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Abstract
Purpose  The first part of this review focuses on the role of cells and molecules of adipose tissue involved in metabolic 
syndrome-induced inflammation and in the maintenance of this pathology. In the second part of the review, the potential role 
of probiotics-modulating metabolic syndrome-related inflammatory components is summarized and discussed.
Methods  The search for the current scientific literature was carried out using ScienceDirect, PubMed, and Google Scholar 
search engines. The keywords used were: metabolic syndrome, obesity, insulin resistant, adipose tissue, adipose tissue inflam-
mation, chronic low-grade inflammation, immune cells, adipokines, cytokines, probiotics, and gut microbiota.
Results and Conclusions  Chronic low-grade inflammation that characterized metabolic syndrome can contribute to the 
development of the metabolic dysfunctions involved in the pathogenesis of its comorbidities. Adipose tissue is a complex 
organ that performs metabolic and immune functions. During metabolic syndrome, an imbalance in the inflammatory com-
ponents of adipose tissue (immune cells, cytokines, and adipocytokines), which shift from an anti-inflammatory to a pro-
inflammatory profile, can provoke metabolic syndrome linked complications. Further knowledge concerning the immune 
function of adipose tissue may contribute to finding better alternatives for the treatment or prevention of such disorders. The 
control of inflammation could result in the management of many of the pathologies related to metabolic syndrome. Due to 
the strong evidence that gut microbiota composition plays a role modulating the body weight, adipose tissue, and the preva-
lence of a low-grade inflammatory status, probiotics emerge as valuable tools for the prevention of metabolic syndrome and 
health recovery.
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TNF	� Tumor necrosis factor
VCAM-1	� Vascular cell adhesion molecule 1

Introduction

The metabolic syndrome is a clinical condition associated 
with at least three of the following metabolic risk factors: 
excess visceral adiposity (abdominal obesity), insulin resist-
ance, hyperglycemia, hypertension and dyslipidemia [high 
triglycerides and low high-density lipoprotein (HDL) choles-
terol]. Particularly, a strong association between obesity and 
metabolic syndrome was found in prior studies [1]. The per-
petuation of these metabolic dysfunctions affect negatively 
on life expectancy and can eventually lead to the develop-
ment of type 2 diabetes mellitus, cardiovascular diseases, 
non-alcoholic fatty liver disease, some types of cancer or 
autoimmune disorders. Recently, scientific evidence has 
demonstrated that the progress in these metabolic dysfunc-
tions is closely related to the chronic low-grade inflamma-
tion state, characteristic of obesity and metabolic syndrome 
[1–3].

Chronic low-grade inflammation probably occurs as 
result of the imbalance between pro-inflammatory stimuli 
and decreased anti-inflammatory mechanisms. Table 1 sum-
marizes the evidence of the immune and metabolic role of 
adipose tissue during the prevalence of health or metabolic 

syndrome. Inflammation in general, comprise the cascade 
of reactions that occur to reestablish body homeostasis and 
involves both molecular effectors and immune response. 
Although the inflammatory response is beneficial, if it 
becomes uncontrolled or chronic, it can turn harmful. The 
chronic low-grade inflammation that accompanies obesity 
and metabolic syndrome is associated with the expansion of 
adipose tissue. This differs from classical inflammation in 
terms of its signs, but the same mediators are involved in its 
development. Adipose tissue is not only a reserve organ that 
stores energy, but it is also an endocrine and immune organ 
capable of secreting a variety of hormones and bioactive 
peptides, known as adipokines, with implications in both 
energetic homeostasis and immune function (Table 1) [4]. 
The extension of this tissue, particularly in the abdominal 
region, emphasized its role as immunological tissue affect-
ing systemic inflammation.

Scientific evidence suggests that intestinal microbiota is a 
key player in the development of a chronic low-grade inflam-
matory state associated with metabolic syndrome [5]. In 
2007, Cani et al. described the link between gut microbiota 
and the onset of metabolic inflammation related to obesity, 
insulin resistance and type 2 diabetes mellitus [6, 7]. Among 
the events that lead to the establishment of these conditions, 
metabolic endotoxemia, caused mainly by Gram-negative 
bacterial membrane component known as lipopolysaccha-
ride (LPS), plays a crucial role. In addition, the intestine 

Table 1   Prevailing of adipose 
tissue immune cells phenotype 
and adipokines with immune 
and metabolic functions during 
health or metabolic syndrome

Anti-inflammatory state (health) Pro-inflammatory state (metabolic syndrome)

Adipose tissue immune cells
M2-like macrophages M1-like macrophages
Regulatory T-cells (CD4+) Memory T cells
T helper type 2 cells (CD4+) Cytotoxic T cells (CD8+)
Eosinophils T helper type 1 cells (CD4+)

T helper type 17 cells (CD4+)
B cells
Dendritic cells
Mast cells

Adipose tissue adipokines
Adiponectin TNF-α (tumor necrosis factor alpha)
IL-10 IL-1β
IL-4 IL-6
C1qTNF-related proteins (CTRP) Adipsin (complement factor D)
 CTRP-3 (Cartonectin) C3 (complement component 3)
 CTRP-9 ASP (acylation stimulating protein or C3adesArg)
 CTRP-12 (Adipolin) Leptin

Omentin (Intelectin-1) P-selectin
Vaspin MCP-1 (monocyte chemoattractant protein-1)

PAI-1 (plasminogen activator inhibitor-1)
Resistin
Visfatin
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can establish a metabolic crosstalk with metabolically active 
tissues such as adipose tissue, through molecules (e.g., short 
chain fatty acids, bile acids, peptides) produced by the intes-
tinal microbiota [3].

The impact of diet on the composition of the gut microbi-
ota open a new field of research. Within the new approaches 
in nutritional interventions, the manipulation of intestinal 
ecology or specific microbial species, are currently sug-
gested. In this field, specific probiotics can, in addition to 
their immunomodulatory and metabolic effects, modulate 
the gut microbiota [8, 9]. Probiotics for these reasons could 
play a proactive role in the immunomodulation to pre-
vent chronic low-grade inflammation linked to metabolic 
syndrome.

The first part of this review summarizes the evidence for 
the role of cells and molecules of adipose tissue involved in 
metabolic syndrome-induced inflammation and in the main-
tenance of this pathology and the initiation and progress 
of its comorbidities. In the second part of the review, the 
potential role of probiotics modulating metabolic syndrome-
related inflammatory components is discussed.

First part: adipose tissue and chronic inflammation

Adipose tissue is a heterogeneous and very plastic tis-
sue composed of mature adipocytes, and other cells such 
as preadipocytes, fibroblasts, immune cells and vascular 
endothelial cells, usually named as the stromal vascular 
fraction [2, 10, 11]. In addition, immune structures such as 
lymph nodes, fat associated lymphoid clusters, and milky 
spots (which are clusters of leukocytes embedded in the 
omental tissue) are found in adipose tissue [12]. These last 
structures act like secondary lymphoid organs and provide 
places for the development of the adaptive immune response. 
In obesity, immune cells within lymph nodes can sustain 
low chronic inflammation, recruiting and activating immune 
cells to defend adipose tissue against damage, toxicity or 
impaired function [11, 13]. Recently, Magnuson et al. dem-
onstrated that the lymphatic system could also act like an 
immune link that enables the crosstalk between visceral adi-
pose tissue and gut [14].

The cellular composition of adipose tissue, particularly its 
composition of immune cells, is regulated by stimuli such as 
diet, body weight, and caloric excess ingest capable of caus-
ing metabolic distress. In response to these stimuli, immune 
cells of stromal vascular fraction switch from anti-inflam-
matory subtypes towards more pro-inflammatory subtypes. 
This lead to a pro-inflammatory and pro-oxidative micro-
environment, which favors the recruitment of immune cells 
for the establishment of a chronic low-grade inflammation 
state. Thus, in metabolic syndrome or obesity, the imbalance 
among these immune cells induce systemic inflammation 
and peripheral insulin resistance [12].

Adipose tissue and immune cells

Immune cells of the adipose tissue are cells of innate 
immunity (e.g., macrophages, mast cells, dendritic cells, 
eosinophils) and cells of adaptive immunity (B and T cells) 
[15–18]. The existing information about the percentage of 
each cell type depends on the methodology used in each case 
under study. Macrophages are the largest immune cell popu-
lation of adipose tissue. In lean mice and human adipose 
tissue, they comprise about 4–15% of all cells of the stromal 
cell count [19, 20]. These values can increase over 40% in 
both mice and human adipose tissue in obesity [19]. The sec-
ond largest subpopulation of immune cells in adipose tissue 
of lean mice and humans are lymphocytes, which represent 
about 10% of the stromal fraction. Approximately the half 
of these cells belong to T cells (CD3C) (3:1 between CD4+ 
T-cells and CD8+ T-cells) [21]. In obesity, along with the 
increment in the total number of lymphocytes, also a change 
in the proportions of the different cell subsets was observed.

The changes in immune cells composition during meta-
bolic syndrome drive adipose tissue inflammation and affect 
the ability of adipocytes to store lipid, their insulin sensitiv-
ity, systemic glucose metabolism, and metabolic homeosta-
sis [12].

Macrophages

Macrophages are considered the key cells accountable for 
the inflammatory mechanisms that occur in adipose tissue. 
The number of macrophages in adipose tissue correlates 
with body mass index, adipocyte size and total body fat [2]. 
In normal or lean individuals, the macrophages are found 
as M2-like macrophages, which are the anti-inflammatory 
phenotype that secretes anti-inflammatory cytokines such as 
IL-10 [12]. In metabolic syndrome, obesity or against stim-
uli known as “danger associated molecular patterns”, such as 
hyperglycemia, free fatty acids or cholesterol, macrophages 
change from M2-like phenotype to the pro-inflammatory 
M1-like phenotype that secretes pro-inflammatory cytokines 
(TNF-α, IL-1β, IL-6, IL-12 and monocyte chemoattractant 
protein-1 [MCP-1]) and phagocyte and present antigens 
inducing CD4+ T cells proliferation (adaptive immune 
response) [2, 12]. However, the mechanisms that induce 
macrophages phenotypic polarization remain unclear. Cur-
rent investigations showed that obesity triggers the polari-
zation to M1-like phenotype in adipose tissue macrophages 
through the induction of Notch1 signaling, associated with 
cell differentiation [22]. Obesity downregulates MicroRNA 
miR-30 family inducing Notch1 gene expression [22].

Recent research has demonstrated the relation between 
macrophage infiltration into adipose tissue that amplifies 
inflammatory responses, with the increase of circulat-
ing inflammatory molecules, ectopic lipid accumulation 
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and insulin resistance development [2, 23]. Inflammatory 
cytokines produced by adipose tissue macrophages provoke 
adipocytes hypertrophy by inhibition of cell differentiation. 
Hypertrophic adipocytes may produce themselves pro-
inflammatory mediators (cytokines and chemokines, such 
as IL-1β, IL-6, TNF-α, and MCP-1) and are responsible for 
adipose tissue hypoxia [24]. Both events induce recruitment 
of macrophages and overproduction of pro-inflammatory 
cytokines, increasing inflammation in adipose tissue, and 
even causing adipocytes necrosis that triggers localized 
inflammation in adipose tissue and dissemination of sys-
temic inflammation [23, 25]. This dysfunction in inflam-
matory response with the misregulation in adipocytokines 
production is thought to be the cause of the development of 
related comorbidities such as insulin resistance and type 2 
diabetes [2].

T cells

In adipose tissue, after macrophages, T cells CD3+ consti-
tute the second most abundant immune cells. In lean indi-
viduals, regulatory T cells CD4+ (Treg) prevail in adipose 
tissue. Together with T helper type 2 CD4+ lymphocytes 
promote in the adipose tissue a M2-like macrophage polari-
zation, which sustain an anti-inflammatory state [25]. The 
Treg are known to produce the anti-inflammatory cytokine 
IL-10 and TGF β that reduces the proliferation and acti-
vation of T cells [12]. Several studies reveal the relation-
ship between the reduction in regulatory T cells and the 
development of metabolic disorders and chronic diseases 
[26, 27]. During obesity or metabolic syndrome, an overall 
increase in total T cells occur, but regulatory T cells are 
replaced by memory T cells and cytotoxic CD8+, T helper 
type 1 CD4+ and T helper type 17 CD4+ lymphocytes, that 
stimulate M1-like macrophage polarization [25]. Moreover, 
in obesity the pro-inflammatory phenotype is related with 
high leptin levels, a hormone secreted by adipose cells [26]. 
Leptin levels correlate with adipose mass. A high adipose 
mass results in high leptin levels in blood and adipose tis-
sue. Also, pro-inflammatory stimuli such as TNF-α increases 
leptin secretion, and at the same time, leptin stimulates the 
production of TNF-α and pro-inflammatory IL-6 in mono-
cytes [28]. Additionally, leptin acts as a negative signal for 
regulatory T cells proliferation and promotes T helper type 
1 CD4+, typically associated with insulin resistance and 
type 2 diabetes [26].

B cells

In obesity or metabolic syndrome, B cells infiltration in 
adipose tissue occur. B cells have the ability to present anti-
gens to CD4+ T lymphocytes contributing to adipose tissue 
inflammation and systemic insulin resistance, presumably 

mediated by IgG and suppression of IL-10 secretion [29–31]. 
Through LTB4/LTB4R1 signaling, that is increased in the 
visceral adipose tissue of obese mice, B-cells boost leuko-
cyte infiltration into adipose tissue tissues [31]. Indeed, in 
vivo studies in mice fed a high-fat diet showed that B-cells 
promote macrophage recruitment, TNF-α production and 
accumulation of IFN-γ-producing CD4+ and CD8+ T-cells 
in visceral adipose tissue [31, 32].

Eosinophils

Eosinophils are versatile granulocytic leukocytes able to 
produce a set of cytokines that confers immunomodulatory 
competence [33]. These cells are found in peripheral blood 
and infiltrating tissues including adipose tissue where it can 
migrate from the blood through an integrin-dependent pro-
cess [34]. These leukocytes are usually associated with hel-
minth immunity and allergy, but they perform other diverse 
functions, such as wound healing, tissue damage regulation, 
and immune cells regulation [26, 27, 33, 34]. However, in 
2011, Wu et al. described an unexpected role of adipose tis-
sue eosinophils in metabolic homeostasis. These cells, which 
are increased in adipose tissue of lean individuals, are able to 
secrete IL-4 promoting M2-like macrophage polarization in 
adipose tissue [34, 35]. Previous studies showed in high-fat 
diet fed mice, that the reduction in eosinophils numbers was 
related to an increase in body weight and insulin resistance 
[26, 27, 34]. Furthermore, helminth-induced adipose eosino-
philia enhanced glucose tolerance in high-fat diet fed mice 
[34]. However, new results disagree with these observations. 
Recently, Reid Bolus et al. have shown that restoring adipose 
tissue eosinophils in obese mice to physiologically normal 
levels is not sufficient to restore the metabolic dysregula-
tion in obesity [33]. These results suggested that eosinophils 
participate in the regulation of adipose tissue function, but 
their implication appears to be intricate and further studies 
are required.

Dendritic cells

Dendritic cells (plasmacytoid CD11b–CD11c + B220+ and 
conventional CD11b + CD11c+) are antigen-presenting 
cells that link innate and adaptive immunity. These cells 
can secrete IL-6, tumor growth factor (TGF-β) and IL-23, 
and stimulate the generation of T helper type 17 CD4+ lym-
phocytes, favoring adipose tissue inflammation [20]. Stud-
ies conducted in mice models of obesity and obese humans 
showed an increment of both dendritic cell subtypes in adi-
pose tissue in correlation with adipose tissue inflammation 
and insulin resistance [20]. Along this line, the adipokine 
chemerin (chemoattractant for plasmacytoid dendritic cells) 
was increased in serum of obese individuals and may inter-
vene in the dendritic cells recruitment into the adipose tissue 
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in obesity [35]. In addition, it was demonstrated that den-
dritic cells within lymphoid structures in adipose tissue can 
increase in response to dietary lipids [20]. Thereby dietary 
lipids may trigger a metabolic response through the dendritic 
cells.

Mast cells

Mast cells are increased and highly activated in obese adi-
pose tissue [26]. Indeed, accumulation of mast cells in vis-
ceral adipose tissue and elevated levels of serum mast cell 
tryptase were observed in animal models of obesity [20]. 
Mast cells secrete TNF-α and IL-8 inducing leukocyte infil-
tration [20, 26]. Moreover, mast cells activation may pro-
mote obesity driving adipose tissue expansion, adipocyte 
protease expression, and stimulating microvessel growth 
[20]. In fact, a reduction in the weight of obese mice was 
reported after mast cell inactivation [26]. Moreover, studies 
in obese humans inhibiting mast cells degranulation further 
supported their contribution to the development of metabolic 
diseases [20]. In those investigations, pharmacological sta-
bilization of mast cells in obese and type 2 diabetic patients 
reduced diet-induced metabolic alterations [20, 36].

Adipose tissue and pro‑inflammatory proteins

TNF‑α  Tumor Necrosis Factor-alpha is a key cytokine that 
intervenes in acute and chronic phase inflammation induc-
ing inflammation, apoptosis, tumor necrosis and cachexia. 
TNF-α is mainly produced by M1-macrophages, but also 
by many other immune cells, as well adipocytes which also 
express TNF-α receptors [37]. Besides its role in inflamma-
tion, TNF-α has now been implicated in energy homeosta-
sis and the development of obesity-induced metabolic syn-
drome and type 2 diabetes mellitus [2, 28]. TNF-α increase 
secretion in adipose tissue of pro-inflammatory molecules 
such as IL-6, MCP-1, leptin, and plasminogen activa-
tor inhibitor-1 (PAI-1), thus contributing to inflammatory 
conditions linked to obesity [2, 37]. In obese individuals, 
an increase in the production of TNF-α by adipocytes was 
observed, that positively correlates with insulin resistance 
and type 2 diabetes mellitus [25, 38]. In adipose tissue and 
liver, TNF-α suppresses the expression of genes involved 
in the storage of free fatty acids and increases the expres-
sion of genes involved in the de novo synthesis of choles-
terol and fatty acids. The increase of serum fatty acids has 
been shown to induce insulin resistance in multiple tissues 
[37]. Furthermore, TNF-α also impairs insulin signaling by 
decreasing the expression of the insulin-sensitive glucose 
transporter 4 and insulin receptor substrate-1 (IRS-1), sup-
presses tyrosine phosphorylation of IRS-1, and enhances 
serine phosphorylation of IRS-1 (increasing degradation of 
insulin receptors) [1, 39]. New therapies to counteract the 

deleterious effects of chronic inflammation were developed 
and some of these novel drugs have also shown effects on 
metabolism (e.g., IL-1 and TNF-α blockers molecules) [40–
42]. Recent studies have demonstrated in patients with rheu-
matoid arthritis (a disease with a high prevalence of insulin 
resistance and metabolic syndrome) the success of anti-TNF 
long therapy (12 weeks of treatment) in the improvement of 
insulin sensitivity [43]. The anti-TNF agents used in these 
trials were infliximab, adalimumab or etanercept. In addi-
tion, other study showed the efficacy of 6-month therapy 
with etanercept to improve fasting glucose in obese subjects 
[42]. Nevertheless, further studies are necessary to deter-
mine whether TNF-α is a viable goal for the treatment of 
insulin resistance in obesity or metabolic syndrome.

IL‑1β  Interleukin 1β is a major pro-inflammatory cytokine 
produced by macrophages [44]. In adipose tissue, mac-
rophages produced IL-1β via activated NLRP3 inflam-
masome. IL-1β is also released by nonfat cells from adi-
pose tissue and this secretion is enhanced in obesity. This 
cytokine is a promoter of adipose tissue inflammation in 
obesity. IL-1β induces hypertrophic adipocyte cell death 
that launches the inflammatory cascade, leukocyte and mac-
rophage recruitment, and macrophage lipid accumulation 
[45]. Scientific evidence suggests that IL-1β is key linking 
obesity-associated inflammation to insulin resistance and 
pathogenesis of type 2 diabetes [44, 45]. Recently, it was 
demonstrated in rodent models the implication of IL-1β in 
pancreatic beta-cell demise that precedes diabetes develop-
ment [45]. Also, various works showed the role of IL-1β in 
the macrophage–adipocyte crosstalk which blocks insulin 
action in human adipose tissue (inhibition of insulin sign-
aling and glucose metabolism in human adipocytes) [44]. 
Furthermore, studies have suggested the potential role of 
IL-1β promoting ectopic fat accumulation (and decreasing 
subcutaneous fat storage), and thus favoring liver steatosis 
and obesity-associated morbidity [45].

IL‑6  Interleukin 6 is a cytokine involved in the regulation of 
the hematopoiesis, immune response, and acute and chronic 
phase inflammation [2]. This cytokine secreted by T cells, 
macrophages and adipocytes, plays together with TNF-α a 
key role in the development of insulin resistance and ath-
erosclerosis, pathologies related to obesity and metabolic 
syndrome [2, 37]. Up 35% of circulating IL-6 is produced 
by adipose tissue and increase with the expansion of adipose 
tissue, particularly visceral adipose tissue [23, 37]. IL-6 pro-
motes the production by macrophages and T cells of pro-
inflammatory C-reactive protein (CRP), associated with 
increased risk of diabetes, hypertension and cardiovascular 
disease [23]. However, the role of IL-6 in insulin resistance 
is controversial. Some studies suggest a positive role of IL-6 
on metabolism since it was showed that deficient IL-6 (IL-
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6−/−) mice develop obesity and metabolic disorders such as 
increased insulin resistance, decreased glucose tolerance, 
as well as increased inflammation in the liver. In line with 
this, during acute exercise skeletal muscle secretes pep-
tides involved in muscle hypertrophy, which are included 
in the secretory peptides called myokines [46]. Among 
this myokines, IL-6 is the first detectable cytokine released 
into the circulation and its secretion its associated with 
anti-inflammatory effects and improved insulin sensitivity 
and glucose metabolism [46, 47]. These effects of IL-6 are 
attributed to the inhibition of TNF-α and the stimulation of 
IL-1 receptor antagonist (IL-1ra) inhibiting IL-1β signaling, 
and IL-10 production by blood mononuclear cells [47].

MCP‑1  Monocyte chemoattractant protein-1 is a cytokine 
produced in adipose tissue that recruits monocytes, mac-
rophages, T cells and dendritic cells to the sites of inflam-
mation [2, 37, 48]. In obesity, it has been suggested that 
MCP-1 is responsible for the beginning of the macrophages 
infiltration into adipose tissue, in addition to contributing to 
the development of insulin resistance and increment in adi-
posity [48, 49]. The increment in MCP-1 level was associ-
ated with other visceral obesity-related complications, such 
as neointimal formation with the development of atheroscle-
rosis [2]. However, emerging evidence now position MCP-1 
as a necessary inflammatory mediator required for adipose 
tissue protection (Cranford). Cranford et  al. observed that 
MCP-1 deficiency in high-fat-diet feed mice exacerbated 
inflammatory processes and metabolic dysfunction, result-
ing in a further increase in adiposity and inflammatory cell 
infiltration in adipose tissue [48]. These authors suggested 
that MCP-1 might be necessary for the maintenance of a 
healthy adipose tissue in response to high-fat-diet feedings.

PAI‑1  Plasminogen activator inhibitor-1 is serine protease 
inhibitor that arrests fibrinolysis via inhibition of the tissue-
type plasminogen activator. PAI-1 is secreted by several tis-
sues, including adipocytes and other cells of adipose tissue. 
Serum levels of PAI-1 are increased in metabolic syndrome 
(obesity, visceral adiposity, and insulin resistance) and in 
response to TNF-α. Scientific evidence suggested that high 
levels of PAI-1 are necessary to the development of obesity 
and its comorbidities [23, 37]. This protein is implicated in 
angiogenesis and atherogenesis, and therefore, in the devel-
opment of cardiovascular disease related to obesity [37].

Leptin  Leptin is a polypeptide secreted by adipose cells 
that is a mediator of long-term regulation of energy bal-
ance through the central nervous system (CNS) [20]. Lep-
tin suppresses food intake, by inhibiting orexigenic neu-
ropeptides and stimulating anorexigenic ones, as well as 
increases energy expenditure. This peptide has structural 
homology to helical cytokines, such as IL-2. Its recep-

tors, found both in cells of the CNS and in the periphery, 
belong to the cytokine receptor class I superfamily, such as 
the IL-6 receptor [37]. As was already mentioned, leptin 
secretion increases with the expansion of adipose tissue, 
particularly visceral adipose tissue, and was found high in 
metabolic syndrome and obesity [50]. Leptin correlates 
with many parameters of metabolic syndrome including, 
waist circumference, glucose level, insulin level, insulin 
resistance and triglyceride level [51]. This peptide acts 
promoting proliferation of pro-inflammatory cells and 
cytokines, as well endothelial cell growth and angiogen-
esis [37]. In monocytes, leptin promotes the production of 
pro-inflammatory TNF-α and IL-6. In macrophages, leptin 
stimulates the production of chemoattractant molecules 
MIP-1α (macrophage inflammatory protein), MIP-1β and 
RANTES, that promotes the recruitment and activation of 
multiple immune cells [52].

Other pro‑inflammatory proteins  Adipsin (complement 
factor D) is a serine protease synthesized by adipocytes 
implicated in the enzymatic production of C3adesArg or 
acylation stimulating protein (ASP), a complement pro-
tein that intervenes in systemic energy balance regulation 
(lipid and glucose metabolism). Studies in humans show 
that adipsin is associated with insulin resistance, dyslipi-
demia, metabolic syndrome and cardiovascular disease [37, 
50]. Complement component 3 (C3) is an immune protein 
produced mainly by the liver, but also by adipose tissue 
[53]. C3 is cleaved by spontaneous hydrolysis or by C3 con-
vertase enzyme complex in catalytic C3b and C3a. C3a is a 
potent chemoattractant and plays a large role in the immune 
response. C3a induces the production of pro-inflammatory 
IL-6 and TNF-α, leading to attract and activate T cells, mast 
cell degranulation, and macrophage activation, amplifying 
obesity-induced inflammation. C3a is cleaved to remove its 
carboxy-terminal arginine to generate C3adesArg (or ASP), 
a molecule with lowered inflammatory function but, a meta-
bolic effector [53]. Numerous investigations reported up to 
a threefold increased risk of the metabolic syndrome, and 
its associated metabolic perturbations, in subjects with high 
C3 levels [54].

P-selectin is a protein produced by activated platelets and 
endothelial cells, that functions as a cell adhesion molecule 
[1]. Increased levels of this protein have been associated 
with metabolic syndrome. Indeed, P-selectin expression and 
secretion have also been associated with increased visceral 
adipose tissue, low HDL cholesterol, high oxidized LDL and 
elevated fasting glucose [1].

Resistin is a peptide secreted by adipocytes, immune 
and epithelial cells. High levels of resistin were found in 
metabolic syndrome [50]. This pro-inflammatory cytokine 
causes the resistance of peripheral tissues to insulin and is 
considered by many researchers as a possible link between 
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obesity and Type 2 diabetes mellitus [55]. Resistin promotes 
the secretion of TNF-α and IL-6 by mononuclear cells.

Visfatin is an adipokine mainly produced by visceral fat 
increased in individuals with obesity [56]. This protein is 
a pro-inflammatory mediator, recognized as a pre-B-cell 
enhancing factor [PBEF] that also interferes with insu-
lin-receptor signaling [15, 57]. Visfatin enacts recruiting 
immune cells and producing chronic inflammation in adipo-
cytes [56]. Some studies have shown higher plasma visfatin 
levels associated with metabolic syndrome [57].

Adipose tissue and anti‑inflammatory proteins

Adiponectin  Adiponectin is an anti-inflammatory adi-
pokine exclusively produced in differentiated adipocytes 
of white adipose tissue and secreted at high levels into the 
circulating bloodstream [2, 4]. This protein shares strong 
homology in its primary sequence with complement fac-
tor C1q. Adiponectin expression is higher in subcutaneous 
than in visceral fat. Its multiple metabolic functions include 
decrease of intracellular triglyceride content in liver and 
skeletal muscle (through the increase in fatty acid oxida-
tion), decrease of gluconeogenesis in liver, increase of glu-
cose uptake in skeletal muscle, increment in insulin sensi-
tivity, anti-inflammatory and anti-atherogenic effects [2, 28, 
58]. Antiatherogenic properties of adiponectin are due to the 
inhibition of endothelial expression of adhesion molecules 
(VCAM-1 and ICAM-1), the attenuation of smooth muscle 
cell proliferation, suppression of the transformation of mac-
rophages into foam cells, plus vasodilatation via increase of 
nitric oxide production in endothelial cells, and stimulation 
of angiogenesis [37, 51, 59]. Adiponectin also diminishes 
the infiltration of CD4+ T cells into atherosclerotic lesions 
via the suppression of chemoattractants in macrophages 
[59]. Anti-inflammatory effects of adiponectin are also 
modulated via switch of macrophages from the pro-inflam-
matory M1-like phenotype that secretes pro-inflammatory 
cytokines (TNF-α, IL-1β, IL-6 and MCP-1) to anti-inflam-
matory M2-like phenotype that produce anti-inflammatory 
IL-10 [4, 59], further inhibition of Toll-like receptor (TLR)-
mediated NF-κB activation in macrophages [4, 52, 59].

Adiponectin exerts its activity through the bind to Adi-
poR1 and R2 (G-protein-coupled) receptors and T-cad-
herin (CDH13) receptor (Fang). Upon binding to Adi-
poR1 and R2 adiponectin induces an increase in AMPK 
(glucose uptake and fatty acid oxidation) and peroxisome 
proliferator-activated receptor alpha (PPARα) levels. 
T-cadherin receptor lacks a transmembrane domain, but 
facilitates binding of adiponectin to AdipoR1 and R2 play-
ing an essential role in promoting adiponectin dependent 
AMPK phosphorylation [4]. Recent studies have demon-
strated that adiponectin levels are dependent on T-cadherin 
[60]. Moreover, investigations provide further evidence of 

the association between CDH13 gene (T-cadherin gene) 
variants prevalence, adiponectin-resistant status and the 
deterioration of metabolic syndrome and related diseases 
[60–62].

Several clinical studies have demonstrated a close asso-
ciation between low plasma adiponectin concentration and 
visceral adipose tissue with obesity, type 2 diabetes mel-
litus, cardiovascular disease, metabolic syndrome and its 
related disorders (low HDL cholesterol and high triglycer-
ide levels) [4, 59, 63]. Indeed, some authors consider this 
multifunctional protein as a key molecule in the pathogen-
esis of metabolic syndrome [51]. Adiponectin expression 
is higher by the functional adipocytes of subcutaneous fat 
of lean organisms. However, its expression is downregu-
lated in the dysfunctional adipocytes of obese subjects 
[52]. Studies in rodents and human showed that circulat-
ing adiponectin decreased in obesity (negative correlation 
with the accumulation of body fat, particularly visceral fat) 
and inflammatory states (TNF-α, IL-1β, and IFN-γ), and is 
positively correlated with insulin sensitivity [2, 23, 50, 59, 
64]. Consistent with these findings, increase in adiponec-
tin level was observed associated with insulin sensitivity 
improvement and reduction in inflammatory markers, such 
as C-reactive protein and IL-6, after weight loss in over-
weight individuals [37, 52, 59]. Furthermore, the absence 
of adiponectin in adiponectin-deficient mice was associ-
ated with vascular alterations and abnormal metabolic pro-
files, independently of diet or body weight [37].

IL‑10  IL-10 is one of the most important anti-inflamma-
tory cytokines that is a produced by activated M2-like 
macrophages, B cells and T cells [65]. This cytokine acts 
suppressing M1-macrophage polarization and the produc-
tion of pro-inflammatory cytokines such as TNF-α, IL-1β, 
and IL-6 [66]. Exogenous IL-10 administration reduces 
the levels of inflammatory cytokines and recombinant 
IL-10 has been successfully tested for the treatment of 
inflammatory diseases [66]. Consistent with this, several 
investigations in human and mice demonstrated a positive 
correlation between circulating IL-10 levels and ameliora-
tion of metabolic syndrome or obesity: reduction of body 
mass index, percentage of fat mass, and improvement of 
insulin resistance and adipose tissue inflammation [67, 
68]. Importantly, mice lacking IL-10 displayed increased 
IL-10 expression in liver and adipose tissue, suggesting a 
compensatory mechanism for IL-10 levels in these organs 
[69]. Despite adipose and serum IL-10 were reduced in 
obesity and type 2 diabetes, a recent study conducted in 
obese children showed an interesting result [70, 71]. Adi-
pose and serum IL-10 were only reduced in obese children 
with hypertriglyceridemia, indicating a possible protec-
tive effect of IL-10 on the lipid metabolic disorders [72].



	 European Journal of Nutrition

1 3

Other anti‑inflammatory proteins  C1qTNF-related pro-
teins (CTRPs) are adiponectin paralogs produced mainly 
by adipocytes, that shares structural similarities with C1q 
complement factor [73, 74]. CTRPs can share up to 43% 
identity of amino acids to adiponectin [75]. CTRPs are 
also multifunctional proteins involved in metabolism, 
cell differentiation and apoptosis, and innate immunity. 
Similarly, to adiponectin, several CTRPs have hypogly-
cemic effects and anti-inflammatory functions. CTRP-3 
or cartonectin modulates the immune system by sup-
pressing the NF-κB signaling pathway. Cartonectin sup-
presses TLR stimulation in macrophages and adipocytes. 
Also, it inhibits monocyte-derived macrophages recruit-
ment via macrophage migration inhibitory factor (MIF), 
MCP-1, or C–C motif chemokine ligand-4 (CCL4) [15, 
59]. Cartonectin promotes the secretion of adiponectin 
in adipocytes. CTRP-12 or adipolin diminishes inflam-
matory responses in fat tissues and promotes insulin 
sensitivity through activation of insulin signaling in the 
liver and adipose tissue, where suppresses gluconeogen-
esis and enhances glucose uptake [16]. Adipolin attenu-
ates macrophage infiltration and reduce the expression of 
pro-inflammatory cytokines (TNFα, IL-1β, and MCP-1) 
in response to stimulation with LPS or TNF-α. Clinical 
trials confirmed a negative correlation between adipo-
lin levels and obesity and type 2 diabetes [59]. CTRP9 
can form heterotrimers with adiponectin and share adi-
ponectin receptors [59]. CTRP9 protein promotes glu-
cose uptake induced by insulin and fat oxidation in skel-
etal muscle [59]. CTRP6 can induce the expression of 
anti-inflammatory cytokine IL-10 in human monocyte-
derived macrophages [59]. It also increases fatty acid 
oxidation in skeletal muscle cells. CTRP1, secreted by 
adipose tissue in response to infections and cytokines has 
many metabolic adiponectin-like functions.

Omentin (or intelectin-1) is an adipocytokine that is 
highly expressed in visceral fat tissue and in omentum 
(visceral peritoneum) [58, 59]. Circulating omentin lev-
els are reduced in obese individuals or individuals with 
increased waist circumstance and in obesity-linked meta-
bolic disorders such as insulin resistance, glucose intoler-
ance, dyslipidemia, elevated blood pressure and type 2 
diabetes mellitus [58, 59].

Vaspin or visceral adipose tissue-derived serpin is an 
adipokine expressed mainly in the visceral adipose tissue 
[76]. Vaspin is a serine-protease inhibitor with insulin-
sensitizing properties (improvement of insulin resist-
ance in obese mice) and anti-inflammatory (inhibition of 
TNF-α and activation of NF-κB) effects. Serum vaspin 
levels were found higher in patients with metabolic syn-
drome than control subjects and related to the develop-
ment of atherosclerosis.

Second part: handling the inflammatory status 
in metabolic syndrome. The proactive role 
of probiotics

Specific approaches for the prevention or treatment of meta-
bolic syndrome may include probiotics. The International 
Scientific Association for Probiotics and Prebiotics main-
tained in 2014 the FAO/WHO definition for probiotics as 
“live microorganisms that, when administered in adequate 
amounts, confer a health benefit on the host” [77]. The Lac-
tobacillus and Bifidobacterium are the most cited genera 
with positive effects on body weight, fat mass, adipose tissue 
inflammation, hepatic steatosis or glucose metabolism [78]. 
These genera belong to the classical probiotics. However, 
currently, other genera such as Bacteroides are proposed as 
no traditional probiotics with impact on metabolism disor-
ders [79]. The evidence gathered indicates that the effects 
of these probiotics on the host are strain-specific. This is 
probably due to different mechanisms of action and the pro-
duction of different metabolites. At the moment, the trend 
is the search of single specific-strains able to produce the 
desired effects, such as Akkermansia muciniphila, the so-
called “next-generation” probiotics [80].

Probiotics, intestinal dysbiosis and inflammation 
of adipose tissue

It is well known that probiotics are a valuable tool to modu-
late gut microbiota and ameliorate host immune status [17, 
18]. Probably in these attributes are sustained their use-
fulness to improve the health condition of metabolic syn-
drome (Fig. 1). The intestinal microbiota, which includes 
all microbial life in the intestine, has been associated with 
the development of various human diseases including meta-
bolic syndrome, obesity and related metabolic dysfunctions 
[81, 82]. In the gut of healthy individuals, the microbiota is 
more diverse with the prevalence of bacteria from the phyla 
Firmicutes and Bacteroidetes and higher presence of Ver-
rucomicrobia (Akkermansia muciniphila) [83, 84] (Fig. 1). 
Furthermore, many studies have associated a healthy gut 
microbiota to the increase in variety and abundance of Bac-
teroidetes rather than Firmicutes and a higher Akkermansia 
muciniphila to Ruminococcus gnavus ratio [84, 85]. How-
ever, these findings are inconclusive and more evidence is 
needed to support that affirmation [84]. Through its interven-
tion in host energy homeostasis, systemic inflammation, and 
metabolic functions, the gut microbiota can control the body 
weight, a role that was demonstrated by means of numerous 
studies performed in rodent models [81]. These experiments 
have demonstrated a causal role of the intestinal microbiota 
in the etiology of obesity and insulin resistance by trigger-
ing a low-grade inflammatory response. Even, the poten-
tial mechanisms have already been explained in detail in 
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previous reviews, however, more evidence is needed to dem-
onstrate such causal relation in humans [81, 83, 85–88]. Pro-
biotics can catabolize complex polysaccharides from diet to 
short-chain fatty acids (SCFAs), such as acetate, propionate, 
and butyrate. These compounds are suspected to ameliorate 
metabolic disorders during metabolic syndrome and related 
pathologies [89]. There is evidence supporting the role of 
SCFAs in improving weight gain (propionate and butyrate) 
and food intake and glucose homeostasis (acetate) [89–92]. 
These effects may result from the action of SCFAs on eukar-
yotic cells receptors. Other studies have shown that acetate 
can suppress insulin signaling in adipocytes, inhibiting fat 
accumulation in adipose tissue [93]. Thus, SCFAs acts at 
different levels decreasing inflammatory state that reduces 
insulin resistance, increasing the protective Glucagon-like 
peptide-1 (GLP-1) secretion that stimulates insulin release, 
and improving β-cell function [89, 93, 94]. In addition to 
the effect of microbiota-derived metabolites like SCFAs that 
may show beneficial effects on host metabolism and innate 
and adaptive immunity, a complex and close relationship 
between gut microbiota, low-grade chronic inflammatory 
status, and insulin resistance was proposed [81, 88, 96, 97].

A proper balance in the gut microbiota is essential to sup-
port the barrier function of the intestinal epithelium. The gut 
microbiota maintains intestinal epithelial barrier by restoring 
tight-junction protein structure and suppressing intestinal 
inflammation (Fig. 1). Several studies suggest that during 

dysbiosis that characterized metabolic syndrome or obesity, 
the impaired gut microbiota let to an increase in the intesti-
nal permeability and lipopolysaccharide (LPS)-related endo-
toxemia. LPS, a component of the cell wall of gram-negative 
bacteria, binds through adapter protein MyD88 to toll-like 
receptor 4 (TLR4) inducing activation of the transcription 
nuclear factor-kappa B (NF-κB) in intestinal epithelial cells 
[96, 97]. NF-κB triggers chronic systemic inflammation, 
including the activation of macrophages with the ability to 
infiltrate in the visceral adipose tissue, which drives a shift 
to a pro-inflammatory profile in this tissue (increase in TNF-
α, IL-1β and IL-6, leptin and resistin, PAI-1, and C-reactive 
protein) and induces insulin resistance. That imbalance 
in gut microbiota sustains a pro-inflammatory microenvi-
ronment and metabolic endotoxemia in the liver (Brandi, 
Borrelli). Numerous investigations showed the role of dys-
biosis in the development of non-alcoholic fatty liver dis-
ease (NAFLD) and non-alcoholic steatohepatitis (NASH), 
pathologies closely related to metabolic syndrome [82, 99]. 
In these pathologies, dysbiosis was evinced through the 
increment in Enterobacteriaceae and Proteobacteria, and 
a reduction in Bacteroidetes [82].

Thus, the modulation of intestinal microbiota composi-
tion by the intake of probiotics could be an approach for the 
handling of low-grade inflammation in adipose tissue and 
lead to the attenuation of insulin resistance and the plethora 
of pathology states associated to this condition that affects 

Fig. 1   Probiotic-induced changes in the gut microbiota and immunomodulation as possible mechanisms to improve metabolic syndrome and 
associated pathologies
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the progression of metabolic syndrome-related diseases. 
Furthermore, these data suggest that it is necessary to study, 
when evaluating the effect of probiotics on host inflamma-
tion and related metabolic disorders, not only gut microbiota 
composition, but also TLR signaling and related pathways, 
increased levels of IgA and IgM against LPS of specific 
Gram-negative bacteria and other microbiota metabolites 
and cometabolites that have been implicated in metabolic 
disease, such as trimethylamine and branched chain amino 
acids [18, 100].

It has also been established that modulation of immune 
responses of the host is another mechanism by which probi-
otics can suppress low-grade chronic inflammation [18]. As 
it was previously stated, inflammatory responses in the gut 
can take place through the activation of TLRs pathway. The 
key in this inflammatory signaling pathway is again NF-ĸB, 
which is present in an inactive form in the cytoplasm, bound 
to the inhibitory IĸB molecule. When inflammatory stimuli 
trigger TLRs pathways, this molecule is broken down and 
NF-ĸB is released activating the pro-inflammatory cascade 
[101, 102]. Several probiotic strains, such as Lactobacillus 
rhamnosus GG or Lactobacillus casei DN-114 001, have 
been effectively proven as inhibitors of IĸB degradation, 
thereby reducing the expression of pro-inflammatory mol-
ecules [103, 104]. Probiotics can also show anti-inflamma-
tory effects by means of various mechanisms that include: 
(a) the regulation of the maturation of dendritic cells in the 
intestine; (b) changes in the expression of TLR on intesti-
nal epithelial cells and dendritic cells; (c) induction of a 
shift towards the production of anti-inflammatory cytokines 
(including IL-10 and TGF-β from Tregs); (d) induction of 
the differentiation of T-helper cells into Th2 cells [102 
108–112]. It has also been proposed that probiotics can 
suppress chronic inflammation modulating adipokines 

secretion in the adipose tissue, conducting to the inhibition 
of macrophage-mediated pro-inflammatory cytokines and/
or upregulation of adiponectin in adipocytes [17, 109]. In 
this regard, Lactobacillus casei CRL431 administration 
decreased inflammatory cytokines, in a diet-induced obese 
mouse model, including TNF-α, IL-6, and IL-17, and leptin, 
IL-6, TNF-α and MCP-1, in adipocytes and macrophages 
cocultured cell lines [17, 109].

Effects of probiotic strains on metabolic syndrome 
and related diseases: studies in cell lines, animal 
models and clinical trials

Numerous studies concerning probiotics, metabolic syn-
drome and related diseases have been recently carried out 
[Tables 2, 3 and 4]. Both, studies conducted in adipocytes 
or macrophage cell lines, high-fat fed animal models or in 
human intervention trials, showed that administration of 
probiotic bacteria was able to reduce leptin secretion and 
increase adiponectin levels [17, 79, 110–116, 120.121]. 
Some of this results were accompanied by a shift to an anti-
inflammatory cytokine profile along with the partial restora-
tion of metabolic alterations and/or dysbiosis that character-
ize obesity and metabolic syndrome [17, 79, 100, 110–112, 
117–121]. Furthermore, in vitro and in vivo studies have 
also provided evidence that anti-inflammatory properties 
exerted by lactic acid bacteria in adipose tissue are strain-
specific, prevailing in particular strains of Lactobacillus and 
Bifidobacterium genera (Tables 2, 3) [17, 110, 118–126]. 
Moreover, strains of these genera were reported to induce 
changes in gut microbiota composition [18]. The administra-
tion of a probiotic mix containing Lactobacillus rhamnosus 
and Bifidobacterium animalis subsp. lactis to obese mice 
was able to improve dysbiotic gut microbiota and increase 

Table 2   Effects of probiotics on inflammatory status evaluated using cell line models

Probiotic Inflammatory state Experimental model References

L. fermentum CMUL54, L. gasseri 
CMUL57, L. gasseri CMUL80, or L. 
plantarum CMUL140

↓ IL-8 and ↑ IL-10 secretion Caco-2 cell line stimulated with IL-1β [134]

L. casei CRL431, L. casei CRL72, L. 
casei CRL117, L. fermentum CRL1446, 
L. plantarum CRL350, L. plantarum 
CRL352, L. plantarum CRL353, L. plan-
tarum CRL355, LAB strain CRL143, or 
L. rhamnosus CRL576

↓ leptin, IL-6, TNF-α and MCP-1 secre-
tion, ↓ Ob-Rb [leptin receptor] expres-
sion

Mouse macrophage cell line [17]

L. casei CRL431, L. acidophilus CRL258, 
L. acidophilus CRL1063, L. casei 
CRL72, L. casei CRL117, L. paracasei 
CRL575, or L. rhamnosus CRL576

↓ leptin, IL-6, TNF-α and MCP-1 secre-
tion

Mouse adipocyte cell line [17]

L. acidophilus CRL258, L. acidophilus 
CRL1063, L. casei CRL72, L. fermen-
tum CRL1446, L. plantarum CRL350, or 
L. plantarum CRL353

↓ leptin, IL-6, TNF-α and MCP-1 secre-
tion

Mouse macrophage–adipocyte cell lines 
coculture

[17]
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the levels of Akkermansia muciniphila, related to the ame-
lioration of metabolic health in obesity [18, 127] (Table 3). 
However, other genera of unconventional probiotics such 
as Bacteroides have also been related to improvements in 
metabolic and immunological parameters in mice with 
high-fat-diet induced obesity [79]. Another example is the 
yeast Saccharomyces boulardii that was found to change gut 
microbiota, reduce body weight and fat mass and attenuate 
the markers of metabolic inflammation in obese and diabetic 
mice [97].

There are few clinical trials studying the effects of probi-
otics on metabolic syndrome and related diseases and even 
less exploring their effect on the markers of inflammation 
in these pathologies. These few probiotic interventions in 
humans also showed beneficial effects on the parameters 
of metabolic syndrome and inflammatory status (Table 4) 
[114, 128–131]. Probiotic microorganisms, such as Bifido-
bacterium lactis HN019 or Lactobacillus gasseri SBT2055, 
showed significant improvement in abdominal visceral fat 
areas, body weight or lipid profile associated with an atten-
uation of low-grade inflammation, with reduction of pro-
inflammatory markers, such as TNF-α and IL-6, and incre-
ment of anti-inflammatory ones, such as adipose-derived 
adiponectin [114, 130]. Probiotic yogurt containing Lacto-
bacillus acidophilus La5, Bifidobacterium. animalis subsp. 
lactis BB-12, and Lactobacillus casei DN001 administered 
to obese individuals under low-calorie diet showed syner-
gistic effects on T-cells subset-specific gene expression in 
peripheral blood mononuclear cells, and decreasing leptin 
levels and C-reactive protein, associated to a decrease in fat 
percentage, and body weight [132]. Despite these promis-
ing results obtained in humans, further clinical trials are 
necessary to confirm these positive effects and to unveil how 
probiotics might ameliorate the metabolic syndrome. Espe-
cially after some human trials suggested a species-specific 

effect of Lactobacillus on body weight, causing in certain 
cases weight gain [133].

Conclusion

Imbalance of inflammatory components of adipose tissue 
contributes to the development of metabolic syndrome-
linked pathologies such as insulin resistance, type 2 dia-
betes or cardiovascular disease. Thereby, the control of 
inflammation in metabolic syndrome, as well as obesity, 
may outcome in the control of many of the pathologies 
related to these. In this regard, further knowledge concern-
ing the immune function of adipose tissue may contribute 
to finding better alternatives for treatment or prevention of 
metabolic syndrome-related disorders. Furthermore, due 
to the strong evidence that gut microbiota composition 
plays a role modulating the body weight, adipose tissue 
and the prevalence of a low-grade inflammatory status, 
probiotics emerge as valuable tools for the prevention of 
metabolic syndrome and health recovery.
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Table 4   Probiotic strains with positive impact (in body weight, adiposity, glucose or lipid metabolism) on metabolic syndrome and related dis-
eases evaluated in clinical trials

d days, w weeks, m months, MS metabolic syndrome, SH nonalcoholic steatohepatitis, T2D type 2 diabetes, OB obesity, PCOS polycystic ovary 
syndrome, pathology closely related to MS, which shares clinical and metabolic components with MS (insulin resistance, low-grade chronic 
inflammation and central obesity)

Probiotic Inflammatory state Pathology/treat-
ment (duration)

References

B. longum + FOS ↓ TNF-α and CRP SH/24 w [128]
Mixture of L. acidophilus, L. bulgaricus, L. bifidum, and L. casei ↓ IL-6 T2D/6 w [129]
B. lactis HN019 ↓ serum IL-6 and TNF-α MS/45 d [130]
B. animalis ssp. lactis 420 ↓ CRP levels [tendency] OB/6 m [131]
Mixture of L. acidophilus, L. plantarum, L. fermentum, and L. gasseri ↓ serum IL-6 and CRP↑ serum IL-10 PCOS/12 w [147]
Probiotic yoghurt: L. acidophilus La5, Bifidobacterium BB12, and L. 

casei DN001
↓ serum CRP and leptin OB/8 w [132]

L. rhamnosus CGMCC1.3724 ↓ serum leptin OB/24 w [148]
L. gasseri SBT2055 ↑ serum adiponectin OB/12 w [114]
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