

Plant Material
To obtain a segregating mapping population for the reproductive
mode (F1 type progeny), the tetraploid sexual E. curvula genotype
OTA-S (USDA accession PI574506; 2n = 4x = 40) was crossed
with the facultative apomictic tetraploid cv Don Walter INTA.
Plants of both parental genotypes were placed together in
isolation in a confined sector of the greenhouse. We used one
maternal plant (OTA-S) and three paternal clones (Don Walter).
To ensure the cross-pollination, the pollen donor panicles were
moved over the OTA-S panicles twice a day. Because it was
impossible to perform castration (emasculation) due to the size
and morphology of the spikes, some of the resulting seeds were
produced by self-fertilization. The resulting seeds were sown in
MS medium, and the germinated plants were transplanted to soil

in pots and grown in the greenhouse. To confirm the hybrid
origin of F1 individuals, fingerprinting analysis of RAPD male-
specific amplicons was carried out as described by Rodrigo et al.
(2017). Hybrid F1 plants were selected based on the presence of at
least three paternal amplification bands using the primers shown
in Supplementary Table S1. Selected individuals were cultivated
in 10-L pots under greenhouse conditions with a photoperiod
of 15 h light/9 h dark during the spring flowering period (Bahía
Blanca, Buenos Aires Province, Argentina; 38◦ 42◦ S, 62◦ 16◦W).

Cytoembryological Analyses
To assess the reproductive modes of the F1 plants,
megasporogenesis and megagametogenesis were analyzed
according to Meier et al. (2011). Inflorescences were collected at
the beginning of anthesis (when all embryo sac developmental
stages are observable) and fixed in FAA (50% ethanol, 5% acetic
acid, and 10% formaldehyde in distilled water). Individual
spikelets were dehydrated in a tertiary butyl alcohol series and
embedded in Paraplast (Leyca Paraplast Plus, United States). The
samples were cut into 10-µm sections, stained with safranin-
fast green, and observed under a Nikon Eclipse TE300 light
transmission microscope (Tokyo, Japan). The reproductive
mode was assessed by scoring the two main types of embryo
sacs: octanucleated reduced Polygonum-type embryo sacs and
tetranucleated nonreduced diplosporous Eragrostis-type embryo
sacs. The latter contain an egg cell (2n), two synergids (2n),
and one polar nucleus (2n) but lack antipodals (Meier et al.,
2011). Plants were considered sexual when they showed only
Polygonum-type embryo sacs and apomictic when at least one
nonreduced diplosporous embryo sac was observed. At least 30
pistils with normally developed embryo sacs were analyzed per
F1 individual.

DNA Extraction
Genomic DNA was extracted from fresh leaf tissue according
to Garbus et al. (2017). Briefly, fresh plant material was frozen
and ground to a powder in liquid nitrogen using a TissueLyser
II (Qiagen). For each sample, 100 mg of tissue was incubated at
65◦C in preheated extraction buffer containing 100 mM Tris HCl
pH 8, 1.4 M NaCl, 20 mM EDTA pH 8, 2% CTAB (w/v), and 0.5%
(v/v) β-mercaptoethanol. Chloroform was subsequently added to
reach a 2:1 ratio (buffer: chloroform), and the aqueous phase
was collected after centrifugation. DNA was precipitated with
one volume of isopropanol and washed with 70% (v/v) ethanol.
The pellet was air-dried and resuspended in 50 µL of TE buffer
containing 20 µg/ml RNase. DNA concentration was determined
by spectrophotometry, and DNA quality was determined based
on its integrity in agarose gels. All samples were quantified again
using a Qubit Fluorometer (Thermo-Fisher Scientific) prior to
library construction.

SSR Markers
E. curvula SSR markers previously developed by Garbus et al.
(2017) were used for genotyping of the mapping population;
the primers are listed in Supplementary Table S1. PCR was
performed in a final volume of 20 µl containing 1X Taq
polymerase reaction buffer, 2.5 mM MgCl2, 0.125 mM of each
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dNTP, 1 µM of each primer, 50 ng of genomic DNA, and 2
U of Taq polymerase (Invitrogen, Brazil). The PCR program
consisted of an initial denaturation at 94◦C for 4 min, 35 cycles
of 94◦C for 30 s, 58◦C for 1 min, and 72◦C for 5 min, and a
final extension at 72◦C for 5 min. The PCR was performed in a
thermocycler (MJ Research). Samples were mixed (2:1, v/v) with
denaturing loading buffer (95% formamide and bromophenol
blue), denatured at 95◦C for 5 min, chilled on ice, and resolved
in 6% (w/v) silver-stained polyacrylamide gels.

AFLP Markers
AFLP markers were generated as described by Vos et al. (1995)
with minor modifications. The sequences of the adapters and
primers used for preamplification and selective amplification are
shown in Supplementary Table S1. The amplification products
were mixed with denaturing buffer, denatured at 95◦C for
5 min, chilled on ice, and resolved in 6% (w/v) silver-stained
polyacrylamide gels. The AFLP markers were given a number
(primer combination) and a letter (indicating the order of
polymorphic bands).

GBS Library Preparation and Sequencing
A DNA GBS library was constructed for 86 F1 individuals (1
sample each), the two parental genotypes (4 samples each) and
two controls. Genomic DNA (50 ng per individual) was processed
as described by Elshire et al. (2011) at the Biotechnology Center
(UWBC DNA Sequencing Facility, University of Wisconsin,
Madison, United States). Digestion was carried out using the
methylation-sensitive restriction enzyme ApeKI, followed by the
ligation of barcoded adapters. The samples were pooled into one
library that was PCR amplified. The library was sequenced to
100 bp in two lines of the Illumina HiSeq 2500 platform. Details
can be found at the Biotechnology Center website1.

GBS-SNP Discovery
The reads were trimmed using Cutadapt software version 1.14
(Martin, 2011) with the following parameters: (i) low-quality
ends (−q = 20); (ii) maximum error rate (−e = 0.1); (iii) overlap
length (−O = 1); and (iv) adapter (−a = AGATCGGAAGAGC).
The trimmed reads were analyzed with FastQC software version
0.11.5 (Andrews, 2011). Using the barcodes provided by the
sequencing service and the filtered reads, de novo SNP discovery
and genotype calling were conducted using the UNEAK pipeline
developed by Tassel software version 3.0 (Glaubitz et al.,
2014) with the following parameters: (i) minimum number
of reads (−s = 40,0000,000); (ii) enzyme used to create the
GBS library (−e = ApeKI); (iii) minimum count of a tag
to be output (−c = 10); (iv) error tolerance rate in the
network filter (−e = 0.02); (v) minimum minor allele frequency
(−mnMAF = 0.01); (vi) maximum minor allele frequency
(−mxMAF = 0.5); (vii) minimum call rate (−mnC = 0.6); and
(viii) maximum call rate (−mxC = 1). This method does not
require a reference genome sequence because SNP discovery
is performed directly within pairs of matched sequence tags
and filtered through network analysis. To further avoid allele

1https://www.biotech.wisc.edu/services/dnaseq

miscalling we considered the number of tags in each SNP for each
individual, classifying an individual as homozygous when it has
more than five tags and as heterozygous when it has at least one
tag for each allele.

Data Analysis and Linkage Map
Construction
Segregation data from each parental genotype was analyzed
independently. The configuration (homozygous/heterozygous)
of all polymorphic markers (SSR, AFLP, and GBS-SNP) was
recorded for each progeny. A χ2 test was used to determine
the fit goodness (at p < 0.01) between the observed and
expected number of genotypes. GBS-SNPs with unexpected
alleles (e.g., one C/G SNP in one parent and C/C in the other
showing G/G descendants) were excluded, even if they only
had one offspring with the unexpected allele. Markers that
were heterozygous in only one parent and had a segregation
ratio of 1:1 (heterozygous:homozygous) in the progeny, were
classified as single-dose allele (SDA) markers and used for map
construction. Finally, GBS-SNP markers with more than 5% of
missing data were removed.

There are several specific pipelines for polyploids such
as polymapR (Bourke et al., 2018a) and TetraploidSNPMap
(Hackett et al., 2017), but are designed to process markers with
allelic dosage values, which are unavailable for GBS data. For
this reason we decided to follow the traditional approach of
a single dosage marker model (Li et al., 2014; Thaikua et al.,
2016; Worthington et al., 2016). These markers possess a number
of advantages over other marker segregation types, mainly in
unexplored polyploid species for which the mode of inheritance
is uncertain. Simplex markers allow an “assumption-free” linkage
map to be created and the use of software designed for diploids
(Bourke et al., 2018b). Thereby the genetic linkage maps were
constructed for OTA-S and Don Walter using JoinMap 4.1
software (Van Ooijen, 2006) with the CP (cross-pollinator
full-sib population) option. Markers with >98% identity were
eliminated. Grouping analysis was carried out using a LOD
(logarithm of odds) score threshold of 7.0 or higher. Maps were
constructed within each linkage group using the regression-
mapping algorithm, and map distance units were derived from
the Kosambi mapping function with default options. Only
linkages with a recombination frequency <0.40 were used for
map construction.

QTL Mapping
QTL mapping was performed using the Don Walter linkage
map with MapQTL 6 software (Van Ooijen, 2009) using the
Multiple QTL Mapping (MQM) method (Jansen, 1993, 1994;
Jansen and Stam, 1994). Phenotypic data representing the
proportion of diplosporous embryo sacs observed in each F1
hybrid (ranging from 0 in sexual individuals to 100 in apomictic
individuals) were used. The LOD threshold to consider a QTL
as significant was determined using permutation tests with
10,000 iterations and a genome-wide significance level of 0.05.
MQM analysis was performed by setting a mapping step size
of 1 cM and a LOD score higher than the threshold. Each
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significant QTL was characterized by its maximum LOD score,
linkage group, position, percentage of explained phenotypic
variation, and confidence interval extension (region at either side
of the likelihood peak until the LOD score dropped to 2.0).
The positions of QTLs on the genetic map were drawn using
LinkageMapView software version 2.1.2 (Ouellette et al., 2017).

Synteny Analysis
GBS-SNP markers sequences were queried against the genomes
of Oropetium thomaeum (VanBuren et al., 2018), Cenchrus
americanus (Varshney et al., 20172), Setaria italica (Bennetzen
et al., 20123), Zea mays (Jiao et al., 2017), Panicum hallii
(Bioproject: PRJNA250527), and Oryza sativa (Kawahara
et al., 2013). Markers that aligned to the genomes with
an identity >80% and a query coverage >70 were found
using BLAST 2.7.1 (Altschul et al., 1990) and used to
assign each linkage group to a chromosome and to identify
homologs/homeologs groups. Given that the reference
genomes used to establish syntenic relationships are available
as haplotypes, the homologs/homeologs linkage groups are
impossible to differentiate. Thereby we will mention them like
“homologs/homeologs” since now. Circos v0.69 was used to
plot synteny between the linkage maps and reference genomes
(Krzywinski et al., 2009).

Ploidy Level Analysis and Genome DNA
Content Estimation
For ploidy level analysis, the parental plants, OTA-S and
Don Walter, plus all the hybrid individuals were analyzed to
corroborate its ploidy level. Cultivars Victoria and Don Eduardo,
were used as diploid and hexaploid control, respectively.
Approximately 0.5 cm2 of fresh leaf tissue was chopped with
a sharp razor blade in extraction buffer (100 mM citric acid
monohydrate and 0.5% [v/v] Tween 20). The suspensions were
then filtered through nylon tissue with 42-µm mesh width. After
filtration, samples were pooled in groups of four samples each.
One ml of staining buffer (100 mM Tris–HCl, 5.3 mM MgCl2,
86 mM NaCl, 0.03 mM sodium citrate, 7.3 mM Triton X-100,
0.003 mM 4′-6-diamidino-2-phenylindole, pH 7.0) was added,
and the tubes were stored in the dark on ice for 1 to 4 h
before measurements. Fluorescence intensity of 4′-6-diamidino-
2-phenylindole-stained nuclei was determined using the flow
cytometer Ploidy Analyser PA (Partec, Germany).

For genome DNA content estimation, approximately 0.5 cm2

of fresh E. curvula leaf tissue, together with an equal amount of
Secale cereale cv. Dankovske leaf tissue, was chopped with a sharp
razor blade in extraction buffer (5 mM Tris, 2 mM Na2EDTA,
80 mM KCl, 20 mM NaCl, 15 mM β-mercaptoethanol, and
0.1% [v/v] Triton X-100, pH 7.5). The nucleus suspension was
filtered and incubated in 100 µl of staining solution consisting
of 100 mg/l propidium iodide (PI) stain and RNase A. The
stained nucleus suspension was analyzed using a flow cytometer
(Partec, Germany). Genome size was estimated based on the

2https://www.ncbi.nlm.nih.gov/bioproject/PRJNA294988
3https://www.ncbi.nlm.nih.gov/bioproject/PRJNA32913

corresponding mean value for S. cereale cv. Dankovske (16.19 pg
2C DNA content, Doležel et al., 1998).

RESULTS

Mapping Population Development and F1
Phenotyping
A total of 300 offspring derived from the cross between OTA-S
and Don Walter-INTA were obtained. In the first hybrid selection
using RAPD markers, 86 plants were selected (Supplementary
Figure S1), but 19 were ultimately eliminated because they
originated from self-pollination of the female plant by the
mentor effect of the male pollinator. Five other individuals were
eliminated due to a failure in GBS genotyping (low read counts,
see below). Consequently, the mapping population consisted of
62 hybrids. The tetraploid level of the parental and hybrid plants
was corroborated by flow cytometry.

Cytoembryological analysis (Supplementary Figure S2)
of 61 individuals of the population (one hybrid did not
flower) gave a ratio of apomictic versus sexual individuals
of 1:1 (34:27, X2 = 0.37), which agrees with the model of
inheritance of a single dominant genetic factor. Figure 1
shows the distribution of hybrid plants according to their
reproductive mode (2,850 sexual and apomictic pistils observed).
Interestingly, the proportion of sexual embryo sacs within
the apomictic plants varied from 0 to 97%, indicating
that apomixis in E. curvula is a characteristic with highly
variable expressivity.

GBS-SNP Identification
The sequencing of the library produced 366,193,356 (100 bp)
reads (Bioproject: PRJNA509552). After trimming, 33,350,780
low-quality reads were removed, and 332,842,576 reads were
subsequently analyzed using the UNEAK pipeline. Five samples
(Z116, Z154, Z217, Z223, and Z252) were eliminated from further
analyses due to the low number of reads. The depth of coverage
for each sample is listed in Supplementary Table S2.

A total of 332.8 million of reads were assigned to 178,559
tag pair sites. After removing the markers with missing data in
the parental plants, 106,105 GBS-SNP markers were identified.
Segregating GBS-SNP markers that were heterozygous in one
parent and homozygous in the other one were selected, resulting
in 28,074 and 33,765 GBS-SNPs for OTA-S and Don Walter,
respectively. Table 1 shows the results obtained after sequential
filtering of these data. The final number of GBS-SNP markers
was 1,447 for OTA-S and 2,192 for Don Walter (Table 1). After
including 11 SSR and 93 AFLP markers (as shown in Table 2), the
final number of markers was 1,489 for OTA-S and 2,255 for Don
Walter (including the phenotype in the last case).

Genetic Linkage Map Construction
We constructed two linkage maps corresponding to the female
(OTA-S) and male (Don Walter) parent using JoinMap 4.1. As
a first step, identical markers were excluded (54 and 78 identical
markers were eliminated from the OTA-S and Don Walter data,
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FIGURE 1 | Percentage of diplosporous embryo sacs in individuals of a mapping population derived from the OTA-S x Don Walter INTA cross.

TABLE 1 | Steps in the GBS-SNP marker filtering procedure and the number of
markers selected in each step for each parental plant (OTA-S and Don Walter) of
the E. curvula mapping population.

GBS-SNP marker OTA-S Don Walter

Heterozygous for each parental plant 28,074 33,765

Without unexpected alleles 22,648 28,425

Single dose alleles (1:1 segregation) 9,829 11,991

Missing data ≤5% 1,447 2,192

TABLE 2 | Final number of markers for each parental plant (OTA-S × Don Walter)
of the E. curvula mapping population.

Marker OTA-S Don Walter

GBS-SNP 1,447 2,192

SSR 6 5

AFLP 36 57

Diplospory 1

Total 1,489 2,255

respectively). The high level of heterozygosity and the maximum
number of markers per linkage group allowed by the regression
method in the JoinMap software resulted in more groups than
the expected ones (20). Thereby, we used the 2n chromosome
number to define the linkage group number as other authors
previously did (Li et al., 2014; Worthington et al., 2016).

The OTA-S map was defined by 1,114 SDA markers
distributed in 40 linkage groups (LOD score threshold 7.0 or
9.0, Supplementary Table S3), which is consistent with the
number of chromosomes, and contained a minimum of 2 and a
maximum of 102 markers per linkage group (Table 3, Figure 2,
and Supplementary Figure S3). The total length of the OTA-S
map was 1,335 cM, with an average marker density of 1.22 cM
per marker. The genetic linkage map of the apomictic parent

Don Walter was built using 2,019 SDA markers distributed in 40
linkage groups (LOD score threshold 7.0 or 8.5, Supplementary
Table S3), with 7–123 markers per linkage group (Table 3,
Figure 3, and Supplementary Figure S4). The total length of the
Don Walter map was 1,976.2 cM, with an average of 0.98 cM per
marker. In total, more than 90% of the interlocus gaps in both
genetic maps were <4 cM, and only seven and four gaps were
>10 cM in the OTA-S and Don Walter linkage maps, respectively.
The order and exact positions of markers on the maps are shown
in Supplementary Figures S3, S4, and the GBS-SNPs sequences
in Supplementary Table S4.

At the mapping threshold stated, the diplospory locus was
mapped to Don Walter linkage group 3, along with other 65
markers (Figure 4). This locus was flanked by four GBS-SNPs
having a recombination frequency of zero, being in agreement
with previous reports of a low recombination region controlling
the trait in other species (Ozias-Akins and van Dijk, 2007;
Albertini et al., 2010; Ortiz et al., 2013).

QTL Analysis to Identify Regions
Affecting Diplospory Expressivity
To detect loci associated with the expressivity of diplospory
in E. curvula, we performed interval-mapping analysis using
the phenotypic information derived from cytoembryological
analysis of F1 hybrids (see above) and the genetic linkage map
of Don Walter. This analysis detected two genomic regions
highly associated with this trait (LOD score >3.9) in Don
Walter linkage group 3 (Figure 5 and Supplementary Figure
S5). The maximum LOD scores for each potential QTL were
6.96 to 7.39, explaining an estimated phenotypic variation
(R2) of 13.7 and 14.9%, respectively (Table 4). One of these
two regions is very close to the diplospory locus that was
mapped using JoinMap (located at 3.27 cM); thus, it could
be considered the major determinant of this trait. The second
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TABLE 3 | Distribution of single-dose allele (SDA) markers across the 40 linkage
groups on the E. curvula (OTA-S and Don Walter) genetic maps.

LG OTA-S Don Walter

No. of
markers

Distance
(cM)

No. of
markers

Distance
(cM)

1 43 33.3 123 64.1

2 28 30.6 103 70.4

3 47 40.8 66 57.9

4 101 63.0 118 65.7

5 65 63.2 109 53.7

6 62 36.1 103 82.1

7 57 49.1 97 65.9

8 54 29.5 94 93.0

9 53 72.5 84 75.5

10 45 23.7 75 71.4

11 46 43.9 73 68.6

12 45 47.6 65 61.4

13 42 27.5 63 79.2

14 42 46.4 62 56.3

15 41 76.7 62 63.0

16 37 31.3 61 56.0

17 32 21.2 58 56.2

18 31 26.8 54 55.4

19 30 41.1 51 31.4

20 29 52.3 50 35.4

21 24 28.6 46 64.7

22 19 39.3 45 32.6

23 18 29.6 36 40.7

24 17 43.5 35 31.5

25 16 55.6 33 27.9

26 15 25.8 31 65.2

27 13 20.4 28 62.6

28 8 20.1 28 23.1

29 8 28.5 21 30.0

30 7 29.4 20 29.1

31 7 9.8 19 42.9

32 7 39.2 17 34.8

33 6 14.3 13 32.7

34 3 8.3 13 40.4

35 3 15.7 13 32.0

36 3 32.0 13 18.9

37 3 14.7 12 34.3

38 3 16.7 9 36.8

39 2 1.6 9 18.4

40 2 5.0 7 15.0

Total 1,114 1,335.0 2,019 1,976.2

region is located 15 cM from the diplospory locus. Three
additional QTLs were found with a LOD >3 but lower than
the threshold value (LOD >3.9). Two of these QTLs were
localized to linkage group 1 and the other to linkage group
20 (Table 4 and Supplementary Figure S5). The positions
and quantitative information about these QTLs are shown
in Table 4.

Syntenic Analysis to Identify
Homolog/Homeolog Groups
To identify homologs/homeologs groups in the linkage maps,
we mapped the sequences of the GBS-SNP markers against the
genomes of other species. Analysis using Oropetium thomaeum
as a reference (the closest species with a high-quality genome
sequence; VanBuren et al., 2018) showed that 477 (40%) and
900 (45%) GBS-SNP markers from OTA-S and Don Walter,
respectively, mapped to unique positions (best match) under the
above-mentioned conditions (identity>80% and query coverage
>70). Although the order of the markers and their positions in
the O. thomaeum genome are not highly correlated with those
of E. curvula, analysis of Circos graphs showed that the markers
of each linkage group tended to cluster on the same chromosome
(Figure 6). As an example we can mention OTA-S linkage group 4
that matches mainly with O. thomaeum chromosome 4 (dark red
lines in Figure 6A). From the male side (cv. Don Walter), linkage
group 5 of E. curvula matches with O. thomaeum chromosome
3 (red lines in Figure 6B). Nonetheless, it is possible to observe
groups that match with more than one chromosome, like Don
Walter linkage group 8 matches with O. thomaeum chromosomes
7 and 8. On the other hand, as is shown in Figure 7, markers of
Don Walter linkage group 3 (containing the diplospory locus)
are syntenic with those of O. thomaeum chromosome 5. Most
of the linkage groups showed homology, primarily with a single
chromosome of O. thomaeum (Supplementary Tables S5, S6).
Table 5 shows the groups of homologs/homeologs considered to
be exclusive linkage groups (in which most common markers fell
into a single chromosome) or shared linkage groups (in which
most markers were divided into two or three chromosomes).
This enabled us to identify homologs/homeologs groups for each
linkage map, to establish the relationship between the two maps,
and to validate the genetic E. curvula-saturated maps.

We also analyzed synteny with genomes of other related
species (C. americanus, O. sativa, P. hallii, S. italica, and Z. mays),
yielding similar results to those described above (Supplementary
Tables S7, S8). When we compared the markers completely
linked to the E. curvula apolocus (TP135456, TP107627,
TP79423, and TP95591) with the genome of related species,
we found that the GBS-SNP sequences gave homology with
O. thomaeum (Chr5), C. americanus (Chr4), O. sativa (Chr5),
P. hallii (Chr5), S. italica (Chr3), and Z. mays (Chr6 and Chr8)
(Supplementary Table S9).

Finally, we evaluated the genomic DNA content of the parents
of the mapping population. Flow cytometry analysis yielded an
estimated haploid genome size of 1,312 Mbp for OTA-S and 1,195
Mbp for Don Walter.

DISCUSSION

Segregation analysis of the reproductive mode in our E. curvula
tetraploid mapping population revealed a 1:1 ratio of apomictic
versus sexual individuals. This type of inheritance supports
the hypothesis that diplospory is controlled by a single
dominant genetic factor in E. curvula, as described for other
diplosporous apomictic species, such as Taraxacum officinale
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FIGURE 2 | Linkage groups of the sexual plant OTA-S (E. curvula) obtained using GBS-SNPs, SSRs, and AFLPs. Marker positions are expressed in centimorgans.
Different colors represent different marker densities.

FIGURE 3 | Linkage groups of the facultative apomictic plant Don Walter (E. curvula) obtained using GBS-SNPs, SSRs, and AFLPs. Marker positions are expressed
in centimorgans. Different colors represent different marker densities.

(Vijverberg et al., 2004) and Tripsacum dactyloides (Grimanelli
et al., 1998). Pioneering studies of the inheritance of apomixis
in weeping lovegrass were carried out by Voigt and colleagues
(Voigt and Bashaw, 1972; Voigt and Burson, 1992), who
phenotyped plants by measuring various morphological traits,
obtaining a ratio of apomictic versus sexual offspring of 1:1.4. The
authors proposed a simple genetic model for the inheritance of
apomixis in weeping lovegrass, i.e., apomixis is dominant over
sexuality and is controlled by a single gene. Voigt et al. (Voigt
and Bashaw, 1972; Voigt and Burson, 1992) categorized plants
into apomictic, highly sexual, and sexual, but Savidan (2000)
later proposed that plants are apomictic even if they only have

the ability to produce apomictic offspring. When we reanalyzed
Voigt et al.’s results taking into account the concept proposed
by Savidan (2000), the proportion changed to 1.7:1 (96:56).
The results obtained in this study using cytoembryological
observations and molecular markers (both methods are more
reliable than the analysis of morphological traits) showed that
a single locus controls diplospory in weeping lovegrass and that
this trait is dominant over sexuality. Whether the expression of
this trait relies on a single gene or linked cosegregating genes
is still unknown.

In other diplosporous species, although the regions
controlling different components of apomixis (apomeiosis,
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FIGURE 4 | Linkage group 3 from the facultative apomictic cv. Don Walter
(E. curvula) containing the locus that controls diplospory (APO). Marker
positions are expressed in centimorgans.

parthenogenesis, and autonomous or pseudogamous endosperm)
are physically separated, these regions are inherited either as
a single locus (T. dactyloides) or independently (E. annuus)
(Grimanelli et al., 1998; Noyes et al., 2007). In the case of
apospory, a more frequent apomixis mechanism than diplospory,
a dominant locus of simple inheritance has been identified
(Akiyama et al., 2004; Calderini et al., 2006; Okada et al.,
2011; Ortiz et al., 2013), although in Poa pratensis, two genetic
factors are thought to control apospory and parthenogenesis
(Albertini et al., 2001). In Pennisetum squamulatum and in
species from the genus Paspalum, the ASGR shows a lack
of recombination, forming an extensive block (50 Mbp in
P. squamulatum; Akiyama et al., 2004) that is fully inherited,
thus ensuring the concurrent inheritance of all its components
(Ozias-Akins et al., 1998; Labombarda et al., 2002; Stein et al.,
2007). Several authors have reported the presence of repetitive
elements, pseudogenes, and heterochromatic regions in the
ASGR. Koltunow and Grossniklaus (2003) hypothesized that the
repetitive sequences act as a sink to sequester factors involved in
the sexual reproductive pathway, thereby altering the expression
of sexual reproductive processes and possibly causing apomixis.
More recently, Kotani et al. (2013) reported that extensive
repetitive sequence structures associated with the apospory
locus in Hieracium are not required for apomixis. Therefore, it
is possible that these structural features and allele divergence
occur as a consequence of asexual reproduction and suppressed
recombination, which might have evolved to maintain the
genetic elements required for apomixis.

Although several reports describe the presence of genes in
diverse apomictic species, which are differentially expressed or
play functional roles in apomictic development (Albertini et al.,
2005; Corral et al., 2013; Siena et al., 2014; Conner et al.,
2015; Pellegrini, 2016; Worthington et al., 2016; Garbus et al.,
2017; Selva et al., 2017), little is known about the gene or
genes that control regulatory programs or common pathways
among different apomictic species or that trigger the mechanisms
underlying apomixis.

In this study, we constructed genetic linkage maps for
E. curvula, including one for the female sexual parent and
one for the male apomictic parent. These maps are the
most saturated maps for the genus Eragrostis and some of
the most saturated maps for polyploid forage grass and
apomictic species produced to date (Jessup et al., 2003;
Stein et al., 2007; Thaikua et al., 2016; Worthington et al.,
2016). Nonetheless, additional studies are needed to allow
our linkage maps to reach the high resolution of genetic
maps of model species, which include thousands of markers
mapped with high accuracy and precision. One of the greatest
limitations to the construction of the linkage genetic maps
produced in this study was the small number of individuals
in the mapping population, i.e., 62. A population size >75
should be used (Wu et al., 1992), but this was difficult to
achieve for E. curvula due to a variety of factors, such as
the complex reproductive mode of this species, the inability
to perform castration (emasculation) due to spike size and
morphology, and the high frequency of self-pollination in
the single tetraploid sexual genotype available (OTA-S). In
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FIGURE 5 | Linkage group 3 from the facultative apomictic cv. Don Walter (E. curvula) showing the QTLs positions (in cM) for diplospory. The LOD threshold to
consider a QTL as significant is indicated as a dashed line at a LOD value of 3.9.

TABLE 4 | QTLs mapping for diplospory on the facultative apomictic cv. Don Walter (E. curvula) linkage groups, showing only the QTL with LOD values higher than 3.

Marker Max LOD Linkage group Position (cM) Phenotypic variation (%) Confidence Interval (cM)

TP10944 3.01 1 1.00 3.8 2.41

TP157277 3.2 1 8.90 4.0 2.20

TP26366 6.96 3 27.84 13.7 1.67

TP158907 7.39 3 46.03 14.9 2.27

TP89963 3.02 20 31.63 3.8 7.38

The LOD threshold to consider a QTL as significant was established at a LOD value of 3.9.

addition, many other genotypes used as pollen donors were
incompatible with the maternal plant. Despite these limitations,
this is a high density map which is consistent with data
collected by other authors using similar models and techniques
(Worthington et al., 2016; Huang et al., 2018).

Several linkage maps of polyploid species are based
exclusively on markers that segregate at a 1:1 ratio (SDA),
enabling the use of diploid mapping softwares like JoinMap.
Allopolyploid species have disomic inheritance, and its
genetics is therefore similar to that of diploids, except for
the presence of multiple genomes. The assumption that
all the markers have a 1:1 disomic inheritance might be
an oversimplification because the markers with a different
segregation pattern were not considered. However, for
our dataset, this is a straightforward approach very well

documented in the literature to deal with GBS-SNP markers
in allotetraploid species (Li et al., 2014; Thaikua et al., 2016;
Worthington et al., 2016).

E. curvula is considered to be an allopolyploid species,
although multivalent formation has also been recorded in some
polyploid genotypes, such as Tanganyika and Don Eduardo
(Vorster and Liebenberg, 1977 Poverene, 1988). However,
multivalents are not frequent in the parental genotypes of the
mapping population, where preferential pairing among primary
homologs has been demonstrated (Poverene, 1988).

The sizes of the linkage maps of OTA-S and Don Walter are
quite different (1,335 cM versus 1,976.2 cM, respectively). This
variation in genetic map size is not related to the difference in
genome size between genotypes, as we estimated the haploid
genome sizes to be 1,312 Mbp for OTA-S and 1,195 Mbp

Frontiers in Plant Science | www.frontiersin.org 10 July 2019 | Volume 10 | Article 918

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00918 July 12, 2019 Time: 16:36 # 11

Zappacosta et al. E. curvula Linkage Map for Diplospory

FIGURE 6 | Circos graphs comparing the E. curvula linkage maps with the O. thomaeum physical map (A: OTA-S, B: Don Walter). The numbers from 1 to 40
represent the linkage groups of the sexual and apomictic E. curvula plants and the labels CHR1-10 represent the chromosomes of O. thomaeum.

for Don Walter. Thus, although the variation in the genetic
sizes of the linkage group maps of both parents is not likely
due to differences in genome size, this variation might reflect
the differential recombination rates of the genotypes. Indeed,
studies of model plants have demonstrated the impact of genome
sequence divergence on recombination rates, with a lower
recombination rate related to higher levels of genome divergence
(Chetelat et al., 2000; Opperman et al., 2004; Li et al., 2006). In
addition, recombination rates are known to differ between sexes
in both plants and animals (Lorch, 2005). For example, Huang
et al. (2018) found that the male genetic map of Clementine
mandarin was notably larger than its female counterpart. Another
possible reason for the difference in the sizes of the linkage maps
is that OTA-S was obtained by bulk seed harvest produced in
isolation from four tetraploid (2n = 40) clones derived from
PI 299929 and from a cross between PI 299928 and PI 299929
(Voigt, 1976).

When we investigated synteny of the E. curvula genome
with genomes of other related species, we identified
homologs/homeologs linkage groups when the OTA-S and
Don Walter linkage maps were compared with the physical map
of O. thomaeum, the closest relative with a high-quality genome
sequence. Using this information, it was not only possible to
obtain homologs/homeologs groups for each map but also
to establish which groups of each map would be equivalent.
The synteny analysis of the apolocus linked markers with the
genome of related species showed an interesting result. The
maize relative diplosporous genus Tripsacum have two RFLP
markers (csu68 and umc28) linked to diplospory that are located
at a distal position on Z. mays Chr6L (Leblanc et al., 1995). This
region is syntenic to Z. mays Chr8 and Chr3 (Savidan et al.,
2004). Thereby, our results are promising since the E. curvula

apolocus linked markers gave homology with regions located on
maize Chr6L and Chr8. Regarding to other species, our markers
gave homology with chromosomes or genomic regions that are
different to the ones reported in the literature as linked to the
apolocus (see Table 6). These findings supports the hypothesis
that apomixis is polyphyletic and emerged several times during
evolution (Carman, 1997).

The apomictic plants in our mapping population showed
different levels of expression of diplospory, with 3–100%
of the observed pistils having apomictic embryo sacs. We
previously reported (Rodrigo et al., 2017) that OTA-S only shows
Polygonum-type embryo sacs, whereas Don Walter is a facultative
genotype, with 60–100% diplosporous apomictic embryo sacs.
As occurs in most known apomictic plants, these plants are
facultative and can switch their developmental program back and
forth from the asexual to the sexual route (Brukhin, 2017). This
trait appears to be useful for the evaluation of candidate genes,
especially genes with quantitative effects. Other studies, such as
the one of Noyes (2005) related with the inheritance of diplospory
in Erigeron, have also found a complete gradient of apomixis
expression. These different levels of expression of diplospory
observed in E. curvula allowed us to evaluate diplospory as a
quantitative trait and to look for other genomic regions that could
regulate it. Our QTL analysis revealed two main regions very
close to the diplospory locus in Don Walter linkage map (linkage
group 3) and three other regions with a LOD value slightly
below the LOD significance threshold, including two localized in
linkage group 1 and the other in linkage group 20. Although the
phenotypic analyses were performed in only one environment,
the results are trustable because are in concordance with the
linkage mapping analysis and the diplospory locus position.
Additionally, to the best of our knowledge this study is the first
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FIGURE 7 | Synteny between the E. curvula (facultative apomictic cv. Don Walter) linkage group 3 with the O. thomaeum chromosome 5. Red bars represent the
QTLs positions for diplospory.

conducted to date that treats apomixis as a quantitative trait and
provides evidence for an external region that regulates this trait.
Another important finding in favor of the presence of regions
that regulate this trait is that sexual/apomixis expressiveness is
strongly dependent on environmental conditions (Zappacosta
et al., 2014; Rodrigo et al., 2017), which, in turn, could be
indicative of regulation at the epigenetic level.

Eragrostis-type apomixis has particular characteristics that
make it an interesting model for the transfer of apomixis,
especially for crops such as maize, which are highly sensitive to
changes in the embryo:endosperm ploidy ratio, which should
be equal to 2:3. In our model, this ratio is the same as that
of sexual endosperm. This is an important difference from
other apomictic models in which the situation is variable
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TABLE 5 | Homologs/homeologs linkage groups from E. curvula obtained by synteny analysis with the O. thomaeum physical map.

O. thomaeum chromosome OTA-S Don Walter

Exclusive LG Shared LG Exclusive LG Shared LG

1 6, 11, 17 16, 32 1, 4, 14, 22

2 5, 12, 13, 34 16, 24 2, 9, 12, 36 13, 34, 35

3 10, 15, 18, 19, 22, 28 16, 32 5, 6, 25, 29 34, 35

4 1, 2, 4, 14, 40 24 7, 19, 23, 31 24, 40

5 8, 26, 29 32 3, 11, 26, 30

6 3, 20 16, 20, 28, 33

7 7, 21, 31 10, 18, 32, 38 8

8 24, 25 16 21, 37 8

9 9, 23, 30 15, 17, 27 40

10 27, 33 24 39 13, 24, 35

Exclusive LG indicate the groups where most of the markers match to a single chromosome. Shared LG indicate the groups where most of the markers match with
multiple chromosomes.

TABLE 6 | Synteny between the apolocus region reported in apomictic species and non-apomictic reference species.

Species Apomixis mechanism Synteny References

Brachiaria decumbens Apospory Setaria italica (Chr5) Worthington et al., 2016

Brachiaria humidicola Apospory Setaria italica (Chr1) Worthington et al., 2019

Brachiaria brizantha Apospory Oryza sativa (Chr2) Pessino et al., 1998

Zea mays (Chr5) Pessino et al., 1997

Setaria italica (Chr1) Zhang et al., 2012

Pennisetum squamulatum Apospory Setaria italica (Chr2) Sapkota et al., 2016

Paspalum simplex Apospory Oryza sativa (Chr12) Pupilli et al., 2001

Setaria italica (Chr3) Galla et al., 2019

Paspalum malacophyllum Apospory Oryza sativa (Chr12) Pupilli et al., 2004

Paspalum notatum Apospory Oryza sativa (Chr2, Chr12) Pupilli et al., 2004

Paspalum procurrens Apospory Oryza sativa (Chr12) Hojsgaard et al., 2011

Tripsacum Diplospory Zea mays (Chr6) Leblanc et al., 1995

Eragrostis curvula Diplospory Oryza sativa (Chr5) This study

Setaria italica (Chr3)

Zea mays (Chr6, Chr8)

For E. curvula the syntenic analysis was done with the markers cosegregating with the apolocus.

and relaxed (the endosperm can develop under a wide range
of relationships) (Hojsgaard, 2018). The embryo:endosperm
ploidy ratio is strictly 2:3 in several model species because
at the early stages of embryo and endosperm development,
many alleles are silenced (imprinted) depending on their
parental origin. Any deviation in the dosage will result in
the arrest of endosperm development and seed abortion
(Brukhin, 2017). Other interesting aspect of this model is that
the Eragrostis type embryo sac development lacks of meiotic
stages (Crane, 2001), and as a diplosporous plant, compared
to apospory, the chances of polyembryony are even lower
(Asker and Jerling, 1992; Koltunow and Grossniklaus, 2003;
Batygina and Vinogradova, 2007).

CONCLUSION

Phenotyping of an F1 population showed that the
segregation of diplospory follows a 1:1 (apomictic:sexual)

ratio, indicating that a single gene or genomic region is
involved in diplospory.

We constructed the first genetic map of E. curvula. This map
is the most saturated map for the genus Eragrostis and one of the
most saturated maps for a polyploid forage grass and apomictic
species constructed to date, with 40 linkage groups per parent.
These results are somewhat expected for an allotetraploid with a
high grade of heterozygosis.

Our linkage analysis determined that the diplospory locus and
other 65 markers in a single linkage group (Don Walter LG3).
This locus is closely flanked by two QTLs that could be linked to
the expressivity of this trait.

The use of the current mapping population gave us the
opportunity to construct a genetic map and to locate molecular
markers associated with apomixis. Furthermore, this population
is composed of individuals that are genetically close but have
different reproductive modes, which might allow us to conduct
further expression studies that will help identify candidate genes
that regulate apomixis. This also should allow us to map other
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traits that are contrasting in the parental genotypes and are
limiting factors for weeping lovegrass production, such as forage
quality, a trait related to lignin content. Finally, it might also
be possible to map genes involved in biotic and abiotic stress
tolerance; these are critical traits in the breeding of this forage
grass, which is cultivated in marginal crop regions.

Further studies using the auxin test proposed by Matzk (1991)
to evaluate parthenogenesis will allow us to determine if both
traits - diplospory and parthenogenesis - are controlled by genes
located in one or more genomic region/s.
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FIGURE S1 | Selection of hybrid E. curvula plants with RAPD markers.
Fragments were amplified with primer 248 and revealed in 6% acrylamide gels.
Arrows indicate polymorphisms between the parental plants and the stars show
offsprings harboring paternal markers.

FIGURE S2 | Development of the sexual (A–C) and diplosporic embryo sacs
(D–F) in plants of weeping lovegrass. Bar: 50 µm. Sections dyed with
safranina-fast green. (A) Megaspore mother cell and degenerated megaspores,
(B) Binucleated embryo sac, (C) Tetranucleate embryo sac, (D) Elongated
megaspore mother cell, (E) Binucleate embryo sac, (F) Tetranucleate embryo sac.

FIGURE S3 | Linkage groups of the sexual plant OTA-S (E. curvula) obtained using
GBS-SNPs, SSRs, and AFLPs. Marker positions are expressed in centimorgans.

FIGURE S4 | Linkage groups of the facultative apomictic plant Don Walter
(E. curvula) obtained using GBS-SNPs, SSRs, and AFLPs. Marker positions are
expressed in centimorgans.

FIGURE S5 | Linkage groups from the facultative apomictic cv. Don Walter
(E. curvula) showing the QTLs positions (in cM) for diplospory. The LOD threshold
to consider a QTL as significant is indicated as a dashed line at a LOD value of 3.9.

TABLE S1 | RAPD and SSR primers and AFLP adaptors, pre-amplification and
selective primer sequences used to construct the E. curvula genetic maps.

TABLE S2 | Number of reads, length and coverage (average genome size of
1,250 Mb) of the GBS library from E. curvula used for SNP calling. Barcodes for
each sample are indicated.

TABLE S3 | LOD score where each linkage group was determined.

TABLE S4 | SNPs names and the alternative sequences of each alleles.

TABLE S5 | Synteny between the E. curvula sexual genotype OTA-S linkage
groups and the physical map of O. thomaeum.

TABLE S6 | Synteny between the E. curvula facultative apomictic cultivar Don
Walter linkage groups and the physical map of O. thomaeum.

TABLE S7 | Synteny between the E. curvula sexual genotype OTA-S linkage
groups and the physical maps of Cenchrus americanus, Oryza sativa, Panicum
hallii, Setaria italica, and Zea mays.

TABLE S8 | Synteny between the E. curvula facultative apomictic cultivar Don
Walter linkage groups and the physical maps of C. americanus, O. sativa, P. hallii,
S. italica, and Z. mays.

TABLE S9 | Homology of GBS-SNP markers of E. curvula facultative apomictic
cultivar Don Walter with the chromosomes of Oropetium thomaeum,
C. americanus, O. sativa, P. hallii, S. italica, and Z. mays.
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