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Abstract: A new optimal control strategy for unified power quality conditioners (UPQC) is presented. This strategy is based on
feedback linearisation. The UPQC consists of series and shunt converters, where the series converter usually works as a voltage
source, and the shunt converter works as a current source. However, it is possible to use the series converter as a current source,
and the shunt converter as a voltage source, as utilised in this study. As for this scheme, an optimal voltage angle at load terminals,
in order to minimise the converter losses, is proposed. A comparison with the traditional UPQC, where series and shunt
converters are considered to be voltage and current sources, respectively, is also presented.
1 Introduction

The increasing use of loads based on power switching
electronics makes non-sinusoidal currents flow in the power
network so that non-sinusoidal voltage drops appear in the
electrical system [1]. In addition, sags and swells in the
voltage supply might provoke the malfunction in digital
devices, medical and communication equipments and
process controllers, which are highly sensitive to voltage
disturbances and are becoming widely used in industrial
applications. Moreover, regulatory agencies are demanding
stricter power quality standards to diminish the reactive
power and harmonics consumed by the loads. For these
reasons, engineers need to improve the current solutions
based on passive filters, which present load resonant effects,
and only compensate pre-tuning frequencies. Therefore
converter-based solutions are becoming increasingly
common in industrial applications [2–9]. An integral
solution to these power quality problems can be
accomplished using the unified power quality conditioner
(UPQC) [10].

The UPQC consists of two voltage-source converters
(VSCs) connected to the network: one of them is in series,
and the other one is in shunt. They are also inter-connected
through a dc-link stage. This device provides to the load a
regulated, flicker-free and harmonic-free voltage and, at the
same time, eliminates current harmonics generated by the
load. Accordingly the UPQC can present to the network a
unity power factor load, while keeping the voltage in the
dc-link controlled without an external energy store source.
The UPQC is able to compensate abnormal network
voltages irrespective of their duration when they are inside
of the UPQC nominal capacity.
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The UPQC can be implemented using two topologies that
imply two different control philosophies. One of them, found
in most of the bibliography [11–33], uses the series converter
as a non-sinusoidal voltage source, and the shunt converter as
a non-sinusoidal current source (which will be called
UPQCA). However, in [34–37], a new UPQC philosophy
has been recently implemented, partially based on the idea
developed in [38], which uses the shunt converter as a
sinusoidal voltage source and the series converter as a
sinusoidal current source (UPQCB), showing several
advantages against the traditional UPQCA.

The UPQCA reference calculation presents a certain
complexity because p2q theory [39, 40] and filters are
needed to obtain the non-sinusoidal reference signals
generated by VSCs. These filters produce unwanted delays in
the dynamic transient when either the UPQC compensates for
the flicker or a big step in the load active power occurs
[12, 15, 16, 19, 20, 41]. These drawbacks are not found in the
UPQCB, as it is not necessary to use filtered signals to obtain
the VSC references. Thus, these references are simpler to
calculate and a faster transient response can be attained.

The voltage angle at load terminals is a degree of freedom
in the UPQC control design. Then, this angle can be chosen to
minimise a UPQC loss index, as is proposed in [20–24, 42]
with regard to the UPQCA. However to the best knowledge
of the authors, UPQCB optimisation studies have not been
reported yet.

The UPQC can be modelled as a seventh-order, non-linear
and under-actuated system. It presents input-state products,
and seven states are to be controlled by only four inputs.
Different control strategies have been proposed in case
of the UPQCA. Among others, several control techniques
based on linearisation around an operation point [11–13],
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Fig. 1 General electric circuit of the UPQC, VSCs, load, and power network
H1 control [14], and unstructured neural networks and fuzzy
logic strategies [15, 16] were used. However, as mentioned
above, the nature of UPQC model is non-linear and
structured; as a consequence non-linear control techniques,
such as passivity-based control and sliding-mode control,
have been introduced in [17, 18], respectively.

In this work, with the aim of obtaining a high-performance
behaviour in the entire operation range of the UPQC, a non-
linear control strategy, feedback linearisation control, is used
in UPQCA and UPQCB topologies. In addition, control laws
include a feedforward compensation of the load current and
network voltage variations, in order to improve the dynamic
response of the strategies. In addition, an optimal criterion
to minimise UPQCB losses is presented. A comparison
between both control philosophies is also accomplished.

The paper is organised as follows. In Section 2 UPQC
models are shown. Optimal criteria are introduced in
Section 3, then control strategies with regard to UPQCA and
UPQCB are designed in Sections 4 and 5, respectively.
Section 6 summarises the main differences between the two
UPQC topologies. In Section 7, a performance assessment
and discussions are presented. Finally conclusions are
drawn in Section 8.

2 UPQC dynamic model

This section presents, with regard to both topologies, the
UPQC mathematical model to be used in the sequel. The
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considered electrical circuit is a three-phase three-wire
system. A general electric circuit of the UPQC internal
connections, VSCs, the load and the power network is
shown in Fig. 1.

2.1 Topology A

Fig. 2 shows the electrical topology of the UPQCA. It can be
seen that the shunt VSC is connected to the line through an
inductance, where it then works as a current source. On the
other hand, the series VSC is connected to the line by
capacitors, where it works as a voltage source. This is the
traditional UPQC scheme (UPQCA). By using the Kirchhoff
laws in the electrical circuits of Fig. 2, the following
dynamic model in a d–q rotating reference frame in per
unit can be obtained [11, 13]

Ls

VB

disd

dt
= −Rsisd − Lsvisq − hsdvdc − rsvsd (1)

Ls

VB

disq

dt
= −Rsisq + Lsvisd − hsqvdc − rsvsq (2)

Csrs

VB

dvsd

dt
= −Csrsvvsq + isd −

1

rs

(ild − rpipd) (3)

Csrs

VB

dvsq

dt
= Csrsvvsd + isq −

1

rs

(ilq − rpipq) (4)
Fig. 2 Electrical circuit of the UPQC using topology A
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Lp

VB

dipd

dt
= −Rpipd − Lpvipq + hpdvdc − rp(vfd + vsd) (5)

Lp

VB

dipq

dt
= −Rpipq + Lpvipd + hpqvdc − rp(vfq + vsq) (6)

Cdc

VB

dvdc

dt
= (hsdisd + hsqisq) − (hpdipd + hpqipq) (7)

In Fig. 2 and Table 1 variables and parameters are defined; hs
and hp are the control inputs of the series and shunt VSCs,
respectively. They represent the duty cycles of each converter.

2.2 Topology B

Fig. 3 shows the electrical topology of the UPQCB. In this
case, the shunt VSC is connected to the line through
capacitors, where it then works as a voltage source. On the
other hand, the series VSC is connected to the line by
inductances, where then it works as a current source. Note
that electrical circuits of the UPQCA and UPQCB devices
are very similar. They only differ in which branch the
capacitors are placed. As done before, it is possible to
obtain the UPQCB dynamic model in a d2q rotating
reference frame using the Kirchhoff laws in the circuits of
Fig. 3 [34, 35].

Ls

VB

disd

dt
=

rs(vld − vfd)

2
−

rs(vlq − vfq)

2
��
3

√

−Rsisd − Lsvisq − hsdvdc (8)

Ls

VB

disq

dt
=

rs(vlq − vfq)

2
+

rs(vld − vfd)

2
��
3

√

− Rsisq + Lsvisd − hsqvdc (9)

Lp

VB

dipd

dt
=

rpvld

2
−

rpvlq

2
��
3

√ − Rpipd − Lpvipq + hpdvdc (10)

Lp

VB

dipq

dt
=

rpvlq

2
+

rpvld

2
��
3

√ − Rpipq + Lpvipd + hpqvdc (11)
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Table 1 Parameters and data of devices

Description Parameter value Unit

Power system

rated power SN 20 kVA

base voltage (peak line-to-

neutral value)

VB

��
2

√
× 220 V

base current (peak value) IB 42.85 A

base angular frequency VB 2p × 50 Hz

dc-link voltage vdc 630 V

UPQC data

shunt VSC resistance Rp 0.01 V

shunt VSC inductance Lp 0.5 mH

shunt VSC capacitance Cp 75 mF

series VSC resistance Rs 0.1 V

series VSC inductance Ls 2 mH

series VSC capacitance Cs 75 mF

relation of transformation

(shunt VSC)

rp 1:1 –

relation of transformation

(series VSC)

rs 2:1 –

dc-link bus capacitance Cdc 2200 mF

HPF cut-off frequency vch 25 r/s

LPF cut-off frequency vcl 50 r/s

switching frequency fsw 15 kHz

computational delay Ts 70 ms

UPQCA controller gains

proportional gain of vs control Kvs 2500 pu

time constant of vs control Tivs 0.1 pu

proportional gain of ip control Kip 6000 pu

time constant of ip control Tiip 0.15 pu

proportional gain of is control Kis 2000 pu

time constant of is control Tiis 0.0 pu

proportional gain of vdc control Kdc 100 pu

time constant of vdc control Tidc 0.07 pu

UPQCB controller gains

proportional gain of vl control Kvl 5000 pu

time constant of vl control Tivl 0.1 pu

proportional gain of ip control Kip 3500 pu

time constant of ip control Tiip 0.0 pu

proportional gain of is control Kis 300 pu

time constant of is control Tiis 0.05 pu

proportional gain of vdc control KB 3.7 pu

time constant of vdc control TiB 0.03 pu
Fig. 3 Electrical circuit of the UPQC using topology B
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3Cp

VB

dvld

dt
=− rsisd

2
−

rsisq

2
��
3

√ −
rpipd

2
−

rpipq

2
��
3

√

− ild − 3Cpvvlq (12)

3Cp

VB

dvlq

dt
=−

rsisq

2
+ rsisd

2
��
3

√ −
rpipq

2
+

rpipd

2
��
3

√

− ilq + 3Cpvvld

(13)

Cdc

VB

dvdc

dt
= (hsdisd + hsqisq) − (hpdipd + hpqipq) (14)

where variables and parameters can be seen in Fig. 3 and
Table 1.

3 Optimal control philosophy

Since the voltage angle at load terminals, uL, is a degree of
freedom of the UPQC, it can be adjusted with the aim of
working in an optimal operation point, in the sense of
minimising converter losses. As is explained in [21], UPQC
losses are determined by currents that flow in the series and
shunt converters, IS and IP, respectively, and by the dc-bus
voltage vdc. The IS current is governed by the load and by
the relation of transformation rs chosen in the series
transformer and by assumption of a dc-bus voltage set by
the converter type. Then, the only way of acting on the
UPQC losses will be through minimisation of the current of
the shunt converter, IP [21]. Fig. 4 shows the relation
between current vectors and the uL angle in the case of both
topologies. The triangle (UPQCA case) and quadrangle
(UPQCB case) of currents are built by applying the first
Kirchhoff law at the connection point of the shunt converter.

It is important to note that in both topologies the increase in
the load voltage angle, uL, in order to minimise the IP current,
results in an increase in the voltage injected by the series
converter. Therefore the maximum optimal operation range
is determined by the nominal voltage of the series
transformer.

3.1 Traditional topology (UPQCA case)

From Fig. 4a the current vector amplitude in the shunt
converter can be written as

I2
P = I2

F + I2
L − 2IFIL cos (f− uL) (15)

Fig. 4 Relations of current vectors at the connection point of the
shunt converter

a UPQCA topology
b UPQCB topology
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In (15), it can be seen that in order to minimise the IP current,
the voltage angle at load terminals must be set in the
following optimal value:

uw

L= f (16)

where cos(f) is the load power factor. This power factor can
be computed from the load current and voltage measurements
using the generalised theory of the instantaneous active and
reactive power [39]. Additionally, a low-pass filter is
included to calculate the output of the uw

L angle in order to
eliminate sudden variations in the phase reference. This
factor prevents harmonic influence and allows one to track
the uw

L angle in an average value, avoiding load voltage
distortions. In tests, a first-order low-pass filter with a cut-
off frequency of vcl = 50 r/s will be used.

3.2 New topology (UPQCB case)

The current geometry of the topology B is presented in
Fig. 4b. By applying trigonometric relationships, it is
possible to obtain the equation shown below, which relates
the IP current with the uL angle.

I2
P = (IF − IL cos(uL − f) + IR sin uL)2

+ (IR cos uL + IL sin(uL − f))2 (17)

The optimal value, uw

L, which minimises the shunt VSC
current is obtained by verifying

∂I2
P

∂uL

∣∣∣∣∣
uw

L

= 2IF (IR cos uw

L + IL sin (uw

L − f)) = 0 (18)

∂2I2
P

∂u2
L

∣∣∣∣∣
uw

L

= 2IF (IL cos (uw

L − f) − IR sin uw

L) . 0 (19)

Finally from (18) and (19), it is possible to calculate the
optimal load voltage angle of the UPQCB topology, yielding

uw

L = arccos
IL cosf�����������������������

I2
L + I2

R − 2ILIR sinf
√

( )
(20)

4 Control strategy for UPQCA

4.1 Instantaneous active and reactive power
theory

Using the generalised theory of the instantaneous active and
reactive power [39], often called the p–q theory, it is
possible to define the following transformations to convert
d–q reference frame currents and voltages in instantaneous
powers [41, 43, 44]

p
q

[ ]
= vd vq

−vq vd

[ ]
id
iq

[ ]
= T ipi (21)
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whereas the inverse transformation is given by

id
iq

[ ]
=

vd

v2
d + v2

q

−vq

v2
d + v2

q
vq

v2
d + v2

q

vd

v2
d + v2

q

⎡
⎢⎢⎣

⎤
⎥⎥⎦ p

q

[ ]
= Tpip (22)

The above shown transformations are going to be used in
what follows.

4.2 Input transformation

Feedback linearisation control theory [45] is a powerful tool
in controlling coupled non-linear systems. This technique
achieves high performance tracking by choosing auxiliary
control inputs in a particular way [4, 46]. In the case under
study, the auxiliary control inputs shown below are going to
be used to accomplish an exact linearisation in the entire
operation range and transform the original system in a
linear decoupled one. Auxiliary control inputs are defined as

usd W
VB

Ls

(−Rsisd −Lsvisq −hsdvdc − rsvsd) (23)

usq W
VB

Ls

(−Rsisq +Lsvisd −hsqvdc − rsvsq) (24)

uvd W
VB

Csrs

−Csrsvvsq + isd −
1

rs

(ild − rpipd)

( )
(25)

uvq W
VB

Csrs

Csrsvvsd + isq −
1

rs

(ilq − rpipq)

( )
(26)

upd W
VB

Lp

(−Rpipd −Lpvipq +hpdvdc − rp(vfd + vsd)) (27)

upq W=VB

Lp

(−Rpipq +Lpvipd+hpqvdc − rp(vfq + vsq)) (28)

udc W
VB

Cdc

((hsdisd +hsqisq)− (hpdipd +hpqipq)) (29)

By replacing the auxiliary control inputs (23)–(29) in the
UPQCA system, (1)–(7), the following transformed system
is obtained

disd

dt
= usd ,

disq

dt
= usq

dvsd

dt
= uvd ,

dvsq

dt
= uvq

dipd

dt
= upd ,

dipq

dt
= upq

dvdc

dt
= udc

(30)

In this way the new system consists of seven first-order linear
systems, fully actuated and decoupled from each other. This
makes the control law design easier as it is to be developed
in the following subsections.

4.3 Digital implementation to obtain the auxiliary
control signals

Dynamic systems (30) can be characterised by the general
form of a linear integrator, dx/dt = u. Then, by defining the
IET Power Electron., 2011, Vol. 4, Iss. 4, pp. 435–446
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tracking error as e = x − xw, a linear proportional plus
integral (PI) regulator can be used to control the x states
and to obtain the auxiliary control signals, u

U (s) = K + K

Tis

( )
E(s) (31)

where the superscript ‘w’ denotes a desired reference value. A
time-domain representation of the above Laplace transfer
function is

u = −K(x − xw) − K

Ti

∫
(x − xw) dt (32)

To take into account the computational and processing delay
the following procedure is performed. Fig. 5 shows the
structure of a generic control loop where the linear
regulator, computational delay, non-linear plant, feedback
linearisation, actual and auxiliary controls are presented.
The proportional gain, K, and time constant, Ti, of the PI
regulator are designed to stabilise the closed loop shown in
Fig. 5, in the same way as is accomplished in Section 5 of
reference [47]. In order to be able to implement the
dynamic part of the controller, in a digital processor, a
discrete expression is needed. To obtain a discrete z-domain
representation from continuous s-domain transfer functions,
the bilinear transformation or Tustin approximation [48]
was used, resulting in

s = 2

Ts

z − 1

z + 1
(33)

The proposed control algorithms were embedded and
tested on a 32-bit float-point Texas Instrument
TMS320F28335 digital signal controller. The time needed
to run the algorithms was approximately 60 ms. Thus, the
sample time is set to Ts = 70ms. Consequently, despite the
complexity of the control laws, the proposed strategies can
be implemented with actual digital processors available for
these applications.

4.4 Injected voltage control of the series VSC

The voltage reference in the series VSC (vw

s ) should be
computed to obtain a harmonic- and flicker-free voltage
whose amplitude equals to one at the load terminal
(VL = 1 pu). In addition, the load terminal voltage must
have the phase determined by the loss minimisation

Fig. 5 Block diagram of the closed loop to obtain the auxiliary
control signals
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criterion from (16). Therefore

vw

sdq = vw

sd vw

sq

[ ]T

= VL sin uw

L − vfd VL cos uw

L − vfq

[ ]T
(34)

Then, using these voltage references, it is possible to calculate
the auxiliary control inputs, uvd and uvq, from the general
procedure explained in Subsection 4.3. In this particular
case, from (32), the following expressions result

uvd = −Kvs(vsd − vw

sd) − Kvs

Tivs

∫
(vsd − vw

sd)dt (35)

uvq = −Kvs(vsq − vw

sq) − Kvs

Tivs

∫
(vsq − vw

sq)dt (36)

4.5 Inner current control of the series VSC

The is current control is an inner control loop that allows one
to control the vs outer voltage loop in a cascade manner. Its
references are obtained from (25) and (26)

iw

sd = Csrsvvsq +
1

rs

(ild − rpipd) + Csrs

VB

uvd (37)

iw

sq = −Csrsvvsd +
1

rs

(ilq − rpipq) + Csrs

VB

uvq (38)

where (35) and (36) are needed. Then, from the above current
references, the auxiliary control inputs usd and usq can be
calculated in a similar way to (35) and (36), resulting in

usd = −Kis(isd − iw

sd) − Kis

Tiis

∫
(isd − iw

sd) dt (39)

usq = −Kis(isq − iw

sq) − Kis

Tiis

∫
(isq − iw

sq) dt (40)

4.6 Non-linear transformation to obtain the
insulated gate bipolar transistor (IGBT) gate driving
signals

The original control input hs, which represents the duty cycle
of the series VSC, can be recovered from (23) and (24),
yielding

hsd = 1

vdc

−Rsisd − Lsvisq − rsvsd −
Lsusd

VB

( )
(41)

hsq = 1

vdc

−Rsisq + Lsvisd − rsvsq −
Lsusq

VB

( )
(42)

where (39) and (40) are needed.
Finally actual IGBT gate driving signals are obtained via a

pulse width modulator with inputs hsd and hsq. The amplitude
and phase required for the space-vector modulation (SVM)
stage are calculated as [49]

m =
�����������
h2

sd + h2
sq

√
(43)

d = arctan(hsd , hsq) (44)
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4.7 Current control of the shunt VSC

The powers to be compensated, which are therefore generated
by the shunt VSC will be: the oscillating component of active
and reactive powers (with the aim of eliminating harmonics in
the current) and the average reactive power consumed by the
load (achieving a unity power factor). Then, the reference
current calculation in the case of the shunt converter will be
obtained by applying the transformation (22). It gives
currents from powers and voltages. Thus

rp

iw

pd

iw

pq

[ ]
= Tpi

p̃
q

[ ]
= 1

v2
ld + v2

lq

vld −vlq

vlq vld

[ ]
p̃
q

[ ]
(45)

The oscillating active power, p̃, can be obtained from the
total active power using a high-pass filter. A third-order
Butterworth filter with a cut-off frequency of vch = 25 r/s
is used in the tests.

On the other hand, the dc-link voltage regulation is
accomplished by acting on the absorbed active power of the
shunt converter. For this purpose, the dc-link voltage
control loop will use an additional portion of the ipq
current. In the following lines, the expression of the current
reference, iwdc

pq , is derived, which is needed to maintain the
dc-link voltage in a desired value. Since the dynamics of
ip’s currents is faster than dc-link voltage dynamics, it can
be assumed that currents are quickly stabilised. In this way,
from (5) and (6), neglecting the resistive voltage drop,
expressions given by (46) and (47) can be obtained.

hpdvdc � Lpvipq + rp(vfd + vsd) (46)

hpqvdc � −Lpvipd + rp(vfq + vsq) (47)

Then, by multiplying the dc-link voltage, vdc, with both sides
of (29) and by using (46) and (47), it is possible to obtain the
equation

iwdc
pq � − Cdcudcvdc

VBrp(vfq + vsq)
(48)

where the series converter term has been neglected in order to
avoid the filtered harmonics move from the series side to the
shunt converter side. Moreover, the dc-link voltage will
contain harmonics because of the UPQC smoothing action
over voltages and currents. For this reason, some harmonics
arise in the dc-link voltage. The auxiliary control input, udc,
is calculated from (49), with a reference value equal to the
desired dc-link voltage

udc = −Kdc(vdc − vw

dc) − Kdc

Tidc

∫
(vdc − vw

dc)dt (49)

The iwdc
pq current should be added to the iw

pq current, calculated
in (45), to obtain the total current reference. Then, through
these current references, it is possible to calculate the
auxiliary control inputs upd and upq by following the
procedure described in Subsection 4.3.

4.8 Non-linear transformation to obtain the IGBT
gate driving signals

The original control input hp, which represents the duty cycle
of the shunt VSC, can be recovered from (27) and (28),
IET Power Electron., 2011, Vol. 4, Iss. 4, pp. 435–446
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resulting in

hpd = 1

vdc

Rpipd + Lpvipq + rp(vfd + vsd) +
Lpupd

VB

( )
(50)

hpq = 1

vdc

Rpipq − Lpvipd + rp(vfq + vsq) +
Lpupq

VB

( )
(51)

The amplitude and phase required for the SVM stage are
calculated in an analogous way is as done in (43) and (44).

5 Control strategy for UPQCB

5.1 Input transformation

As was seen in the above section with regard to the UPQCA

case, here the following auxiliary control inputs are chosen
in order to accomplish an exact linearisation of the UPQCB

and transform the original system in a linear and decoupled
system.

usd W
VB

Ls

rs(vld − vfd)

2
−

rs(vlq − vfq)

2
��
3

√
(

− Rsisd − Lsvisq − hsdvdc) (52)

usq W
VB

Ls

rs(vlq − vfq)

2
+

rs(vld − vfd)

2
��
3

√
(

− Rsisq + Lsvisd − hsqvdc) (53)

upd W
VB

Lp

rpvld

2
−

rpvlq

2
��
3

√ − Rpipd − Lpvipq + hpdvdc

( )
(54)

upd W
VB

Lp

rpvld

2
+

rpvlq

2
��
3

√ − Rpipd + Lpvipq + hpdvdc

( )
(55)

uvd W
VB

3Cp

− rsisd

2
−

rsisq

2
��
3

√ −
rpipd

2
−

rpipq

2
��
3

√ − ild − 3Cpvvlq

( )
(56)

uvq W
VB

3Cp

−
rsisq

2
+ rsisd

2
��
3

√ −
rpipq

2
+

rpipd

2
��
3

√ − ilq + 3Cpvvld

( )
(57)

udc W
VB

Cdc

((hsdisd + hsqisq) − (hpdipd + hpqipq)) (58)

By replacing the auxiliary control inputs (52)–(58) in the
UPQCB system, (8)–(14), the following seven first-order
linear, fully actuated and decoupled systems are achieved.

disd

dt
= usd ,

disq

dt
= usq

dipd

dt
= upd ,

dipq

dt
= upq

dvld

dt
= uvd ,

dvlq

dt
= uvq

dvdc

dt
= udc

(59)
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5.2 Load voltage control of the shunt VSC

The load voltage reference (vw

l ) is designed to obtain a
harmonic- and flicker-free voltage whose amplitude equals
to one at the load terminal (VL = 1 pu). In addition, the
load terminal voltage must have the phase determined by
the loss minimisation criterion from (20). Therefore

vw

ldq = vw

ld vw

lq

[ ]T= VL sin uw

L VL cos uw

L

[ ]T
(60)

Then, using these voltage references, it is possible to calculate
the auxiliary control inputs, uvd and uvq, in way similar to that
of (35) and (36).

5.3 Current control of the shunt VSC

The ip current control is an inner control loop that allows for
control of the vl outer voltage loop in a cascade manner. Its
references are obtained from (56) and (57)

iw

pd = 1

2rp

−3ild +
��
3

√
ilq − 2rsisd − 3Cp

3

VB

uvd

((

−
��
3

√

VB

uvq +
��
3

√
vld + 3vlq

( )
v

))
(61)

iw

pq = −1

2rp

3ilq +
��
3

√
ild + 2rsisq + 3Cp

3

VB

uvq

((

+
��
3

√

VB

uvd − (3vld −
��
3

√
vlq)v

))
(62)

Finally from the above current references, the auxiliary
control inputs upd and upq are calculated.

5.4 Non-linear transformation to obtain the IGBT
gate driving signals

The original control input hp, which represents the duty cycle
of the shunt VSC, can be recovered from (54) and (55). It

Fig. 6 Shunt current amplitude (solid line) and load voltage angle
(dashed line) for the optimal operation test

a UPQCA case
b UPQCB case
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Fig. 7 UPQC filter task

a and b Load voltage and source current before the UPQC compensation
c and d Load voltage and source current using the UPQCA and UPQCB,
respectively
e dc-link voltage regulation
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becomes

hpd =
1

vdc

−
rp

2
vld+

rp

2
��
3

√ vlq+Rpipd+Lpvipq+
Lp

VB

upd

( )
(63)

hpq=
1

vdc

−
rp

2
vlq−

rp

2
��
3

√ vld+Rpipq−Lpvipd+
Lp

VB

upq

( )
(64)

5.5 Control current of the series VSC

A PI control is implemented to calculate the current reference,
iw

fq. By means of this control, the dc-link voltage regulation
is also attained

iw

fq = −KB(vdc − vw

dc) − KB

TiB

∫
(vdc − vw

dc)dt (65)

The bandwidth of this control loop should be designed such
that the current flowing through the series converter does
not present undesired high-order harmonics. Consequently
the if current at the network input terminal shall have a low
total harmonic distortion index. On the other hand, in order
to achieve a unity power factor at the UPQC input, the
reactive current component should be nullified, hence

iw

fd = 0 (66)

By applying the first Kirchhoff law in the transformer triangle of
the series converter, it can be shown that the iw

s current reference,
in terms of the previously calculated iw

f current, will be

iw

sdq = iw

sd iw

sq

[ ]T= ��
3

√
iw

fq

2rs

−3iw

fq

2rs

[ ]T

(67)

Finally the auxiliary control inputs usd and usq are calculated
from the iw

sdq current references.
Fig. 8 Transient response against a load step

a and b d- and q-axis current at the source bus without UPQC compensation
c and d d- and q-axis current at the source bus with UPQC compensation
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5.6 Non-linear transformation to obtain the IGBT
gate driving signals

Duty cycles of the series VSC can be recovered from (52) and
(53), yielding

hsd = 1

vdc

1

2
rs(vld − vfd) − 1

2
��
3

√ rs(vlq − vfq)

(

− Rsisd − Lsvisq −
Ls

VB

usd

)
(68)

hsq = 1

vdc

1

2
rs(vlq − vfq) + 1

2
��
3

√ rs(vld − vfd)

(

− Rsisq + Lsvisd −
Ls

VB

usq

)
(69)

Fig. 9 Harmonic content with and without UPQC compensation

a Source current harmonic content
b Load voltage harmonic content
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Finally the amplitude and phase required for the SVM stage
are calculated in way similar to that in (43) and (44).

6 UPQC comparison

This section summarises main differences of both UPQC
topologies.

† UPQCA uses the series converter as a non-sinusoidal
voltage source and the shunt converter as a non-sinusoidal
current source. On the other hand, UPQCB uses the shunt
converter as a sinusoidal voltage source and the series
converter as a sinusoidal current source.
† UPQCB control strategy has a simpler control
implementation, from the reference calculation point of
view, because filters are not necessary for harmonic
extraction.
† In UPQCB topology, when Cp capacitors are negligible,
IR � 0 is verified and consequently uw

L � f. From this point
of view, (16) is a particular case of (20).
† Different to UPQCA philosophy, where dc-link voltage is
regulated by the shunt VSC, in UPQCB philosophy the
series VSC is used to maintain the dc-link voltage in a
desired value.
† It is worth noting that the optimal angle in the case of
both strategies (see (16) and (20) and Fig. 6) is not the
same, even under equal load and network voltage
conditions. This is because of the different connections,
which in the load bus for each UPQC, produce a different
filter topology.

7 Performance assessment

The most relevant results demonstrating the performance of
the proposed optimal strategy and a comparison of
UPQCA’s and UPQCB’s philosophies are presented in this
Fig. 10 Input-voltage variation test

a and b d- and q-axis voltage at the load bus without UPQC compensation
c and d d- and q-axis voltage at the load bus using the UPQCA

e and f d- and q-axis voltage at the load bus using the UPQCB
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section. The UPQC, VSCs and control strategy are
implemented using the SimPowerSystems blockset of
MATLABw. The power system configuration and
parameters used in the tests are displayed in Fig. 1 and
Table 1.

7.1 UPQC optimal operation

The following test has been carried out to show how, by
minimising the shunt converter current, the UPQC works at
the optimal operation point. For the sake of simplicity,
harmonics are not considered in this test. Both UPQCs
work at nominal load, with a network voltage reduced to
70% of the nominal value. Fig. 6 shows how, at the
beginning, both controllers are placed with the load voltage
angle equal to the optimal value. Then, the uL angle is
swept in +158 around the operation point; it can be seen
that when the uL angle moves away from the optimal point,
the shunt VSC current grows in both directions. Moreover,
at 0.58 s, when the load voltage angle crosses over the
optimal value, the minimal IP current is consumed. This
shows that any other value chosen in case of uL makes the
IP current higher and, consequently, the converter losses are
higher as well.
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7.2 Dynamic response against sudden load
changes

A highly distorted input voltage has been considered in this
test, with a 30% nominal value decrease and flicker of 6 Hz
with 10% of the fundamental amplitude (see Fig. 7a). A
six-pulse thyristor rectifier is used as the load. At 0.02 s, the
UPQC is suddenly loaded to the nominal value (see
Fig. 7b). The UPQC filter task is shown in Figs. 7b and c.
There, it can be seen that both the load voltage and source
current, are properly compensated for. Fig. 7d shows the
dc-link regulation. In Fig. 8 the transient response against a
step change in the load power, with and without UPQC
compensations, is depicted.

The source current and the load voltage harmonic content
are presented in Fig. 9. It can be seen that the flicker and
harmonics are substantially reduced, whereas the
fundamental load voltage is restored to its nominal value, in
both UPQCA and UPQCB cases.

7.3 Compensation of input-voltage variations

In this test the same distorted nominal load, harmonics, and
input-voltage flicker, as seen in previous tests, were
Fig. 11 Load terminal voltage wave form before and after the compensation

a Load voltage without compensation
b Load voltage with both proposed UPQCs compensations
c Series voltage injected by each UPQC topology
d dc-link voltage regulation
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considered. However, in this case, a 30% reduction in the
input-voltage at 0.02 s and a 10% elevation over
the nominal value at 0.12 s are introduced. Fig. 10 shows
the performance of both strategies, where the load terminal
voltage in the d2q reference frame, before and after the
compensation, can be seen. Both controllers compensate for
the input-voltage variations properly; nevertheless, the
UPQCA is not capable of eliminating completely the ripple
in the load voltage, whereas the UPQCB is more effective in
maintaining an almost constant load voltage.

The flicker level, harmonics and amplitude variations in a
phase input-voltage of the non-compensated case are shown
in Fig. 11a. In Fig. 11b, it can be seen that all these
disturbances are mitigated when the UPQC compensation is
used. A phase shift is also noted, depending on which
optimal control philosophy is applied.

In Fig. 11c it can be seen that the UPQCB needs a lower
injected voltage to restore the load voltage at the nominal
value. When the optimal angle calculated in the case of
each topology is observed (see Fig. 6), it can be seen that a
lower voltage phase shift is required in the UPQCB’s case.
The UPQCA optimal angle is the load power factor angle
(368 in this test); whereas in the UPQCB, from (20), the
optimal angle is 198. This indicates that lesser effort is
needed by the UPQCB in order to work at the optimal point.
For this reason, the UPQCB allows for the compensation of
larger range of sags than does the UPQCA, when the same
nominal voltage of the series converter is considered.

In Fig. 11d a value of dc-voltage setting time for UPQCA

case is observed. This is higher than UPQCB. The UPQCA

setting time can be reduced, making the dc-voltage control
loop faster. However this diminishes the harmonic
elimination capacity of the shunt converter. This is because
of the trade-off between current harmonic filtering and dc-
voltage regulation in both, A and B, philosophies. Finally
both non-linear controllers are able to regulate the dc-link
voltage. Although dc-voltage variations occur transiently,
they can continue their power quality-improving tasks in a
suitable way.

8 Conclusions

In this paper a new optimal strategy with regard to UPQCs is
proposed. The optimal strategy was chosen to minimise the
loss power consumption. A comparison of two UPQC
control philosophies is also presented. With regard to
current and voltage harmonic compensation, unity power
factor condition and dc-voltage regulation, both control
philosophies present a good performance. Therefore the
non-linear control for UPQC could have a very important
role in the electric network power quality. However, there
are remarkable differences between both UPQC control
strategies presented in this work. Firstly the optimal strategy
proposed in the case of the UPQCB has a simpler control
implementation, from the reference calculation point of
view, as filters are not necessary for harmonic extraction.
This allows for a fast dynamic response against sudden load
changes and input voltage variations. In order to obtain the
same dynamic response with the UPQCA, filters and in
reference calculation must be faster but, as a consequence,
this lead to its harmonic elimination characteristic being
deteriorated. Thus, it can be concluded that the UPQC
tuning is a trade-off between transient response and
harmonic elimination, where UPQCB, in case of the same
transient response speed against load steps, presents less
IET Power Electron., 2011, Vol. 4, Iss. 4, pp. 435–446
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harmonic content. Additionally the relation ‘dc-voltage
regulation performance’ against ‘current harmonic
elimination’ is more efficient when UPQCB is used, at least
in terms of the application analysed here. Finally the
UPQCB’s philosophy with the optimal non-linear control
proposed in this work, leads to a better performance than
the other UPQC option generally found in literature.
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