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A B S T R A C T

Transforming growth factor (TGF)-b, a pleiotropic cytokine released by both immune and non-immune

cells in the gut, exerts an important tolerogenic action by promoting regulatory T cell differentiation.

TGF-b also enhances enterocyte migration and regulates extracellular matrix turnover, thereby playing a

crucial role in tissue remodeling in the gut. In this review we describe the mechanisms by which

abnormal TGF-b signaling impairs intestinal immune tolerance and tissue repair, thus predisposing to

the onset of immune-mediated bowel disorders, such as inflammatory bowel disease and celiac disease.

Additionally, we will discuss potential therapeutic strategies aiming at restoring physiologic TGF-b
signaling in chronic intestinal diseases.
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1. Introduction

Transforming growth factor (TGF)-b belongs to the TGF-b
superfamily, which includes more than 40 members, comprising
the three isoforms TGF-b1, TGF-b2 and TGF-b3, receptors and
intracellular signaling molecules [1,2]. TGF-b is secreted as part of
a large latent complex, which includes latent TGF-b binding
protein and latency-associated peptide (LAP) [3], and in this form it
cannot bind to its receptor and is therefore inactive (Fig. 1). TGF-b
can be activated upon being released from the complex through
the proteolytic action of a number of proteinases, such as plasmin,
thrombospondin-1 [4], matrix metalloproteinase (MMP)-2 and
MMP-9 [5], or upon the interaction between the tripeptide
integrin-binding motif on LAP and the correspondent binding
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sequence on avb3, avb5, avb6 or avb8 integrins [6], expressed on
the surface of myofibroblasts [7,8], epithelial cells [9] and dendritic
cells [10]. Active TGF-b binds to TGF-b receptor (TbR)II, which
consequently complexes with TbRI, and this in turn leads to the
formation of the heterotetrameric transmembrane serine/threo-
nine kinase TbR [11,12]. An accessory receptor without any
intrinsic signaling function, TbRIII, is able to promote the binding
of TGF-b to TbRII [13]. Once TbR is formed, TGF-b induces
phosphorylation and activation of TbRI, and this latter subunit
activates by binding and phosphorylation the two transcriptional
proteins Smad2 and Smad3, which then translocate into the
nucleus as a complex with Smad4 and here regulate the
transcription of target genes [14]. The inhibitory protein Smad7
competes with Smad2 and Smad3 for the binding to TbRI, thereby
blocking their phosphorylation [15]. Smad7 inhibits TGF-b
signaling also by recruiting Smurf-containing E3 ubiquitin ligase,
which in turn degrades TbRI [16], and by interacting with growth
arrest and DNA damage protein, a regulatory subunit of protein
phosphatase 1, resulting in TbRI dephosphorylation [17]. Inter-
estingly, TGF-b exerts a negative feedback on itself by inducing the
expression of Smad7 [18]. TGF-b also activates phosphoinositide
3-kinase, the small GTPase Ras, and several mitogen-activated
protein kinases such as ERKs, p38, and c-Jun N-terminal kinases,
which may interact with Smad proteins and ultimately modulate
the effects of TGF-b [14,19,20].

TGF-b is a pleiotropic cytokine with potent immunoregulatory
properties, which exerts a prominent role as a negative regulator of
rming growth factor (TGF)-b in modulating the immune response
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Fig. 1. Transforming growth factor (TGF)-b activation and signaling processes. The homodimeric cytokine TGF-b is secreted as part of a large latent complex, which includes

latent TGF-b binding protein (LTBP) and latency-associated peptide (LAP). A number of proteinases, such as plasmin, thrombospondin-1, matrix metalloproteinase (MMP)-2

and MMP-9, and several integrins, such as avb3, avb5, avb6 or avb8, expressed on the surface of fibroblasts, epithelial cells, and dendritic cells, favor the release of TGF-b from

the latent complex, resulting in the activation of this cytokine. TGF-b receptor (TbR)III promotes the interaction of active TGF-b with the homodimeric protein TbRII, which

consequently complexes with the serine/threonine kinase homodimeric TbRI, leading to the formation of the heterotetrameric TbR and the phosphorylation and activation of

TbRI. This latter, in turn, activates by binding and phosphorylation the two transcriptional proteins Smad2 and Smad3, which form a complex with Smad4 and translocate to

the nucleus where they modulate the transcription of target genes. TGF-b signaling is inhibited by Smad7 through the following three mechanisms. First, Smad7 blocks the

phosphorylation of Smad2 and Smad3 by competing with them for the binding to TbRI. Moreover, Smad7 induces TbRI dephosphorylation by interacting with growth arrest

and DNA damage protein (Gadd34), a regulatory subunit of protein phosphatase 1 (PP1). Finally, Smad7 recruits Smurf-containing E3 ubiquitin ligase, which in turn degrades

TbRI.
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pro-inflammatory immune responses in various organs, including
the gut [21]. Within the intestinal mucosa TGF-b plays a pivotal
role in the maintenance of immune homeostasis by preventing
abnormal and harmful pro-inflammatory responses against the
normal constituents of the intestinal flora [22], and it is centrally
implicated in the physiologic processes of intestinal remodelling
and wound healing [23]. Abnormalities in TGF-b signaling play a
central role in a number of immune-mediated intestinal disorders,
including inflammatory bowel disease (IBD) and celiac disease
[24–26]. After reviewing the role of TGF-b in the gut at the steady
and diseased states, in the last section of this review we will
discuss potential therapeutic strategies aiming at restoring
physiologic TGF-b signaling in chronic intestinal diseases.

2. Physiologic role of TGF-b in the gut

2.1. TGF-b as a modulator of the mucosal immune response

Over the last 20 years, several studies have demonstrated that
TGF-b plays a crucial role in maintaining immune homeostasis
within the intestinal mucosa (Table 1). Tgfb1 gene null mice
develop inflammatory responses in several organs, including the
Please cite this article in press as: Biancheri P, et al. The role of transfo
and fibrogenesis in the gut. Cytokine Growth Factor Rev (2013), htt
intestine [27,28], and the lack of TGF-b signaling in transgenic
mice expressing on T cells a functionally inactive form of TbRII
promotes the differentiation of effector T cells and triggers gut
inflammation [29]. The tolerogenic action of TGF-b in the bowel is
further supported by its ability to induce T cell unresponsiveness to
ovalbumin in mice [30]. Within the gut mucosa, which at the
steady state is a TGF-b-rich environment, several cell types,
including epithelial cells, macrophages, regulatory T cells (Treg)
and myofibroblasts, can both produce and respond to TGF-b
(Table 2, Fig. 2).

TGF-b and interleukin (IL)-8 act as chemokines on circulating
blood monocytes and recruit them into the lamina propria [31],
where during homeostasis they differentiate preferentially into
inflammation-anergic intestinal macrophages [32]. This latter
process is driven by TGF-b, which prevents the translocation of
nuclear factor (NF)-kB into the nucleus and, therefore, down-
regulates the subsequent production of pro-inflammatory cyto-
kines [33]. Accordingly, pre-incubation of normal lamina propria
mononuclear cells (LPMCs) with TGF-b1 prevents tumor necrosis
factor (TNF)-a-induced nuclear factor-kB (NF-kB) activation [34].
TGF-b1 blocks NF-kB activation in macrophages in response to
Toll-like receptor-2, -4 and -5 stimulation also by facilitating the
rming growth factor (TGF)-b in modulating the immune response
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Table 1
Main evidences for the role of transforming growth factor (TGF)-b in gut immune homeostasis.

Observation Species Type of experiment Functional interpretation References

Spontaneous colitis in the absence of TGF-b1 Tgfb1�/� mouse In vivo TGF-b has an anti-inflammatory

action in the gut

[27,28]

Colitogenic T cell differentiation in

the absence of TGF-b signaling

CD4-dnTbRII mouse In vivo TGF-b has an anti-inflammatory

action in the gut

[29]

Suppression of pro-inflammatory

cytokine production by TGF-b
Human In vitro (monocytes,

macrophages)

TGF-b has an anti-inflammatory

action in the gut

[33]

Polarization of naı̈ve T cells towards

Foxp3+ Treg by TGF-b and retinoic acid

WT mouse In vivo, in vitro (T

cells, dendritic cells)

TGF-b induces Treg development in the gut [44,45]

Preferential polarization of colonic Th1

cells in the absence of TGF-b1

Tgfb1�/� mouse In vivo TGF-b blockade promotes Th1

and Th17 differentiation

[55]

T-bet, IFN-g and IL-17A overexpression by

normal gut biopsies and LPMCs

cultured with anti-TGF-b

Human Ex vivo, in vitro (LPMCs) TGF-b inhibits Th1 and Th17 differentiation [58]

Reduction of IgA-expressing B cells from Peyer’s

patches upon impaired TGF-b signaling

Smad2�/�, TbRII�/�

and iNOS�/� mice

In vivo (biopsies),

in vitro (B cells,

dendritic cells)

TGF-b maintains the pool of

IgA-producing B cells

[68,69,72]

dn, dominant negative; IFN, interferon; Ig, immunoglobulin; IL, interleukin; iNOS, inducible nitric oxide synthase; LPMC, lamina propria mononuclear cell; Th, T helper; Treg,

regulatory T cells; TbR, TGF-b receptor; WT, wild-type.
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proteasomal degradation of MyD88 [35], and lipopolysaccharide-
induced TNF-a production by both human and murine macro-
phages is suppressed by TGF-b2 in the developing gut [36]. As a
result, a breach in epithelial integrity normally triggers host
defense activity but not an inflammatory response by macro-
phages in the gut [37]. TGF-b1 has also effects on human intestinal
mast cells, as it down-regulates the release of the pro-inflamma-
tory mediators hystamine, cysteinyl-leukotrienes and TNF-a,
probably by modulating the expression of membrane IgE
receptors, and it reduces the amounts of stem cell factor. In
addition, TGF-b1 inhibits mast cell growth [38].

TGF-b maintains mucosal tolerance by inducing the differenti-
ation of spleen and peripheral blood naı̈ve T cells into Foxp3+ Treg
[30,39], a cell subset which has the ability to suppress autoimmune
responses and to block experimental colitis [40]. Peripheral naı̈ve T
cells of transgenic mice with selective overexpression of Smad7 in
the T cell compartment show a decreased capacity to differentiate
into Treg upon TGF-b stimulation [41]. Accordingly, mice with a
dominant-negative TbRII and, thus, impaired TGF-b signaling
specifically in T cells show a reduced number of peripheral Treg
and are more susceptible to dextran sodium sulphate-induced
colitis [42]. Moreover, mice lacking the binding site for Smad3 on
Foxp3 locus have a decreased number of Treg selectively in the gut
[43].

Treg differentiation in the gut is promoted by the release of TGF-
b and retinoic acid by lamina propria CD103+ tolerogenic dendritic
cells [44–48]. These latter, in turn, develop upon the action of
Table 2
Main source and target cell types of transforming growth factor (TGF)-b in the gut.

Cell type Source Target Main effects of TG

Epithelial cells Yes Yes Up-regulates MMP

Induces cell migra

Dendritic cells Yes Yes Promotes the deve

Monocytes/macrophages Yes Yes Recruits blood mo

Promotes monocyt

Naı̈ve T cells Yes Yes Induces Treg deve

Inhibits Th1 cell p

Suppresses Th17 c

Treg Yes Unknown 

iNKT cells No Yes Induces Foxp3 exp

B cells No Yes Promotes isotype s

Mast cells No Yes Down-regulates th

Stromal cells Yes Unknown 

Fibroblasts/myofibroblasts Yes Yes Promotes different

Ig, immunoglobulin; iNKT, invariant natural killer T; MMP, matrix metalloproteinase; 
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epithelium-derived TGF-b, retinoic acid and thymic stromal
lymphopoietin [49], and have the ability to release TGF-b, in
particular TGF-b1 and TGF-b2, upon in vitro stimulation with
probiotics [50,51]. TGF-b production by dendritic cells is
associated with high expression of avb8 integrin [10], which
activates TGF-b by inducing its release from LAP [48]. Indeed, the
absence of avb8 integrin on murine dendritic cells makes them
unable to induce Treg differentiation in vitro and is associated with
the development of severe colitis [52]. The ability of Treg to
suppress colitis in RAG-/� mice depends on their release of IL-10
and TGF-b [53]. TGF-b also induces the expression of Foxp3 in
invariant natural killer T cells, thus leading them to acquire an
immunoregulatory phenotype [54].

In parallel, during homeostasis, TGF-b1 inhibits the develop-
ment of Th1 cells in the gut. This is demonstrated by the increased
frequency of colonic Th1 cells in mice with a T cell-specific deletion
of Tgfb1 gene [55]. TGF-b is essential for the prevention of Th1-
mediated colitis following adoptive naı̈ve T cell transfer in
immunodeficient mice [56]. Indeed, intranasal TGF-b1 adminis-
tration reduces the secretion of Th1-inducing IL-12 and of Th1-
specific interferon (IFN)-g by LPMCs of mice with experimental
colitis [57]. Intestinal lamina propria T cells from normal subjects
express high levels of phosphorylated Smad3 [58], whereas in the
healthy human gut the inhibitory Smad7 is ubiquitinated and
rapidly degraded [59]. Culture of biopsies and LPMCs from human
normal gut with an anti-TGF-b neutralizing antibody up-regulates
the production of IFN-g and the expression of the Th1 transcription
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Fig. 2. The role of transforming growth factor (TGF)-b in the modulation of mucosal immune homeostasis in the gut. TGF-b is produced mainly by epithelial cells, stromal

cells, regulatory T cells (Treg), dendritic cells (DCs) and macrophages within the intestinal mucosa. Epithelium-derived TGF-b, together with retinoic acid (RA) and thymic

stromal lymphopoietin (TSLP), promotes the development of CD103+ tolerogenic DCs. Moreover, TGF-b, together with RA, induces Treg differentiation from naı̈ve T cells.

Additionally, in the presence of IL-6, TGF-b directly promotes the differentiation of Th17 cells, whereas it inhibits the development of pro-inflammatory Th1 cells. Both Th17

and Th1 polarization are suppressed by CD103+ tolerogenic DCs. TGF-b induces Foxp3+ expression in invariant natural killer T (iNKT) cells, which have regulatory functions

similarly to Treg, and down-regulates the release of the pro-inflammatory hystamine, cysteinyl-leukotrienes and tumor necrosis factor-a by mast cells. Stromal cell-derived

TGF-b and IL-8 recruit circulating blood monocytes into uninflamed lamina propria, where they preferentially differentiate into inflammation-anergic macrophages, which in

turn produce TGF-b. Finally, TGF-b is required together with B cell activating-factor of the TNF family (BAFF), a proliferation-inducing ligand (APRIL), interleukin (IL)-10 and

RA for inducing secretory IgA class switching in B cells.
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factor T-bet [58]. It has been recently observed that TGF-b down-
regulates IL-2 and IFN-g expression in human lamina propria T
cells by enhancing miR-155 [60].

On the other hand, the role of TGF-b on Th17 cell differentiation
is controversial. In the presence of IL-6, TGF-b promotes the
development of Th17 cells from murine naı̈ve splenic T cells
[47,61] by inducing the expression of transcription factors ROR-gt
and ROR-a [61]. The importance of TGF-b for the maintenance of
the Th17 cell pool is supported by the observation that, in its
absence, murine Th17 cells from the spleen and lymph nodes
cultured with IL-12 and IL-23 start producing IFN-g and stop
releasing IL-17A and IL-17F [62]. Conversely, another study has
shown that TGF-b promotes Th17 differentiation only indirectly
through the suppression of Th1 and Th2 cell development, and that
this cytokine is not strictly necessary for the generation of Th17
cells [63]. However, it has been observed that TGF-b blockade
increases the production of IL-17A by both biopsies and LPMCs
from human normal gut, which indirectly suggests an inhibitory
effect of TGF-b on Th17 differentiation [58]. It has also been
hypothesized that the gene expression profile of Th17 cells may be
influenced by the presence or absence of TGF-b. Indeed,
stimulation of murine myelin-reactive Th17 cells with TGF-b
and IL-6 abrogates their pathogenic function by inducing the
production of the anti-inflammatory IL-10 despite up-regulation of
IL-17A [64]. However, it is worth noting that most of the
aforementioned studies were conducted on cells from other
Please cite this article in press as: Biancheri P, et al. The role of transfo
and fibrogenesis in the gut. Cytokine Growth Factor Rev (2013), htt
organs than the gut, hence the exact role of TGF-b in intestinal
Th17 cell development and function is still unclear.

Finally, TGF-b is the major cytokine involved in inducing the
production of secretory IgA [65,66], a crucial immunoglobulin
subclass for the development and maintenance of mucosal
tolerance. The role of TGF-b in the generation of IgA has been
demonstrated in different experimental models: mice deficient for
the inhibitory protein Smad7 show raised isotype switching to IgA
[67], and this process, conversely, is impaired in Smad2�/� mice
[68]. Accordingly, TbRII�/� mice exhibit impaired IgA responses
both at the steady state and upon antigen stimulation, both
systemically and in the gut [69]. TGF-b1 induces IgA class
switching in cooperation with B cell activating-factor of the TNF
family (BAFF), a proliferation-inducing ligand (APRIL), and IL-10
[65]. Moreover, TGF-b1 has a synergistic effect with retinoic acid,
leading to an increase in IgA switching [70,71]. Dendritic cells
enhance TGF-b-mediated induction of IgA class switch by up-
regulating TbRII expression on B cells through the production of
inducible nitric oxide synthase [72].

2.2. TGF-b as a modulator of tissue remodelling

Tissue remodelling in the gut wall is characterized by
physiological extracellular matrix (ECM) deposition and regenera-
tion processes which are driven by the balanced action of MMPs
and tissue inhibitors of matrix metalloproteinases (TIMPs) [73].
rming growth factor (TGF)-b in modulating the immune response
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Under homeostatic conditions, MMPs are constitutively expressed
at low and tightly regulated levels and play a protective role in the
normal turnover of gut barrier components, in the physiological
migration of immune and non-immune cells within the mucosa,
and in the re-epithelialization process [74,75]. TGF-b enhances the
migration of intestinal epithelial cells across the wound margin by
up-regulating their expression of MMP-1 and MMP-10 [75]. This
healing mechanism can be blocked by both a neutralizing anti-
TGF-b antibody and protease inhibitors able to prevent the
activation of latent TGF-b [76,77]. It has also been shown that
other cytokines, including TGF-a, IL-1b and IFN-g, enhance TGF-
b1 production by wounded intestinal epithelial layers [78].
Yamada et al. [79] have reported that in vitro stimulation of
intestinal epithelial cells with TGF-b1 promotes their differentia-
tion and suppresses their proliferation through Smad2- and
Smad3-dependent pathways, and that enterocytes display up-
regulated expression of the inhibitory Smad7 as a form of negative
feedback.

Tissue repair is facilitated by the scavenger activity of
macrophages, which enter the wounded site to remove pathogens,
damaged tissue and apoptotic cells. As a consequence, macro-
phages acquire an immunoregulatory phenotype [80], character-
ized by reduced production of pro-inflammatory cytokines and
chemokines due to increased release and autocrine/paracrine
action of TGF-b1, prostaglandin E2 and platelet-activating factor
[81,82]. Accordingly, the addition of an anti-TGF-b neutralizing
antibody reverses the inhibitory effect of apoptotic cell uptake on
chemokine and TNF-a secretion by macrophages [82]. However,
the above studies were conducted on mouse and human peripheral
blood-derived macrophages, therefore it is uncertain whether
similar mechanisms occur in the human gut mucosa.

TGF-b1 induces mesenchymal cell activation and differentia-
tion into myofibroblasts [84]. These are characterized by the
expression of a-smooth muscle actin, which enables them to
contract thereby facilitating the closure of wound margins, and by
the release of MMP-1 and ECM proteins, such as collagen and
fibronectin [75,83]. The interaction between TGF-b latent com-
plex, which is covalently bound to the ECM, and integrins such as
the avb5 integrin on the surface of myofibroblasts [8], followed by
the contraction of these latter, leads to the release and activation of
TGF-b1 [84]. This mechanism is directly correlated to the stiffness
of the ECM, which represents a reservoir of latent TGF-b in the
tissue [85]. Indeed, ITGB2�/� mice, which lack b2 integrin, display
wound healing alterations in the skin due to reduced active TGF-b1
and remarkable scarcity of myofibroblasts [86]. Moreover,
intestinal myofibroblasts enhance epithelial migration in wound-
ed epithelial monolayers by secreting bioactive TGF-b3 [87].
Myofibroblasts, which play a central role in the physiologic process
of wound healing, disappear by apoptosis once the re-epitheliali-
zation process is complete [88].

While controlled amounts of TGF-b play an essential role in the
physiological processes of wound healing, increased levels of TGF-
b may suppress the production and activity of tissue-degrading
MMPs, which are critical contributors in the processes of ECM
turnover in the gut [89]. This causes intestinal fibrosis, a condition
characterized by excessive production, deposition and contraction
of ECM.

3. Abnormal TGF-b signaling in intestinal diseases

3.1. Experimental colitis

Both trinitrobenzene sulfonic acid (TNBS)- and oxazolone-
induced colitis are characterized by unexpectedly increased
expression of TGF-b1 in inflamed tissue associated with impaired
TGF-b signaling due to elevated levels of Smad7, which in turn
Please cite this article in press as: Biancheri P, et al. The role of transfo
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leads to reduced phosphorylated Smad3 [90]. Other studies
showed that the intranasal administration of TGF-b1 or the oral
treatment with haptenized colonic proteins, which induce TGF-b-
dependent oral tolerance, are effective in preventing [57,91] and
ameliorating [57] TNBS colitis. TGF-b1 and haptenized colonic
proteins exert their immunoregulatory effects in experimental
colitis by promoting the differentiation of T cells and macrophages
which produce increased amounts of TGF-b1 and reduced
quantities of IL-12 and IFN-g [57,91]. Conversely, the treatment
of mice with an anti-TGF-b neutralizing antibody abrogates the
suppressive effects of haptenized colonic proteins on colonic
inflammation and lamina propria Th1 cytokine profile following
TNBS administration [91]. CD103+ dendritic cells from colitis
models express reduced levels of TGF-b2 and ALDH1A2, a critical
enzyme for the synthesis of retinoic acid from retinal [92]. Smad7
overexpression in transgenic mice increases the severity of disease
in dextran sodium sulphate-mediated colitis and unexpectedly
prevents colitis-associated cancer by inducing a marked Th1
response [93]. Oral administration of a Smad7 antisense oligonu-
cleotide ameliorates both TNBS- and oxazolone-induced colitis by
enhancing phosphorylated Smad3, whereas it is not effective in the
adoptive naı̈ve T cell-transplanted SCID mouse model of colitis, in
which TGF-b signaling pathway is not impaired [90]. Indeed, in
this latter model TGF-b, together with IL-2, induces the
differentiation of Treg which are effective in suppressing colonic
inflammation [94,95]. Chronic experimental colitis is character-
ized by the development of TGF-b-dependent gut fibrosis, as
shown by the observation that chronic intrarectal TNBS-induced
colonic fibrosis, marked by increased mucosal transcripts of TGF-
b1 [96], is effectively prevented by a TGF-b1 peptide-based
vaccine, able to suppress excessive TGF-b1 activity [97]. Moreover,
adenoviral vector-induced overexpression of TGF-b1 in murine
colon leads to obstructive intestinal fibrosis [98].

3.2. Inflammatory bowel diseases

IBD, including Crohn’s disease (CD) and ulcerative colitis (UC),
are chronic and relapsing inflammatory disorders of the gastroin-
testinal tract [99,100]. Intestinal inflammation in IBD is thought to
derive from an excessive immune response against the normal
constituents of the commensal flora [101,102], and is characterized
by up-regulated mucosal levels of pro-inflammatory cytokines,
such as TNF-a, IFN-g and IL-17A, and by defective immunoregu-
latory mechanisms [103]. The chronic inflammatory process
ultimately determines an imbalanced production of MMPs and
TIMPs, finally causing tissue damage and the formation of erosions
and ulcerations [73].

Surprisingly, TGF-b1 expression is increased in the inflamed
gut of IBD patients with active disease compared to control mucosa
[104]. However, pre-incubation of IBD LPMCs with TGF-b1 is
unable to prevent TNF-a-induced NF-kB activation, implying their
resistance to the TGF-b1-mediated immunosuppression [34].
Indeed, TGF-b signaling pathway is defective in IBD, as demon-
strated by the reduced levels of phosphorylated Smad3 and
Smad3-bound Smad4 in inflamed IBD intestinal mucosa [105]. This
is due to the marked up-regulation of Smad7 in CD and UC mucosa,
where it is overexpressed by both T cells and non-T cells and
critically impairs TGF-b signaling [105]. Smad7 increase in IBD
inflamed gut does not derive from a negative feedback by TGF-b
itself, as suggested by the low levels of phosphorylated Smad3
[105], but it is due to post-transcriptional acetylation and
stabilization by the p300 acetyltransferase, which prevents Smad7
ubiquitination and degradation in the proteasome [59]. The
blockade of Smad7 using a specific antisense oligonucleotide
increases the amount of phosphorylated Smad3 in CD inflamed
intestinal biopsies and LPMCs, and ultimately reduces the
rming growth factor (TGF)-b in modulating the immune response
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production of the pro-inflammatory cytokines TNF-a and IFN-g
[105]. This is likely to derive from the restoration of endogenous
TGF-b activity, as the ex vivo effects of the Smad7 antisense
oligonucleotide are decreased by the addition of a TGF-b
neutralizing antibody [105]. Elevated levels of Smad7 and
impaired TGF-b1 signaling are not specific features of IBD, since
the same alterations have been also observed in the gastric mucosa
of patients with Helicobacter pylori infection [106].

Treg, while being reduced in peripheral blood of patients with
active IBD, are increased in the inflamed intestinal mucosa of IBD
patients [107,108]. However, T cells from IBD gut mucosa are
hyporesponsive to Treg-mediated suppressive action [109]. This
depends on defective TGF-b signaling due to high Smad7
expression, as T cell responsiveness to Treg is restored by the
culture with Smad7 antisense oligonucleotide [109–111]. Inter-
estingly, TGF-b is able to induce the development of IL-17A-
producing Foxp3+ T cells, which exert suppressive activity similar
to Treg in vitro and are increased in the inflamed mucosa of CD
patients but not in UC patients [112].

In CD, where inflammation is transmural, subsequent damage
and repair processes may ultimately cause architectural distortion
and thickening of all layers of the bowel wall, thus leading to
intestinal fibrosis and stricture development [113]. This represents
a major clinical problem in CD patients and may often require the
surgical removal of the affected tract [114]. TGF-b signaling is
centrally involved in intestinal fibrogenesis in CD (Fig. 3). Indeed,
in the uninflamed mucosa overlying intestinal strictures of CD
patients TGF-b1 is higher compared to uninflamed mucosa
overlying non-strictured areas [115]. Myofibroblasts isolated from
the mucosa overlying CD strictures express increased TGF-b1
Fig. 3. The role of transforming growth factor (TGF)-b in Crohn’s disease (CD) intestinal fi

by a pre-stenotic dilatation of an uninflamed non-strictured tract (left part of the diagram

fibrogenesis, produce excessive amounts of TGF-b. Stricture development in CD is charac

matrix components by intestinal myofibroblasts, by the reduction of tissue-degrading pr

the increase in tissue inhibitors of matrix metalloproteinases (TIMPs), including TIMP-1

particularly pronounced on cells from CD intestinal strictures. Moreover, TGF-b enhanc
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transcripts and release higher TGF-b1 protein levels compared to
myofibroblasts from uninflamed non-strictured CD and control
areas [115]. Collagen levels are increased in CD intestinal strictures
compared to non-strictured CD and control gut [116], and the
production of both collagen and other ECM components, such as
fibronectin, by intestinal myofibroblasts is up-regulated in CD
strictures [115,117]. Stimulation with TGF-b1 increases collagen
III production by gut myofibroblasts, and its effect is enhanced in
cells isolated from CD intestinal strictures [117]. The reduction of
tissue-degrading proteases, such as MMP-3 and MMP-12, and the
increase in MMP inhibitors, including TIMP-1, observed in CD
strictures, may also contribute to the abnormal ECM accumulation
characterizing CD intestinal fibrosis [115]. TGF-b1 increases TIMP-
1 production by myofibroblasts isolated from strictured, unin-
flamed non-strictured CD and control mucosa, and reduces MMP-
12 release by myofibroblasts isolated from uninflamed mucosa
overlying non-strictured CD and control areas [115,118]. On the
other hand, TGF-b blockade with an anti-TGF-b neutralizing
antibody increases myofibroblast migration and MMP-12 produc-
tion [115]. Moreover, TGF-b2, but not TGF-b3, enhances TIMP-1
production by normal intestinal myofibroblasts [118].

3.3. Celiac disease

Celiac disease is an immune-mediated enteropathy, character-
ized by villous atrophy and consequent malabsorption, induced in
genetically susceptible individuals by the ingestion of proline- and
glutamine-rich proteins contained in wheat (gliadins), rye
(hordeins), and barley (secalins) [119]. Several aspects of the
molecular mechanisms driving the immune response in celiac
brosis. The right part of the diagram represents an intestinal CD stricture, preceded

). In CD intestinal strictures myofibroblasts, a cell population playing a key role in gut

terized by excessive synthesis and accumulation of collagen and other extracellular

oteolytic enzymes, such as matrix metalloproteinase (MMP)-3 and MMP-12, and by

. TGF-b stimulates the release of collagen III by gut myofibroblasts, and its effect is

es TIMP-1 secretion and reduces MMP-12 production by intestinal myofibroblasts.
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Fig. 4. Transforming growth factor (TGF)-b in the intestinal epithelium and the lamina propria of celiac disease patients. In active celiac disease, increased levels of interleukin

(IL)-15 impair TGF-b signaling in intraepithelial lymphocytes (IELs) by blocking Smad3. As a result, TGF-b is unable to suppress the expression of granzyme B and NKG2D and

the production of interferon (IFN)-g by T cell receptor (TCR)ab+ IELs. The consequent IFN-g-induced activation of the Fas/Fas ligand (FasL) system and the interaction

between the activating receptor NKG2D and granzyme B on IELs and, respectively, the major histocompatibility complex-class I-related ligands (MIC) and perforin on

epithelial cells are major factors triggering enterocyte apoptosis in active celiac disease. Conversely, gluten-free diet restores the regulatory effects of TGF-b, mainly produced

by CD4+ IELs and TCRgd+ NKG2A+ IELs upon the interaction between the inhibitor receptor NKG2A and HLA-E, on TCRab+ IELs. Within the lamina propria of active celiac

disease patients, high levels of anti-tissue transglutaminase (tTG) antibodies prevent latent TGF-b accumulation by inhibiting the ability of tTG to induce its cross-linking to

the components of the extracellular matrix (ECM). However, TGF-b is up-regulated in active celiac disease mucosa, where the presentation of gluten peptides by dendritic

cells to naı̈ve T cells drives the differentiation of naı̈ve T cells into IFN-g-producing T helper (Th)1 cells and IL-17A-expressing Th17 cells. These latter produce increased TGF-b

amounts, which in turn act in an autocrine fashion by enhancing IL-17A release.
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disease are still unclear, however it is known that both Th1 and
Th17 cells can induce and sustain small bowel lesions [120,121].

Tissue transglutaminase, which is increased in active celiac
disease duodenal mucosa [122], normally plays an important role
in local TGF-b accumulation by promoting the cross-linking of its
latent form to the ECM [123]. However, in active celiac disease this
mechanism is inhibited by the presence of anti-tissue transglu-
taminase antibodies (Fig. 4) [124]. Nevertheless, TGF-b has been
reported to be increased in the duodenal mucosa of active celiac
patients [122,125], and its expression is particularly prominent in
the lamina propria, thus suggesting an association with the local
immune and inflammatory response [126]. TGF-b1 mRNA levels
are increased in CD4+ intraepithelial lymphocytes isolated from
active celiac mucosa [127]. Moreover, it has been shown that after
gliadin stimulation celiac Th17 cells produce increased amounts of
TGF-b, which in turn acts in an autocrine fashion by enhancing IL-
17A release [128]. TGF-b signaling pathway has not been
extensively investigated in the resident and infiltrating cells
within the lamina propria of active celiac disease patients,
therefore the functional consequences of the increase in TGF-b
at this level are unclear.

On the other hand, within the intestinal epithelium of active
celiac disease patients TGF-b signaling has been studied and
appears to be impaired. Indeed IL-15, which is up-regulated in
active celiac disease mucosa and plays a central role in promoting
the cytotoxic activity of T cell receptor (TCR)ab+ intraepithelial T
cells [129–131], inhibits TGF-b signaling in T lymphocytes via
Smad3 blockade, without affecting Smad7 activity [26,132].
Please cite this article in press as: Biancheri P, et al. The role of transfo
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Gluten-free diet restores the normal regulatory activity of TGF-
b within the intestinal epithelium in uncomplicated celiac disease.
In fact, TGF-b1 released by TCRgd+ NKG2A+ intraepithelial
lymphocytes in treated celiac patients down-regulates the
expression of IFN-g, granzyme B and NKG2D by TCRab+

intraepithelial lymphocytes, thus reducing their pro-inflammatory
and pro-apoptotic potential [131].

4. Targeting TGF-b signaling as a therapeutic strategy

TGF-b supplementation has been thought to be potentially
beneficial for the treatment of intestinal inflammation in IBD.
However, in the inflamed gut of CD and UC patients TGF-b levels
are actually increased [104], and immune cells are hyporesponsive
to the action of TGF-b due to the excess of inhibitory Smad7
[24,105]. Therefore, a single-stranded oligonucleotide matching
the region 107-128 of the human Smad7 complementary DNA
sequence in the antisense orientation has been synthesized and
has been used in several in vitro and ex vivo models in order to
evaluate the potential effectiveness of a therapeutic strategy aimed
at restoring TGF-b signaling in intestinal inflammation [105,133–
135]. In parallel, a Smad7 sense oligonucleotide, matching the
same DNA sequence, has also been synthesized and used as a
negative control [105]. Indeed, Smad7 blockade by the specific
antisense – but not the control sense – oligonucleotide reduces the
production of pro-inflammatory cytokines by IBD biopsies and
LPMCs [105] and restores the responsiveness of T cells from IBD
patients to the suppressive action of Treg [109], most likely by
rming growth factor (TGF)-b in modulating the immune response
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Table 3
Possible strategies to modulate transforming growth factor (TGF)-b in gut fibrosis.

Strategy Rationale References

Neutralizing antibodies Anti-TGF-b increases intestinal myofibroblast migration and MMP-12 production [115]

PPARg agonists GED-0507-34 Levo, a PPARg modulator, ameliorates DSS-induced intestinal fibrosis by counteracting the effects of TGF-b [145]

ACE inhibitors Captopril and enalaprilat prevent TNBS- and DSS-induced intestinal fibrosis by down-regulating TGF-b expression [146,147]

ANGIIR inhibitors Losartan reduces TNBS-induced colonic fibrosis via TGF-b inhibition [148]

ACE, angiotensin-converting enzyme; ANGIIR, angiotensin II receptor; DSS, dextran sodium sulphate; MMP, matrix metalloproteinase; PPAR, peroxisome proliferator-

activated receptor; TNBS, trinitrobenzene sulfonic acid.
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re-enabling endogenous TGF-b signaling [105]. Moreover, ex vivo

culture of IBD biopsies with the Smad7 antisense oligonucleotide
leads to increased production of IL-25 [136], a cytokine with
immunoregulatory properties which dampens Th1 and Th17
inflammatory responses in the gut and is down-regulated in
inflamed CD and UC mucosa [137]. Smad7 antisense treatment of
CD biopsies and LPMCs also increases the release of TIMP-3, which
is up-regulated by TGF-b, exerts a potent anti-inflammatory action
by inhibiting TNF-a converting enzyme and is down-regulated in
CD mucosa as a consequence of defective TGF-b1 signaling [138].

On this basis, the pharmaceutical compound GED0301, which is
based on the same Smad7 antisense oligonucleotide matching the
region 107-128 of the human Smad7 DNA sequence, has been
developed [139]. GED0301 is administered orally, is gastroresis-
tent and is released in the terminal ileum and the right colon,
which are the most frequent localizations of CD [139]. GED0301
abrogates TNBS- and oxazolone-induced colitis, which are both
characterized by mucosal overexpression of TGF-b and Smad7
[90]. In a phase I, open label study GED0301 has been administered
once daily for a total of 7 days to 15 patients with moderate-to-
severe, steroid-dependent or steroid-resistant active CD [139].
GED0301 treatment resulted in a substantial clinical benefit, with
86% of the enrolled patients entering remission, and was well-
tolerated, with no serious adverse events being observed [139].
Moreover, treatment with GED0301 was associated with a
significant reduction of IFN-g+ or IL-17A+ circulating T cells
expressing the gut-homing molecule CCR9 [139]. Due to the pro-
fibrogenic properties of TGF-b, six months after the administration
of GED0301 the formation of strictures was investigated using
small intestine contrast ultrasonography, which did not detect any
small bowel stricture in any of the patients [140]. Furthermore, no
change was detected in the serum levels of fibrogenic markers,
such as basic fibroblast growth factor and TIMP-1 [140]. A phase II
clinical trial in patients with active CD is currently underway in
order to investigate GED0301 efficacy and long-term safety [141].

As the development of CD intestinal strictures is driven by local
excessive levels of TGF-b [115], strategies aimed at counteracting
the effects of this cytokine are currently being explored or could be
promising in the context of gut fibrosis (Table 3). Indeed, Smad3

null mice are resistant to TNBS-induced intestinal fibrosis [142].
Moreover, the administration of Boswellia and Scutellaria extracts
prevents colonic fibrosis in TNBS-induced colitis by inhibiting TGF-
b expression [143]. Peroxisome proliferator-activated receptor
(PPAR)g overexpression prevents tissue fibrosis in several organs,
and PPARg agonists reduce lung, kidney and liver fibrosis through
TGF-b inhibition [144]. It has been recently reported that GED-
0507 34 Levo, a novel PPARg modulator, ameliorates dextran
sodium sulphate-induced intestinal fibrosis by counteracting the
effects of TGF-b [145]. Angiotensin II plays an important role in
kidney and liver fibrosis by enhancing TGF-b expression. Indeed,
angiotensin-converting enzyme inhibitors prevent fibrosis in
TNBS- and dextran sodium sulphate-induced colitis [146,147],
and the angiotensin II receptor antagonist losartan reduces TNBS-
induced colonic fibrosis [148]. Losartan has shown promising
results also in human liver fibrosis [149], however its use in human
intestinal fibrosis has not been investigated so far. Finally, it needs
Please cite this article in press as: Biancheri P, et al. The role of transfo
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to be underlined that all the data on the inhibition of TGF-b for the
treatment of intestinal fibrosis derive from animal models or
primary cell cultures, and have to be filtered through the notions
that experimental fibrosis does not necessarily resemble human
fibrosis, that cells may have a different behavior in vitro and in vivo,
and that cell-cytokine networks are more important than single
cell and cytokine functions.

5. Concluding remarks

While the overall regulatory actions of TGF-b on gut immune
homeostasis and wound healing and on immune cell types such as
Treg and B cells are well established, a number of effects of TGF-b
on immune and non-immune cells are still the subject of extensive
investigation. Several studies have shown the importance of
controlled TGF-b activity, resulting not only from the overall
cytokine levels but also from the functional integrity of TGF-b
signaling pathway, within the gut. Abnormal TGF-b signaling plays
a central role in driving chronic intestinal disorders, including IBD
and celiac disease. In CD, restoration of TGF-b signaling through
Smad7 inhibition appears to be promising, and soon the clinical
studies on the Smad7 antisense oligonucleotide GED0301 are
going to define the therapeutic potential of this strategy.
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