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Abstract

In this work we study the characteristics of the heart rate variability (HRV) as a function of age and

gender. The analyzed data include previous results reported in the literature. The data obtained in this

work expand the range of age studied until now revealing new behaviors not reported before. We analyze

some measurements in the time domain, in the frequency domain and nonlinear measurements. We report

scaling behaviors and abrupt changes in some measurements. There is also a progressive decrease in the

dimensionality of the dynamic system governing the HRV, with the increase in age that is interpreted in

terms of autonomic regulation of cardiac activity.

1 Introduction

Heart rate variability (HRV) is the physiological variation in the duration of cardiac cycles [1,2]. With the

development of electrocardiographic devices the term was related to the variation in the duration of the

RR-intervals in an electrocardiographic record. The HRV is mainly controlled by the autonomic nervous

system (ANS) through the interplay of sympathetic and parasympathetic neural activity mainly at the

sinus node [3,4]. In general, the HRV is influenced by many several factors such as chemical, hormonal

and neural modulations, circadian changes, exercise, emotions, posture and preload. The adaptation of the
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heart rate to changing factors is carried out by the activity of different regulatory subsystems, i.e. activity

of vasomotor and respiratory centers, of baroreflex and chemoreflex closed loop regulation, of cardiovascular

reflexes mediated by vagal and sympathetic afferences, and of vascular and thermoregulation. The variety

of regulatory subsystems results in a complex linear and nonlinear temporal behavior, which changes with

age and pathologic conditions. Several studies demonstrated age-related and gender-related variation in

long-term HRV characteristics. It was reported that autonomic activities diminish with age in both genders

and that gender-related variation in parasympathetic regulation decreases after the age of 50 years [5-11].

HRV characteristics were proposed as predictors of the risk of premature mortality after myocardial

infarction or development of congestive heart failure, diagnosis of autonomic dysfunction in diabetes, non-

invasive estimation of the autonomic modulation of the cardiovascular system during stress, relaxation or

the assessment of the effects of physical training on fitness level. All of these are the reasons why the interest

in HRV is growing both in clinical and physiological studies [12-19].

Many mathematical methods to compute the HRV characteristics have been developed—they may be

grouped into statistical, spectral, graphical, nonlinear, complexity, or information based[20-23].

In summary, there has been a huge effort from the world scientific and medical community to have

reliable measurements of the HRV characteristics in normal and pathological conditions. Concerning the

relationship of HRV with gender and age, very extensive and complete studies can be found in [2, 24] and

references therein, which both together constitute the broadest study of the HRV relationship with age we

know.

In this work we expand the range of age studied in the literature and reveal new behaviors that had not

been detected until now. We include data from previous studies and show that our data are consistent with

them. We also analyze differences by gender. Our study is limited to the study of some of the existing

measurements, but the results show the need to reanalyze all the others, and a further analysis (with

additional insights into the treatment of data) will be presented later.

This work is organized as follows: in the next section methodological details are explained. They are

equal to those also used in [21,22] and comparable to the methodology used in [2, 24].

Section 3 shows the results first as a function of age and then distinguishing among genders. Dependences

are rationalized adjusting power law behaviors.

Finally we summarize our conclusions in Section 4.
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I Minimal nighttime frequency¿60/min

II Nighttime pauses¡3 seg.

III Ventricular extrasystoles ¡ 100/24h, without couplets, bursts or polymorphism.

IV Supraventricular extrasystoles ¡ 100/24h, without bursts.

V Absence of blocks or conduction disturbances.

Table 1: Normality criteria for all Holters recorded in the present work.

2 Procedure

Holter recordings from healthy subjects were collected from volunteers after an exhaustive interview and

clinical examination. Those individuals without clinical symptoms of disease, without medication and with

electrocardiograms (ECG) within normal parameters according to the criteria summarized in Table 1 were

included[25,26].

Holters were recorded for 24 h with digital three-channel DMS300 7 and DMS300 3A recorders, and Galix

recorders, using 3M electrodes[27]. The automatically detected and classified electrocardiographic recording

events were examined and corrected by two cardiologists, and the artifacts were removed as aforementioned.

We applied quality criteria established in [25,26] to the all time series used in the present work. Also

stationarity was evaluated and surrogate analysis was performed as in [28-31].

Time series of a total of 195 healthy individuals were finally analyzed (13 time series were taken from

[32], and 28 from [33]). They are from 0 to 74 years old and 50% of them are females.

In Results we also introduced data from [2,24] for comparison purposes. In total, data of about 500

healthy subject aged between 1 month and 99 years were evaluated.

3 Results

3.1 Linear analysis

The following linear indexes in the time domain were calculated: the RR interval mean value, < RR >, the

standard deviation, SDRR, the square root of the mean of the sum of the squares of differences between

consecutive RR intervals , rMSSDRR, and the percentage of the intervals that vary more than 50 ms from

the previous interval, pNN50.
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Figure 1 shows their dependence on age, including data from [2] and [24]. Data from different sources

show a good agreement among them validating the general treatment of the measurements. Our data expand

the experimental range of age revealing unknown tendencies. Indeed while < RR > exhibits a monotonic

behavior, SDRR, rMSSDRR and pNN50 show an abrupt change at the age of 12 years not detected so far.

We rationalized Figure 1 results through scaling laws as follows:

< RR >= (515 ± 2)x(0.117±0.003) (1)

SDRR =














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
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(4)

where x is the age in years.

Though the power law adjustments for ages above 12 years are statistically worse than those for ages

below 12 years, they are still better than or equal to other linear or quadratic adjustments performed on

the same sets.

Gender differences are shown in Figure 2, and Table 2 summarizes the power law parameters in each

case. For ages below 12 years there are no significant differences with gender, while for ages above 12 years,

a slight but significant difference appears in SDRR and pNN50 (see Table 2)

3.2 Frequency domain measurements

Heart rate variability time series exhibit power law behavior in the frequency (1/beat) domain, which is

manifested in the power spectrum behavior and expressed as

S(f)αfβ (5)
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Index Male Female

< RR >

Eq. 506(4)x0.125(5)

N 182

R 0.94

p¡ 10−4

Eq. 500(3)x0.115(4)

N 213

R 0.95

p¡ 10−4

SDRR

below 12 above 12

Eq. 77.6(8)x0.27(3) 398(4)x−0.28(4)

N 57 123

R 0.86 −0.55

p¡ 10−4 10−4

below 12 above 12

Eq. 77.6(8)x0.21(3) 229(2)x−0.17(4)

N 50 148

R 0.80 −0.36

p¡ 10−4 10−4

rMSSDRR

below 12 above 12

Eq. 19.5(8)x0.36(3) 200(20)x−0.54(7)

N 58 125

R 0.83 −0.57

p¡ 10−4 10−4

below 12 above 12

Eq. 18.2(8)x0.34(4) 160(20)x−0.45(6)

N 55 143

R 0.79 −0.51

p¡ 10−4 10−4

pNN50

below 12 above 12

Eq. 0.038(2)x0.8(1) 12(2)x−1.4(2)

N 58 124

R 0.76 −0.63

p¡ 10−4 10−4

below 12 above 12

Eq. 0.037(2)x0.7(1) 1.7(1)x−0.8(1)

N 53 133

R 0.67 −0.43

p¡ 10−4 10−4

Table 2: Power law adjustments by gender and age range (where x is the age). The numbers parentheses

indicate the error in the parameters, N is the number of data, R is the correlation coefficient and p is the

t-Student parameter.
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Figure 1: Age dependence of some statistical indexes. Filled circles are the data of this work, open squares

are data from [2], and open circles are data from [24].

β values were determined in this work by averaging the power spectra of successive time series segments

of 4096 beats. An example is shown in Fig. 3. The procedure allows the elimination of high frequency

fluctuations and is detailed in [26]. Other frequency domain measurements were defined such as the low

frequency (LH) and high frequency (HF) indexes and their ratio (LF/HF), etc. They will be discussed in a

further work in comparison with other short term measurements.

Figure 4 shows the dependence of β on age. A nonmonotonic behavior is observed which was no reported

so far: an increase of β values appears at the interval extremes, where the action of each one of the subsystems

of the ANS dominates (either sympathetic or parasympathetic tones). Also a minimum at the age of 1 year,

is revealed which was not reported so far and deserves to be further explored.

3.3 Nonlinear analysis

Heart rate variability time series can be thought as a sequence of observations sn performed on a multidi-

mensional dynamic system.

To unfold the multidimensional structure of the system by using a scalar sequence sn of data, the method

of delays is employed in nonlinear sciences.
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Figure 2: Gender effect on different statistical indexes. Filled circles are female subjects and open circles

are male subjects. Panels on the left show the adjustments for ages below 12, while panels on the right show

the adjustments for ages above 12. The adjustment parameters are shown in Table 2. Solid lines correspond

to female subjects and broken lines correspond to male subjects.
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Figure 3: Averaged power spectrum of a healthy adult subject and linear adjustment at low frequencies to

determine β. For details see [26]

Figure 4: β dependence on age and gender. Filled circles are female subjects and open circles are male

subjects
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Vectors in an embedding space are formed from time-delayed values of the scalar measurements sn =

(sn−(m0−1)τ , sn−(m0−2)τ , . . . , sn) , where m0 is the minimal embedding dimension and τ is the delay time.

Both m0 and τ provide fundamental information on the dynamic system;m0 gives the dimension to com-

pletely unfold the trajectory of the system in the phase space.

The false nearest neighbor (FNN) method was proposed by Kennel et al. to determine m0 [34]. The

idea is very intuitive and is based on the fact that in the embedding dimension (m0), the trajectories or

the attractor reconstructed from a physical observable by the delayed coordinate method are a biunique

image of the attractor in the original phase space. In particular, the topological characteristics of the

attractor are preserved, despite the changes in the radii of curvature, the trajectories and the radius of the

neighborhood of a point (according to Lyapunov exponents). Hence, the false nearest neighbor method

consists of reconstructing the attractor in progressively greaterm < m0 dimensions and determining the

number of average neighbor points (within a neighborhood of radius ε ) of each of the attractor points.

As the topologies of the original attractor projections are not necessarily preserved in the reconstructed

attractor, a point belonging to a neighborhood for a given m value may belong to another neighborhood for

a greater m value. We will then say that in our neighborhood that point was a false nearest neighbor.

The method consists of calculating the false nearest neighbor fraction for progressively larger values of

m . When m = m0 , the false nearest neighbor fraction should stabilize and ideally take a zero value. In

practice, we determined m0 as the value of m where the false nearest neighbor fraction curve stabilizes, i.e,

that the absolute difference between two successive values is less than0.0005.

Eventually, the result also depends on both the length and the delay time τ of the time series, and an

adequate comparison of the results will require a careful evaluation of the algorithm and the standardization

of the procedures used. In this study we used the nearest neighbor algorithm provided by the TISEAN

software package [35,36]. We chose a value of τ = 1 for all the time series. This value, as well the algorithm

performance as a function of the length of the time series, has been tested previously in our work.

The FNNF10 index is just the nearest neighbor fraction for m = 10 (regardless of the m0 value). This

magnitude may be taken as a measure of the error in the reconstruction of the attractor for that value of

m.

Figure 5 shows the dependence of m0 on age and gender.

Figure 6 shows the dependence of FNNF10 on age for different genders. The results were rationalized
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Figure 5: m0 dependence on age and gender. Filled circles are female subjects and open circles are male

subjects

adjusting scaling equations as follows:

FNNF10 = 0.065(3)x−0,75(5) (6)

FNNF10 = 0.072(4)x−0,79(5) (7)

where x is the age and Eq (6) is valid for males while Eq (7) is valid for females.

4 Discussion and Conclusions

Data analyzed in the present work are of different sources and correspond to about 500 healthy subjects

covering the most large range of ages analyzed so far. In the present work 195 records were acquired. There

are many other studies based on age and gender in the literature. Although the results reported by them

are consistent with ours, a direct comparison was not possible because of the way in which the data were

reported. The age of the individuals should be considered as a continuous variable to detect the functional

dependences as reported in this work.
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Figure 6: FNNF10 dependence on age and gender. Filled circles are female subjects and open circles are

male subjects. The broken line corresponds to Eq. (6) and the solid line to Eq. (7).

The main conclusions are:

< RR >follow a scaling relationship with age that is independent of gender.

Statistical measures such as SDRR, r−MRSSDRR and pNN50 show an abrupt change at the age of 12

years. We assume the same cutoff (independent of gender) in all cases for simplicity, but this ansatz should

be further studied. Below 12 years, the results are independent of gender, while above 12 years there seems

to be a slight dependence on gender.

Other statistical measures also deserve to be explored.

Two previously developed non linear measurements, m0 and FNNF10, were also studied as a function

of age and gender. m0 is the minimum number of topological dimensions to unfold the dynamical system

governing the HRV. It is highly variable among individuals but it is always higher than 9 for ages below 10

years and always lower than 10 for ages up to 10. FNNF10 is the nearest neighbor fraction for m = 10

(regardless of the m0 value). This magnitude diminishes with age also following a scaling behavior that

is independent of gender. The decrease of FNNF10 is consistent with the fact that m0 takes values that

for children are higher than those for adults. One could relate the behavior of the dynamic system to the

changes in the autonomic modulation of HRV.
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The autonomic activity diminishes with age in both genders, and the dynamic system evolves in a

topological space of the decreasing dimension, i.e, with a progressively lower number of dynamic variables

influencing the HRV.

These changes would also be reflected in the dependence of β on age, but further studies are necessary

to reveal them and they will be presented later.
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