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Guillermo Benı́tez, Mónica Fernández Lorenzo de Mele,
Marı́a Elena Vela, Patricia L. Schilardi, Elias Paiva
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Graphical abstract 

 

 

 

HIGHLIGHTS 

 

 A straightforward and robust antibacterial coating was developed. 

 The coating consists in phosphotungstate ormosil doped with core-shell (SiO2@TiO2). 

 Silver nanoparticles were included in the coating by photoassisted synthesis. 

 The coating is able to eradicate Gram(+) and Gram(-) bacteria. 

 The antimicrobial activity remains high until three reutilization cycles. 

 

ABSTRACT 

Medical device-related infections represent a major healthcare complication, resulting in potential 

risks for the patient. Antimicrobial materials comprise an attractive strategy against bacterial 

colonization and biofilm proliferation. However, in most cases these materials are only 

bacteriostatic or bactericidal, and consequently they must be used in combination with other 

antimicrobials in order to reach the eradication condition (no viable microorganisms). In this study, 

a straightforward and robust antibacterial coating based on Phosphotungstate Ormosil doped with 
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core-shell (SiO2@TiO2) was developed using sol-gel process, chemical tempering, and Ag 

nanoparticle photoassisted synthesis (POrs-CS-Ag). The coating was characterized by X-ray 

Fluorescence Spectroscopy (XRF), Field Emission Scanning Electron Microscopy (FE-SEM), 

Atomic Force Microscopy (AFM) and X-ray Photoelectron Microscopy (XPS). The silver free 

coating displays low antibacterial activity against Staphylococcus aureus and Pseudomonas 

aeruginosa, in opposition to the silver loaded ones, which are able to completely eradicate these 

strains. Moreover, the antimicrobial activity of these substrates remains high until three 

reutilization cycles, which make them a promising strategy to develop self-sterilizing materials, 

such as POrs-CS-Ag-impregnated fabric, POrs-CS-Ag coated indwelling metals and polymers, 

among other materials. 

 

KEYWORDS: antibacterial activity, Pseudomonas aeruginosa, Staphylococcus aureus, Ormosil, 

Ag nanoparticles 

 

 

1. Introduction 

Mitigation of hospital-acquired infections has become a great concern due to the increasing 

bacterial resistance to conventional antibiotics1. It has encouraged the development of new 

antimicrobial materials and coatings based in innovative biocidal strategies able to control 

bacterial attachment and proliferation2–4. In this sense, some interesting approaches are: a) 

modification of surfaces either by physical patterns (micropatterned surfaces)5–7 or by surface 

functionalization with antimicrobial molecules to reduce the rate of bacterial colonization8; b) 
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polymer coatings that control the release of antimicrobial agents (antibiotics, silver ions or 

nanoparticles), and/or mixed polymers with self-cleaning and self-sterilization properties9; c) 

inorganic coatings with intrinsic antimicrobial activity such as titanium dioxide, a well-known 

photosensitizer upon UV light irradiation that provides a high rate of bacterial inactivation10. 

Nevertheless, these promising strategies have some limitations. Reduction of bacterial 

colonization by chemical or physical methods does not imply sterilization, and re-growth of 

microorganisms may occur. In case of drug release from a polymer matrix, antimicrobial load is 

limited and the release kinetics may determine the antimicrobial concentration over time11. On the 

other hand, photodynamic inactivation of microorganisms by TiO2 is achieved by UV exposure, 

which can only be done before the implantation. Thus, bacterial proliferation can occur if the 

indwelling device is contaminated during surgical procedures. Considering these points, the 

development of new antimicrobial materials with prolonged bactericidal activity and able to attain 

the sterilization of surfaces is essential in order to significantly reduce the morbidity and mortality 

risks of implantation procedures. 

In the last years, sol-gel processing emerged as a versatile methodology for coating surfaces with 

multifunctional purposes12–16 that include several bio-applications such as enzyme17,18, living 

cells19 and fungi entrapment for biocatalysis20. Although the capacity of the sol-gel process to 

produce versatile coatings able to enhance the interaction between biomaterials and living cells is 

well known, only few efforts have been made to exploit the use of this procedure to obtain 

antibacterial coatings. Among them, Yin et al. have reported an active antibacterial coating based 

on mixed Layer-by-Layer method and sol-gel process21 for multifunctional coating deposition on 

a cellulose substrate, while Tay et al. developed antimicrobial silsesquioxane–silica hybrids by 

hydrolytic co-condensation of alkoxysilanes22. Recently Gong et al. reported the effect of AH Plus, 

ACCEPTED M
ANUSCRIP

T



 5 

a commercial antimicrobial product, incorporated to quaternary ammonium epoxy silicate against 

Enterococcus faecalis, resulting in a promising approach for controlling endodontic infection 23. 

In our group we have exploited the use of phosphotungstic acid as a catalyst to obtain flat xerogels 

films and coatings 16,24,25. The use of this superacid26 allows efficient catalysis of the hydrolysis 

co-condensation reactions to obtain the sol used for coating preparation. Phosphotungstate Keggin 

clusters are excellent photocatalysts27, especially after adsorption on wide band semiconductors 

such as TiO2 
28.This photocatalytical enhancement is based on photoelectron transfer from the 

semiconductor to the LUMO of the phosphotungstate yielding heteropolyblues formation24. 

Titania entrapment in the phosphotungstate ormosils (organically modified silicates) resulted in 

increase on photochromic response of the ormosils, as previously reported by our group 29. Thus, 

this enhanced photocatalytic behavior would be used for the formation of silver nanoparticles 

through the entrapment of Ag(I) ions and the subsequent photoreduction of these ions. 

Although the use of TiO2 nanoparticles (NPs) is attractive, they tend to aggregate inside the films, 

thus resulting in lower surface area and lower activity 24.This agglomeration can be overcome by 

using TiO2NPs dispersed on silica sub-micron particles 30. Cation loaded xerogels can be useful 

for the preparation of multifunctional materials, including antibacterial ones. A very 

straightforward methodology for cation incorporation on xerogel films is the chemical tempering. 

Chemical tempering is a glass hardening technique based on ion-exchange in molten salts 31. Such 

approach for cation metal absorption induces a cation gradient in the films with metal cation 

enrichment on the ormosil surface. Phosphotungstate in ormosil coating can act as a cation 

exchange site, exchanging protons by Ag+ and forming H3-xAgx[PW12O40] species 32. The noble 

metal phosphotungstate formed is a precursor for synthesis of noble metal/phosphotungstate 

heterostructures. In fact, polyoxometalate/TiO2 heterojunction was first used by Pearson et al 28 to 
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produce Au nanoparticles decorated phosphotungstate@TiO2 particles while Mandal et al 33 

achieved the photoreduction of silver cations by polyoxometalates.  

The antibacterial silver NPs phosphotungstate heterostructures H3-xAgx[PW12O40] can be achieved 

by electron transfer from reduced phosphotungstate to the silver cations. These reduced 

phosphotungstates can be formed by thermal or photochemical reduction. The 

phosphotungstate/TiO2 heterojunction increase the yield of photogenerated heteropolyblues 

which, in turn, can conduct to a high yield in the AgNPs formation. Furthermore, these 

phosphotungstate/TiO2 heterojunctions can spatially drive the NPs distribution on the surface and 

inside the supporting material. So far, the photoassisted formation of AgNPs by Keggin 

polyoxoanion inside supporting materials has not been previously explored. Thus, this procedure 

could be innovatively applied to prepare AgNPs loaded materials. Improvement on reduction of 

silver cations by photoreduced polyoxometalate can be obtained by using TiO2 dispersed on silica 

sub-micron particles due to the higher surface area presented by these core@shell particles30. 

AgNPs loaded materials have attracted large interest in the literature and from several industries 

around the Globe, because of the above mentioned antibacterial properties34–36, among many other 

outstanding properties. 

We report here a reproducible and easily prepared coating with antibacterial activity based on 

hybrid Phosphotungstate Ormosils (POrs hereafter) loaded with AgNPs. These AgNPs were 

photosynthesized by UV irradiation of the phosphotungstate/SiO2@TiO2 heterojunction entrapped 

in the ormosil coating. Two are the main novelties in the present manuscript. First, to the best of 

our knowledge, the preparation of the silver nanoparticle by chemical tempering followed by 

irradiation promoting such well dispersed and high loaded AgNP at/on the surface with good 
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control of particle size distribution based on UV-vis spectrum has not yet been reported. This 

combined processing is versatile and can be easily scaled up. Detailed surface and 

physicochemical characterization of the novel silver-loaded coatings is presented, as well as 

microbiological assays using Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus 

aureus (S. aureus) in order to evaluate their antimicrobial and self-sterilizing properties. 

Importantly, only a tiny amount of SiO2@TiO2 is necessary to achieve the antibacterial effects and 

self-sterilization (total eradication of viable bacteria), which is attained due to the action of AgNPs-

loaded surfaces even without further irradiation. Notice that very few systems are capable to 

eradicate bacteria, being active up to three bacteria exposition cycles. Thus, the material developed 

in this work is unique, since its ability for killing bacteria, reaching total eradication, is better than 

other previously reported in the literature. In fact, to our best knowledge antibacterial surfaces 

previously developed are able to inhibit the bacterial growth and proliferation, without achieving 

self-sterilization. The bacteria eradication efficiency is certainly related to the AgNP formation 

and loading protocol based on the unique combination of chemical tempering and nanoparticle 

photoassisted formation by photoreduced phosphotungstate.  

2. Experimental section 

2.1. Materials 

Tetraethylorthosilicate (TEOS 98%), 3-Glycidoxypropiltrimetoxysilane (GLYMO, 98%), 4-

(triethoxysilyl)butyronitrile (BuTS, 98%), hydrated phosphotungstic acid (reagent grade), and 

AgNO3 (ACS reagent, Vetec) were purchased from Sigma-Aldrich (USA) and were used without 

further purification. Ethanol (99.8%) was supplied by Quemis (SP, Brazil) and ultrapure water was 
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obtained from a Marconi Water Purification unit (water resistivity, 18M).Soda-lime glass slides 

were purchased from Bioslide (Bioslide Technologies, Canada).  

2.2. Synthesis of core-shell NPs 

The SiO2@TiO2 core-shell NPs, referred as CS from now on, were prepared according to Ullah et 

al. 30. Briefly, SiO2 particles (previously prepared by Stöber method 37) were dried at 110 ◦C for at 

least 1h. 0.2 g of the dried silica powder was dispersed in 40 mL isopropanol by sonication for 1 

h. The suspension and additional 50 mL of isopropanol were transferred to a closed Teflon reactor. 

Subsequently, 220 uL of titanium tetraisopropoxide was added and the mixture was kept under 

magnetic stirring for 20h. Hydrolysis of the titanium alkoxide precursor was then promoted by 

dropwise addition of 3 mL water/ 6 mL isopropanol solution. After 1 h kept under magnetic 

stirring, the suspension was centrifuged for 10 min at 3500 rpm, washed once with isopropanol 

and re-suspended in 35 mL of deionized water. The aqueous suspension was then transferred to a 

homemade Teflon lined brass hydrothermal reactor and submitted to hydrothermal treatment at 

105ºC for 24h. Finally, the CS particles were obtained by centrifugation of the suspension, washed 

twice with deionized water and dried at 80ºC for 24h 

2.3. Preparation of the Phosphotungstate Ormosils doped with CS.  

The procedure for preparation of the hybrid films was adapted from Ferreira-Neto et al15. Roughly, 

TEOS (9 mmol) and BuTS (1.5 mmol) were dissolved in 25 mL of anydrous ethanol under 

magnetic stirring. A second solution was prepared by dissolving 0.75mmol of hydrated 

phosphotungstic acid (HPW) in 25 mL of ethanol and added to the alkoxysilane solution. After the 

mixed solution was kept under stirring for 5min, 45 mmol of deionized water and 6.8 mmol of 

GLYMO were slowly added. Finally, different volumes of ethanolic CS particles suspension were 
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added according to Table T1 (Suppl. Inf.). The obtained sol was stirred for additional 10 min before 

being used for film preparation by dip coating. 

2.4. Substrate cleaning and film preparation 

The films, containing POrs and POrs doped with CS (POrs-CS),were prepared following the 

protocol reported by Gonçalves et al. 29. Firstly, soda-lime glass slides were cleaned using a 

cleaning solution (NH4OH/H2O2/H2O in 1:1:5 volume ratio) at 70 ºC for 2 h. Then, the glass 

substrates (25mm2) were washed with deionized water and dried under a steam of nitrogen.  

Finally, the films were prepared using the Marconi Dip-coating equipment (Marconi, Brazil). For 

each sample, the clean glass substrate was subjected to 20 immersions to obtain the multilayer 

films. The immersion and emersion velocity was set to 150mm/min. 

 

2.5. Chemical Tempering with Ag+. 

The silver cation loading process was adapted from traditional chemical tempering technique31, 

i.e. ionic exchange by immersing the POrs films in 1 M AgNO3 aqueous solution at room 

temperature. To find the higher loading conditions, an ion exchange kinetic experiment using a 

silver nitrate solution, was performed. Once determined the tempering time for higher loading, the 

silver loading was carried out and the substrate was dried under air at room temperature in dark 

conditions for 24 h. 

2.6. Photoassisted Synthesis of AgNPs 

The photoassisted formation of the AgNPs in the different hybrid films was studied by UV-vis 

electronic absorption spectroscopy after exposure to UV radiation using a Solar Light Simulator 
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with a Xe arc lamp (model 16S-150W, fabricated by Solar Light Company, Inc., Philadelphia, 

USA). The spot size diameter at the sample was 1 cm, the sample to UV source exit was set to 7.3 

cm, and the maximum irradiance was 750 Wm-2. For microbiological testing, AgNPs formation in 

the hybrid films was carried out using a pencil style Oriel 6035 Hg lamp positioned at a 10 cm 

distance from the sample in order to completely expose the samples to UV radiation. Irradiation 

time was set for 10 min since further irradiation did not show significant increase in the films 

absorbance employing such irradiation conditions. Following this procedure, AgNPs were formed 

in ormosil (POrs and POrs-CS) substrates, which were denoted as POrs-Ag and POrs-CS-Ag.  

2.7. Material Characterization  

2.7.1. XPS 

All spectra were collected using a non-monochromatic Al Kα x-ray source (XR50, SPECS 

GmbH), a hemispherical electron analyzer (Phoibos 100, SPECS GmbH). The survey spectra were 

collected using a pass energy of 40eV, while high resolution spectra were recorded using 10 eV. 

All samples were POrs and POrs-CS films on glass substrate with and without AgNPs. The 

charging correction was performed using the C peak at 285 eV as internal reference. Spectra fitting 

was performed with XPS Peak  4.1  software, using a  Shirley  type  background  and  a  product  

of  Gaussian  and  Lorentzian functions  for  the  peaks.   

2.7.2. Electronic (UV-Vis) Spectroscopy 

All spectra of the films were collected using a Shimadzu UV-3600 spectrophotometer in 

transmission mode with the hybrid films supported on soda-lime glass slides perpendicular to the 

radiation beam.  
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2.7.3. X-ray Fluorescence 

Elemental analysis of Ag present in the films was performed using a benchtop X-ray fluorescence 

spectrometer Minipal 4 (Panalytical, Netherlands) with a Rh X-ray tube, power set to 9W, 

acquisition time 500s, under helium atmosphere. The analyzed films were deposited on 

SiO2/Si(100) wafers, previously cleaned with piranha solution. The silver quantifications were 

made by standardless techniques based on fundamental parameters 38. 

2.7.4. Field Emission Scanning Electron Microscopy (FE-SEM) 

The FEG-SEM images were obtained in an Inspect F50 (FEI, The Netherlands). The beam 

accelerating voltage was set to 30 kV to get deeper beam penetration, allowing imaging the CS 

particles several nanometers underneath the film surface. Images were formed using backscattered 

electrons (BSE) signal which provides chemical contrast (Z contrast). Energy Dispersive 

Spectroscopy (EDS) was performed in a line scan mode over CS particles to determine the location 

of silver and titanium using an Apollo X SDD detector (EDAX, USA) and a beam acceleration of 

15 kV.  

2.7.5. Atomic Force Microscopy (AFM) 

AFM images were obtained with a Multimode microscope controlled by a Nanoscope V control 

unit (Bruker, USA), in Tapping® mode. The tips used were RTESPA (Bruker,spring constant, 

k=20-80N.m-1; oscillating resonance frequency 370 - 310 kHz). All images were analyzed using 

the Nanoscope Analysis 7.2software. 

2.8 Antimicrobial Assays 

2.8.1 Bacterial Culture 
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S. aureus (ATCC 25923) and P. aeruginosa (clinical isolate) were chosen as models of Gram (+) 

and Gram (–) opportunistic pathogens, respectively. Strains were grown overnight in nutrient broth 

(NB; Merck, Darmstadt, Germany) at 28C in a rotary shaker (250 rpm). Each bacterial inoculum 

was diluted in NB in order to get 108 colony-forming units (CFU) mL-1 of bacteria for viability 

assays. The CFU values were confirmed by plate counting method. 

 

2.8.2 Sessile bacteria assay. 

Bacterial adhesion assays were performed as described by Flores et al.35 with minor modifications.  

Briefly, bacterial suspensions were adjusted to  108 CFU mL-1 in fresh NB and used immediately 

for the inoculation of the substrates. Glass substrates were used as control. The substrates were 

vertically placed in the bacterial suspension and incubated at 28C for 2 h.  After that, the substrates 

were removed and gently washed by immersing them in double-distilled sterile water in order to 

discard cells that were not tightly attached to the surface. 

The enumeration of viable sessile bacteria on the substrates was performed by plate counting 

method: the substrates were individually placed in glass tubes containing 2 mL of sterile PBS and 

the irreversibly adherent bacteria were detached by sonication for 15 min using a Testlab sonicator 

(40 Khz with power output of 160 W). Then, the quantification of bacteria in the suspension was 

estimated by plating appropriate dilutions on nutrient agar (Britania, Argentina). The experiments 

were made thrice and the plating was carried out in duplicate. No effect of sonication on the 

number of surviving cell was found34. Statistical analysis was performed using one-way analysis 

of variance (ANOVA) to evaluate differences between groups of bacteria. A p value < 0.05 was 

considered statistically significant. 
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2.8.3 Antimicrobial properties of reused silver loaded substrates 

 

The antimicrobial activity of reused silver loaded substrates (POrs-Ag and POrs-CS-Ag) was 

determined by growing halo assays. To this end, bacterial adhesion on the POrs-CS-Ag and POrs-

Ag coated surfaces was carried out as described in 2.8.2. Then, the substrates were washed in 

double-distilled sterile water and placed in sterile nutrient agar plates at 28 ºC for 24 h. After this 

period, bacterial growth around the POrs-Ag and POrs-CS-Ag was examined. To evaluate if POrs-

CS-Ag maintains its antibacterial properties after reuse, in each assay the substrate was removed 

and washed in double-distilled sterile water and the procedure (2 h-bacterial adhesion and further 

nutrient agar plate incubation) was repeated with each substrate until bacterial colonies were 

visualized. The absence of colonies around or under the substrate indicates that the antimicrobial 

activity is conserved in the silver loaded substrate. 

 

3. Results and discussion 

3.1 Characterization of silver loaded substrates 

3.1.1. Chemical Tempering  

The time dependence of the Ag+ loading in the POrs-CS films was followed by X-Ray 

Fluorescence of the Ag inside the films and the results are shown in Figure S1 (Suppl. Inf.) for the 

CS100 one as a representative curve for the complete set of ormosils tested.  Silver cation loading 

steeply increases during the first minutes of immersion and a fast saturation is reached after 10 

min. The fast absorption profile is typical of ion-exchange sorption since no covalent bond needs 
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to be broken during ion-exchange, therefore this mechanism would explain the silver cation 

loading observed in POrs-CS and POrs films. 

It is important to stress that chemical tempering does follow the Fick´s second law. Therefore, a 

concentration gradient along the film thickness in the ormosil samples is built up. Such gradient, 

as expected from the Fick´s second law, will proportionate a higher silver concentration on the 

outermost layers of the film. Such asymmetric concentration profile will be advantageous for the 

antibacterial activity since the higher silver concentration in the outermost layers will release 

enough silver ions into culture media to attain the bactericidal effect. 

 

3.1.2 Photoassisted synthesis of AgNPs 

Photo-assisted reduction of Ag+ to form AgNPs by phosphotungstate adsorbed on TiO2 and 

photoreduced=TiO2//H[PW12O40]
3-should follow the equations1-3: 

 

=TiO2//[PW12O40]
3-  + hv=TiO2//[ [PW12O40]

3-
excited    Equation 1 

=TiO2//[[PW12O40]
3-

excited + HXreduced=TiO2//[H[PW12O40]
3- + Xoxidized Equation 2 

n =TiO2//[H[PW12O40]
3-+ n Ag+ n =TiO2//[H[PW12O40]

2- + Agn
0

(s)  Equation 3 

Where HX stands for a proton donor such as ethanol or water absorbed during the film 

formation process.  

Formation of AgNPs in the UV irradiated films was studied by UV-Vis electronic absorption 

spectroscopy by monitoring appearance of AgNPs characteristic surface plasmon resonance (SPR) 
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absorption band. The electronic absorption spectra of the hybrid films after UV exposure are 

shown in Figure 1. The SPR absorption wavelength and peak area values for the different samples 

are summarized in Table T2 (Suppl. Inf.). 

Figure 1. UV-Vis electronic extinction spectra of sample Ag+-POrs-CS100 after various UV 

irradiation intervals (a);  Comparison of the electronic spectra of CS-doped and undoped Ag+-POrs 

hybrid films after 10 min of UV irradiation (b).  

Ag+ loaded POrs and POrs-CS absorption spectra exhibited the typical AgNPs plasmonic band at 

maximum absorption wavelengths (λmax) in the range of 400-411nm 39, whose absorbance 

increases as the time of UV exposure does (Figure 1a), reflecting an increasing photoconversion 

of Ag+  into AgNPs. The relatively narrow and symmetric line shapes of the plasmonic absorption 

are qualitative indicators of narrow size distribution of the particles and their high dispersion in 

the hybrid films, since the band widening expected for NPs agglomeration is not observed 40. 

Plasmon absorption frequency  (M) depends of  both the electrical permittivity due to the electrons 

(ε1
d)  and the contribution from the surrounding media (εm), consequently, plasmonic band 
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wavelength is determined not only by particle electrical permittivity but also by the surrounding 

medium, as given by the equation 4 below 41 

𝜔𝑀 =
𝜔𝑃

√[ 1
𝑑(𝜔𝑀)+2 𝑚]

         Equation 4 

For noble metal NPs it is necessary to take into account the electron spill over correction, 

which includes the size dependence of the frequency, according to Equation 540.·, where p stands 

for bulk plasmon frequency, M(RNe) stands for the size dependent corrected plasmon frequency, 

RNe stands for the particle radius and is an adjustable parameter.  

𝜔𝑀(𝑅𝑁𝑒)≈  𝜔𝑀𝑐𝑙𝑎𝑠𝑠𝑖𝑐 (1 −
3𝛿

2𝑅𝑁𝑒
)           Equation 5 

The centroid of the plasmonic band at 400-411 nm is indicative of average crystal sizes in 

the range of  15-30 nm for the photosynthesized AgNPs42. Since no significant changes were 

observed either in the plasmon absorption  λmax or in band width for the POrs-CS-Ag film as a 

function of irradiation time (Figure 1a), a very fast nucleation rate for the process is expected, in 

agreement with photoreduction electron transfer mechanism, which may be promoted by both CS 

particles and the photoreduced polyoxometalate species.  In fact, the presence of CS particles was 

shown to increase formation of AgNPs, as indicated by the larger plasmonic band area values for 

the CS-doped films as compared to the undoped sample (Table T2, Suppl. Inf.), a maximum 

increase of 62% been observed for sample POrs-CS100. Additionally, CS-doped films SPR bands 

also displayed slightly red-shifted λmax values, which indicate a change in the surrounding 

dielectric medium or larger size of AgNPs. The SiO2@TiO2 CS particles may enhance photo-

induced formation of AgNPs by both promoting direct photocatalytic reduction of Ag+ cations43 
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and by increasing formation of photoreduced phosphotungstate species 28,29, which may also 

promote formation of AgNPs44. In this way, both photocatalysts, CS particles and 

phosphotungstate polyoxoanions, act synergistically for the photo-assisted formation of AgNPs in 

the hybrid ormosil films.  

3.1.3 Field Emission Scanning Electron Microscopy (FE-SEM) 

The formation of AgNPs around the CS inside the POrs-CS100 was studied by Field Emission 

Scanning Electron Microscopy (FE-SEM) of the POrs films on glass slides using field gun tension 

at 30 kV. Under this condition is possible to probe the underneath layer of the POrs, thus observing 

the buried CS particles. To improve the contrast, the backscattered electron detector (BSE) was 

used. The backscattered electron detector (BSE) signal shows brighter regions due to the domains 

with higher mean atomic number. Accordingly, the formation of a silver or TiO2 deposit on the 

submicron SiO2 particles can be noticed in the image shown in Figure 2. In order to chemically 

characterize these submicron particles, the EDS line scan data was collected over two CS particles 

(white line in Figure 2). The silicon X-ray emission signal is slightly higher on the submicron 

particles region (red line), as expected. Furthermore, the shell formation is evidenced by a sudden 

increase in silver and titanium signal counts at the particles edges (dashed lines). Thus, the results 

reinforce the hypothesis stated in equations 1-3, since the presence of the 

core@shell@shell(SiO2@TiO2//H[PW12O40]
2- nanostructure was observed in FE-SEM images. 
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Figure 2. Field emission Scanning Electron Microscopy of the CS-Ag particle (i.e. 

Ag@SiO2@TiO2) in the POrs-CS100-Agfilm. Superposed to the image it is the X-ray emission 

intensity for the Ag L and Ti Klines along the white line. The abscissa in the inserted graph 

shows the distance along the line in nm, while the ordinate shows the X-ray emission intensity. 

3.1.4 Atomic Force Microscopy 

The surface morphology and roughness of the POrs with silver cation (non-irradiated) before and 

after irradiation were studied by ex-situ AFM tapping mode.  We have employed the root mean 

square roughness (RMS) Rq (Equation 6) to evaluate the roughness of the surfaces which is the 

standard deviation of the Z values within a given area, as described in equation 6. 

𝑅𝑞 = √∑ (𝑍𝑖−𝑍𝑎𝑣𝑒)2𝑁
𝑖=1

𝑁
   Equation 6 

Where Zi is the value of z at a point i of the surface, Zave is the average value within the given area 

and N is the number of points within that area 45,46.  

The effect of irradiation on the morphology of CS was evaluated by cross section analysis. After 

irradiation, the topography is similar for all samples (Figure 3). However, the average size of the 

particles is higher than those values found for the samples before irradiation. 
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Figure 3. Cross section analysis of representative images of Ormosil surfaces modified with silver 

(a) before (b) after irradiation. The z-color scale is the same for both images. 

The values of Rq measured on 10mx10m images of the samples with and without silver are 

shown in Table T3 (Suppl. Inf.).  

These data show a decrease in surface roughness for all substrates after irradiation, although this 

effect is not proportionally scaled with the amount of CS. UV annealing of the sol-gel films, 

including Ormosils, has been previously reported for laser UV excimers as well as Hg arc lamp 47–

49 being related to de-hydroxylation and condensation reactions for vacuum UV sources or organic 

moieties degradation in the UV A/B region. The Si-O bond is highly stable toward thermal and 

photoactivated cleavage, however, the photochemical cleavage can be achieved by deep UV if Si-
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H or Si-C are present, thus suffering homolytic cleavage and forming reactive radicals 50. The Xe 

arc lamp used in this work has longer wavelength cut-off than the previously reported source and 

far less power density, therefore, it would be unlikely any silanol or siloxane bond breaking in the 

Ormosils without CS, thus the observed surface changes can be related to UV annealing or 

photodegradation of the surface organic functionalities. The surface flattening effect is more 

pronounced for the Ormosil with larger content of CS. Therefore, this effect must be related to the 

UV-induced photocatalytic activity of these CS particles which promotes higher organics 

degradation due to generation of hydroxyl radicals. On the other hand, it should be considered an 

alternative interpretation: silver would be deposited in a conformal way following the core-shell 

structure. The decrease in roughness could be attributed to the filling of the valleys between 

particles. Both interpretations would require a model in order to assess the structure of the 

compounds on the surface, which is out of scope of the present work. 

3.1.5. X-Ray Photoemission Spectroscopy (XPS) 

The maximum depth of analysis for XPS is around 10nm depending on the film density, take-off 

angle and X-ray energy51. XPS can retrieve the average composition of the POrs surfaces 15,52 thus 

helping to the understanding of surface phenomena such as bacterial adhesion and bactericide 

effect.  

The survey scan for the silver loaded samples before and after irradiation shows the expected 

photoelectric and Auger lines for the O1s, W4f doublet, C1s, N1s, Ag 3d and Si 2p (Figure S2, 

Suppl. Inf.). Therefore, it is possible to infer the presence of phosphotungstate and silver on the 

outmost layer of the ormosils, which is relevant for the antibacterial properties. An interesting 

remark is the presence of asymmetric W4f7/2 and W4f5/2 spin-orbit doublets. The asymmetric 
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doublets were fitted to two pseudo-Voigt doublets with W4f7/2at 35 eV and 36.1eV (Figure S3, 

Suppl. Inf.). The 35 eV component was tentatively assigned to highly dispersed phosphotungstate 

interacting with surrounding media by comparison with previous studies by XPS 13. Binding 

energies of polyoxoanions are very susceptible to the matrix environment due to intermolecular 

interactions with organic surface moieties53. So, XPS measurements confirm the presence of 

phosphotungstate in two different environments, one clearly related to the phosphotungstic acid 

species and the other was tentatively assigned to the SiO2@TiO2//H[PW12O40]
2-.  

The high-resolution XP-Ag 3d region for the non-irradiated (NI) silver cation loaded or irradiated 

(I) ones POrs films, with and without CS particles are shown in Figure 4. The spectra show the 

typical spin-orbit splitting for the Ag3d5/2 and Ag3d3/2 doublet. The binding energies for the 

Ag3d5/2/ span between 368 and 369 eV  typical values for Ag+ and Ag0 54–58. Furthermore 

differential charging can complicate the assignment of the oxidation state of silver in hybrid films59 

as well as particle size distribution60. Nevertheless, the most important feature remains clear, that 

is the presence of silver species on the surface of the ormosils. 
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Figure 4. High resolution XP-Ag 3d region for the silver cation loaded on non-irradiated (NI) and 

irradiated (I) POrs films with and without CS particles. The spectra show the typical spin-orbit 

splitting for the Ag3d5/2 and Ag3d3/2doublet. 

3.1.6 Silver Release Study  

As it has been previously discussed, the effect of Ag-NPs may be directly related to the NPs or to 

the silver ions that are released from their surface35. In order to evaluate the stability and possible 

release of silver in culture media, quantification of the total silver content (cationic and NPs) of 

POrs films before and after immersion (2h) in the culture media was followed by X-ray 

fluorescence spectroscopy (XRF) (Figure S4, Suppl. Inf.). Results reveal that in all cases the 
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amount of silver content of the films tested decreases after immersion in the culture media, which 

can be assigned to both, silver ions and/or Ag NPs released to the liquid medium.  

 

3.2 Evaluation of antimicrobial properties of silver loaded substrates. 

3.2.1 Viability of bacteria adhered to Ormosils substrates  

3.2.1.1 Bacterial adhesion on ormosils substrates without AgNPs 

In this study, opportunistic clinical pathogen, S. aureus and P. aeruginosa, were chosen as models 

of Gram positive and Gram negative microorganisms, respectively. Substrates were immersed in 

bacterial culture and the enumeration of P. aeruginosa and S. aureus cells attached to ormosil films 

and glass substrates were carried out (Figure 5). The number of viable sessile cells of P. aeruginosa 

attached to POrs and POrs-CS is similar to that found on the control substrate (p>0.05). Thus, 

these results reveal that Pseudomonas showed no selectivity for the adhesion on ormosil substrates 

without AgNPs (POrs, POrs-CS20, POrs-CS100, POrs-CS1000, Figure 5A). Besides, bacterial 

adhesion was similar for all the assayed substrates regardless the presence or absence of CS 

particles. It has been previously reported that the formation of Pseudomonas aggregates on the 

substrate immersed in abiotic culture media is not dependent on the physical-chemical properties 

of its surface61. The non-selective  adhesion of Pseudomonas to the surfaces can be partially 

explained by the coverage of the surfaces by adsorbed organic species coming from the culture 

medium forming a conditioning layer suitable for the attachment of several microorganisms61 and 

by the extracellular polymeric substances (EPS) that partially masks surface properties. 

On the other hand, the adhesion of S. aureus cells on POrs films decreased at least 5-fold compared 

with the control (p<0.05) (Figure 5B).  The adhesion of S. aureus is influenced by the composition 
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of the surface. Thus, a lower adherence was found for CS-containing substrates. Conversely, P. 

aeruginosa, known by their ubiquity and high production of EPS were not affected by the 

characteristics of the substrate. 

 

3.2.1.2 Ormosils films loaded with AgNPs 

When the antimicrobial activity of ormosils films loaded with AgNPs was analyzed, a dramatic 

decrease in the viability of bacteria was observed (Figure 5). Remarkably, no viable sessile cells 

of P. aeruginosa or S. aureus were found on POrs-Ag and POrs-CS-Ag which emphasized the 

strong eradicating activity of these substrates that leads to self- sterilization. It should be noted that 

the high bactericidal effect of silver loaded ormosil films was reached even in the case of POrs-

Ag which does not contain CS particles and presented a slightly lower formation of AgNPs. 

Although P. aeruginosa showed an exceptional ability to colonize non-loaded metal ormosil 

substrates, the incorporation of AgNPs into the film decreased dramatically its viability attaining 

self-sterilization. Much effort has been devoted to the development of biomaterials with effective 

antimicrobial properties for medical devices in order to prevent biofilms-related infection. 

Recently Pappas et al. 9 developed an innovative mixed polymeric surface to inactivate bacterial 

pathogens. Even though this polymeric material shows promising application as an antimicrobial 

surface, it was not able to reach the total killing of the attached bacteria (20-30% of the initial 

inoculum remained viable). In fact, this mixed polymeric film exhibited a good bacteriostatic 

activity but was not able to attain a complete sterilization of the surface. Similarly, several 

approaches based on AgNPs-coated surfaces resulted in good bacteriostatic activity persisting in 

time 35,62–64. At this point is worth to stress that antibacterial surfaces are defined as those able to 

inhibit the growth and proliferation of microorganisms65 and, therefore, it is expected that they 
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only complement the conventional antibiotic treatment. However, in clinical practice, bactericidal 

activity is required in order to avoid biofilm-related infections associated to indwelling devices. 

On this regard, the important step forward made by silver loaded ormosil substrates presented in 

this work is the total eradication of bacteria attached to the surface, without the requirement of UV 

irradiation, i.e. even in darkness, which is also a significant advantage compared with those 

materials based in irradiated TiO2 coatings that need irradiation and are not able to eradicate 

bacteria. 

Even though the antimicrobial properties of Ag, either as ions or NPs, against a wide variety of 

microorganisms (bacteria, fungal and virus) are well known, the mechanism involved in the 

antimicrobial properties of AgNPs is controversial and remains unclear. The most accepted 

mechanisms include (i) the release of Ag(I) which interact with thiol groups in proteins (ii) the 

internalization of AgNPs, which may inhibit DNA replication, block bacterial respiration chain, 

and may generate ROS 66and (iii) the inhibition of the enzymatic activity by AgNPs, promoting 

cell wall disruption. Based on the XRF analysis (Figure S4, Suppl. Inf.) it was demonstrated that 

silver release is occurring into the culture media. However, both silver cation and AgNPs display 

high antibacterial activity, and therefore their individual action is out of scope of this work. As 

regards our experimental results involving POrs-Ag and POrs-CS-Ag surfaces, although the silver 

release is different for these substrates (Figure S4), all of them are able to reach bacterial 

eradication (Figure 5). It seems that the silver release from all the assayed substrates is higher than 

a threshold value able to eradicate bacteria and no difference in the efficacy is found. Thus, it is 

reasonable to speculate that the killing mechanism is linked to the action of a threshold value of 

silver ions concentration. 

ACCEPTED M
ANUSCRIP

T



 26 

 

Figure 5. Bacterial colonization on ormosil substrates. Enumeration of P. aeruginosa (A) and S. 

aureus (B) viable sessile cells on different ormosil substrates with and without AgNPs. Glass 

surface was used as control. In all cases Ag-containing substrates showed complete eradication of 

bacteria since no viable bacteria was found (red bars). * indicates significant difference (p< 0.05) 

between control and ormosil substrates (glass slides of 25mm2). 

 

ACCEPTED M
ANUSCRIP

T



 27 

3.2.2 Bacterial growth around POrs-CS andPOrs-CS-Ag surfaces. Effect of reutilization on 

antibacterial properties 

The possibility of re-utilization of POrs-CS-Ag coated materials was analyzed.  After the 

immersion of the sample in the bacterial culture medium and placing it on the agar surface, bacteria 

attached on the POrs-CS were able to grow on the agar (Figures 6a and 6b). However, when the 

same procedure was repeated with POrs-CS-Ag no bacteria grew on the agar, indicating the 

effectiveness of the self-sterilizing POrs-CS-Ag surface (Figures 6c and 6d).  

To evaluate if the POrs-CS-Ag surfaces were able to retain the antibacterial activity, they were 

tested after being immersed two and three times in the bacterial culture, that is, the substrates were 

exposed to the most extreme conditions. No bacterial growth was observed after the first and 

second cycle (Figures 6c and 6d), and only a weak cell proliferation was found after the third cycle 

(Figures 6e and 6f). From these results, it is reasonable to infer that the silver loaded POrs-CS 

films exposed to air or a less aggressive aqueous environment than agar surface will be able to 

retain the antimicrobial activity for longer periods of time (higher than 3 cycles), a fact that 

reinforces the idea that these substrates are promising self-sterilizing surfaces. An additional 

advantage of these materials is the successful adhesion of Ormosils on indwelling materials 

without harmful effects on vascular cells67, which increases the scope of the approach reported in 

this study. 
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Figure 6. Growing halo assays showing the effectiveness of self-sterilization of POrs-CS-Ag due 

to Ag incorporation after the first exposition to bacterial cultures: bacterial growth on POrs-CS, 

(a) and (b); Absence of bacterial growth on POrs-CS-Ag (bacterial eradication), (c) and (d). Similar 

results were obtained after the second immersion of the POrs-CS-Ag in the bacterial culture. Weak 

bacterial proliferation around the POrs-CS-Ag substrates after three reusing cycles, (e) and (f), as 

denoted by the arrows. 

 

 

4. Conclusions 
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Chemical Tempering followed by photoassisted silver nanoparticle synthesis inside sol-gel 

prepared POrs and POrs-CS films is a versatile and reproducible methodology for preparing self-

sterilizing films able to adhere on indwelling materials without harmful effects on vascular cells. 

Moreover, these films are easily applied on glass substrate using a simple scale-up processing. 

Results demonstrated that silver loaded ormosil substrates are able to achieve eradication (no 

viable bacteria on the surface) of nosocomial pathogens such as P. aeruginosa and S. aureus, 

Importantly, the antimicrobial activity of these substrates remains at least until three reutilization 

cycles under a very aggressive condition. In summary, the biocidal properties of this coating, able 

to achieve self-sterilization without needing irradiation, together with the reutilization of these 

POrs-CS-Ag coated substrates makes this coating, to the best of our knowledge, as one of best 

strategies to avoid bacterial adhesion on surfaces. 
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