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Abstract

We generalize the Cable Model to describe the transport characteristics of the gap junctions coupling

adjacent cells in the heart muscle. Our model takes into account recent experimental information about

the time dependence of the junctional current and modifies the connections between cells. It can be used

with whatever excitable model is used to represent the cell. We show that by modulating the gap junction

transport characteristics, it is possible to either suppress or produce meandering of spiral waves, a state

associated with cardiac arrhythmia.
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1 Introduction

Spirals are generic structures in extended nonequilibrium systems. They are typical of many reaction-

diffusion systems, and have been directly visualized in the heart muscle associated with reentrant wave

fronts [1].

The spiral wave dynamics was numerically studied in both isotropic and anisotropic media, and limited

or unlimited geometries [2]-[6]. If the spiral tip rotates around a stationary region, the activation wave

front will follow the same path from one complete reentrant cycle to the next, and the associated ECG

will exhibit a monomorphic pattern. When the tip meanders, the activation sequence from one reentrant

cycle to the next will be different and the associated ECG can exhibit polymorphic patterns. Polymorphic

patterns appear in the ECG related to ionic channel blockade, regions of refractory tissue, intracellular

calcium instabilities, etc [1][7]-[10].

More recently the challenge of the role of gap junctions in electrical wave propagation has encourage

investigations about the proarrhythmic effects of reduced intercellular coupling[11]-[15]. Adjacent cells are

coupled by the myocardial gap junction channels, which transmit the intercellular voltage gradients and

allow the action potential propagation. Disruption of the gap junction membrane structures terminates

the transfer of cardiac action potential across an electrically unexcitable gap. Severe gap junctional un-

coupling not only drastically reduces conduction velocity, but also further results in meandering activation

wavefronts.[16],[17]

Simulations are usually made in the so-called Cable Model [2],[3][18]-[20] where the gap junction coupling

is introduced as a constant conductance. However, gap junctions are not passive but dynamic pores that

allow ions to pass from one cell to the next.

Experimental information also indicates that junctional current decays exponentially when a constant

voltage difference is applied across the junction (pulse protocol).[21]-[26]

Other studies have considered the dynamic nature of the gap junctions. Although these studies de-

mostrated the significant dynamics that can occur in the gap junction for the cases near decremental propa-

gation and conduction block, results did not deviate qualitatively from those observed with the more classical

representation of gap junctions as constant resistors.[27]

In the present work, we generalize the Cable Model by introducing the above-mentioned experimental

finding and show that by modulating the gap junction transport characteristics, it is possible either to suppress
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or to produce meandering of spiral waves, a state associated with cardiac arrhythmia.

2 The Model

The origin of the action potential Vm in an isolated cell lies in the movement of ions throughout the cell

membrane characterized by a capacitance Cm. The process is described by

∂Vm

∂t
= −

Iion(t)

Cm

(1)

where Iion is the total ionic current, produced by the transport of different ions throughout a number of

ionic channels, and other interchange mechanisms[28]. A value of Iion < 0 represents the entrance of positive

ions into the cell and an increase of Vm, i.e., a depolarization of the cell. A reduction of Vm (repolarization

of the cell) is produced by a value of Iion > 0, representing the outgoing of positive ions from the cell. In

general, Iion is the sum of outgoing and incoming currents (Ix), characterized by different magnitudes and

dependences on Vm

Iion =
n
∑

x=1

Ix (2)

A number of dynamic models have been used to derive Iion.

The modification proposed in the present work affects the connections between cells and therefore it can

be applied whatever dynamic model is used to express Iion.

In the Cable Model the propagation of Vm wave fronts is schematized in Figure 1a. An excitable model

describes a membrane cell, and several membrane cells are connected through resistors. The resistor grid

represents both the intracellular medium and the intercellular channels, and the extracellular medium is

assumed to have a negligible resistance compared to the intracellular space.

The total cell current It is given by

Cm
∂Vm

∂t
+ Iion = −It (3)

while the total intercellular current Ii = Iix + Iiy is given by

gix
∂Vm

∂x
+ giy

∂Vm

∂y
= Ii (4)
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where gix and giy indicate both the intracellular and the intercellular conductivities, and an anisotropic

medium is assumed. Note that g−1
ix and g−1

iy are extended resistivities, i.e.,
[

g−1
ix

]

=
[

g−1
iy

]

= Ω/m.

Furthermore, the total cell current per unit length is given by

∂Iix
∂x

+
∂Iiy
∂y

≃
∆Iix
∆x

+
∆Iiy
∆y

= −

(

It1
∆x

+
It2
∆y

)

= −
It
∆

(5)

where ∆x = ∆y = ∆ is the unit length.

Therefore,

gix
∂2Vm

∂x2
+ giy

∂2Vm

∂y2
= Cm

∂Vm

∂t
+ Iion (6)

where ∆ has been omitted on the rigth-hand side for simplicity.

We note that the scale change

X = x (7)

Y =

√

gix
giy

y (8)

eliminates the anisotropy effect in Eq. 6. The quantity g/Cm = D defines a diffusion coefficient.

But gap junction channels have time and Vi-dependent inactivation properties that are dependent on

the transjunctional or intercellular voltage Vi. Experiments have been made on conexin 40 and conexin 43

gap junctions, and the intercellular current Ii exponentially decays in time with time constants depending

on Vi.

In these experiments a constant transjunctional voltage Vi is applied using a pulse protocol where a Vi

pulse is repeated five times and the ensemble average Ii was fitted with an exponentially decaying function

to determine the decay time constants. The reciprocal of the decaying time constants (τ) from 4 to 10

experiments at each Vi were plotted fitted with the general exponential expression [21]-[23]

1

τ
= A0 exp(|Vi| /v0) (9)

where A0and v0 are constants.

These experimental findings indicate that the Cable Model describing the intercellular channels as resis-

tors must be improved and time variations of Ii must be explicitly considered.

The modification proposed in the present work is schematized in Figure 1b.
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Figure 1: (a) Cable Model scheme: each gray square represents an excitable model describing the membrane

cell, and several membrane cells are connected through resistors; (b) Generalized Cable Model scheme: the

membrane cells are connected through resistors and inductances (recovery constant).

We consider the intercellular current Ii as a recovery variable and write Eq. 4 as

∂Vm

∂x
=

1

gix
Iix + Lix

∂Iix
∂t

(10)

∂Vm

∂y
=

1

giy
Iiy + Liy

∂Iiy
∂t

(11)

where Lix and Liy are recovery constants and

1

gix
= A0 exp(|Vix| /vc) (12)

with A0 and vc constants, and

Vix =
∂Vm

∂x
(13)

and identical equations in the y direction.
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Note that if Vix is constant Ii is an exponentially decaying function with a decay time constant depending

of Vix, as was experimentally observed.

Assuming that Iix and Iiy are analytical functions (i.e., ∂
∂x

(∂Iix
∂t

) = ∂
∂t
(
∂Iiy
∂x

)), with the approximations

(gixv0)
−1 << 1, (giyv0)

−1 << 1, and Eq. 3 we obtain

Cm
∂Vm

∂t
+ Iion = − (Itx + Ity) (14)

∂Itx
∂t

+
1

gixLix

Itx = −
1

Lix

∂2Vm

∂x2
(15)

∂Ity
∂t

+
1

giyLiy
Ity = −

1

Liy

∂2Vm

∂y2
(16)

It = Itx + Ity (17)

where ∆ was omitted for simplicity on the lef-hand side of Eqs. 15 − 16, as in Eq. 6. This Generalized

Cable Model (GCM) reduces to the former one (Eqs. 3 and 4) under the following conditions:

(i) Stationary state for Iix and Iiy.

(ii) Isolated cells (i.e., ∂2Vm

∂x2 = ∂2Vm

∂y2
= 0) at t → ∞(Iti → 0, i = 1, 2).

3 Results

We explored the GCM by using the cellular Barkley model to describe the time variation of Iion as well

as its dependences on Vm[29]. The Barkley model is perhaps one of the simplest cellular models showing

excitability.The cell is represented by an equivalent circuit containing three elements connected in parallel:

a capacitor representing the cellular membrane, a variable resistor describing the ionic channels and an

inductance in series with a resistor representing the intracellular medium. The Barkley model is extended

by using the Cable Model with a constant diffusion coefficient, and it is written as

∂u

∂t
= ε−1u(1− u) [u− (v + b)/a] +D∇2u (18)

∂v

∂t
= u− v (19)

where u and v are the dimensionless versions of Vm and Iion respectively, D is the diffusion coefficient, and

a, b and ε are parameters to model the nonlinear dependence of Iion on Vm.
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The space parameter of the Barkley model is shown in Figure 2 (modified from Ref [29]). Stable 2D

spiral waves are found in numerical simulations inside the white region, and meandering of spiral waves takes

place in the MS region. The 2D medium does not support excitation waves in region NW, is subexcitable

in region SE, and is bistable in region BI.

Figure 2: Phase diagram of the spatially extended Barkley model (modified from Ref: 29). MS: meandering

of spirals, S: stable spirals, SE: subexcitable zone, NW: no waves, BI: bistability.

In the present work we extend the Barkley model with the GCM and write
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∂u

∂t
= ε−1u(1− u) [u− (v + b)/a]−

2
∑

j=1

wj (20)

∂v

∂t
= u− v (21)

∂wj

∂t
= −kjwj − kjD

∂2u

∂x2j
(22)

where w is the dimensionless version of It, and the subindex j = 1, 2 considers the two Cartesian directions

in a two-dimensional tissue. Note that we do not explicitly reduce a cellular model to its dimensionless form.

This will depend on the model used and we want to show only how two cells should be coupled taking into

account the basic properties of the gap junctions. We used the model constants (A and B in Eq. 23) to

characterized its dynamical behaviour in this new parametric space.

kj is given by

kj = A exp(u2j/B) (23)

with

uj =
∂u

∂xj
(24)

and where A and B are constants related with A0 and νc.

Note the anisotropy of wj. Equation 23 takes into account the experimentally observed dependence on Vi

of the decay time constants in the time dependence of Ii (see Eq. 9). In this paper a quadratic dependence

was introduced (instead of a |Vi| −dependence) to preserve the even nature of the function but to avoid the

nondifferentiable point at Vi = 0.

The model of Eqs. 20-22 reduces to the original Barkley model in the following situations:

(i) Adiabatic conditions for wj , i.e.
∂wj

∂t
= 0.

(ii) No diffusion of u at t → ∞ (i. e., wj → 0).

In Eq. 23 the new parameters A and B regulate the transport of different ions throughout the gap

junction channels, and we show that they determine the existence of either stable wave fronts (associated

with a normal electrical behavior of the heart) or meandering (associated with arrhythmic behavior).

Figure 3 shows a characterization of our model in the A−B parameter space. Simulations were performed

with kjD = 1, ε = 0.02, a = 0.7, b = 0.05. For these parameter values the original Barkley model (with
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D = 1) exhibits meandering of spirals. In the MS region in Fig. 3 we obtain meandering of spirals, while

in the S region there are stable wave fronts. For 1/B = 0 (see Figure 3), the problem reduces to one with

constant diffusion D = 1/A. In particular for A = 1 (D = 1) we obtain stable wave fronts, differing from

the original Barkley model where meandering is obtained.

Therefore, the introduction of wj in the GCM produces nontrivial modifications in the dynamic behavior

of the system.

Figure 3: Phase diagram of the modified spatially extended Barkley model. MS: meandering of spirals, S:

stable spirals. Simulations were performed with kjD = 1, ε = 0.02, a = 0.7, b = 0.05.

4 Conclusions

The results presented in this work show that the modification of the gap junction transport properties can

either suppress or favor the development of spiral meandering.
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Our conclusions are in agreement with experimental evidence showing that severe gap junctional uncou-

pling results in meandering activation wavefronts[16],[17].

Of course the existence of meandering also depends on the cellular model used in the simulation and it

can be due to a number of other mechanisms such as alterations in the excitability, anisotropy, etc.

The modelling of the gap junction transport properties performed in this work explicitly introduces the

exponential decaying of the intracellular current It, by considering it as a recovery variable. In this sense

our model differs from other models that consider time and voltage dependent conductances.[30],[31]

Alternatively, gap junctions can be considered as channels which are ”gated” in a voltage-sensitive

manner, so that the channels open and close in response to the membrane potential. These gates can be

represented by using the Hodgkin-Huxley formalism, in which the conductance term is decomposed into the

product of a maximal conductance term and one or more separate normalized variables that represent the

probability of finding the channel open. These variables follow their own differential equations. The most

common formulation for a gating variable si is

∂si
∂t

= (s0 − s)/ts (25)

where s0 is the voltage dependent steady-state value of the gate and ts is the voltage-dependent time constant

of the gate.

This formalism applied to It naturally leads to equations similar to those used in the present work.
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