JCS&T Vol. 4 No. 1

ACTIVATION AND TERMINATION DETECTION ON
DISTRIBUTED SYSTEMS

Waldemar Baraldi, Diego Scarpa, Ignacio Ponzoni and Jorge Ardenghi

Departamento de Ciencias e Ingenieria de la Computacién

Universidad Nacional del Sur
Av. Alem 1253 - CP 8000 - Bahia Blanca - ARGENTINA

Abstract

Facing the different approaches to process acti-
vation and global termination detection on dis-
tributed systems, this paper performs a practi-
cal comparison between the mainly opposed cen-
tralized and distributed models. Firstly, they
were implemented to solve both the activation and
termination detection problems. Based on pro-
cessing performance and communication overhead
metrics, both systems were evaluated running on
various parametrized environments. As a result,
we present the values obtained and the final con-
clusions.

The overall design was made following an ob-
ject oriented methodology, which was coded using
C++. The inter-process communication was car-
ried out using the PVM libraries.

1 Introduction

In the field of parallel processing,the method used
to descompose a large problem into several con-
current small tasks, has emerged as a key en-
abling technology in modern computing. The past
decade has witnessed an ever-increasing accep-
tance and adoption of parallel processing, both
for high-performance scientific computing and for
more “general-purpose” aplications. This was
the result of a demand for higher performance,
lower cost, and sustained productivity. The ac-
ceptance has been facilitated by two major devel-
opments: massively parallel processors (MMPs)
and the widespread use of distributed computing
[1].

The basic idea behind parallel programming is
the division of a problem into several smaller tasks
which can be solved simultaneously. At this point
many distributed algorithms and load balancing
schemes emerge to take advantage of the paral-
lel processing. The need for a global termination
detection strategy therefore arises due to the use
of problem division. When a computation is dis-
tributed, recognizing that it has come to an end

-32-

may be difficult unless the problem is such that
one process reaches the solution. In general, dis-
tributed termination at time ¢ requires the follow-
ing conditions to be satisfied [2]:

e Application-specific local termination condi-
tion exist throughout the collection of pro-
cesses, at time ¢.

e There are no messages in transit between pro-
cesses at time t.

The objective of this paper is to find two imple-
mentations such that they can be compared from
a practical as well as a theorical point of view.
The different environments used for the evalua-
tion of these implementations were chosen pur-
posing to reproduce distributed computing real
life problems. It is also important to note that
the scenarios where only one process reaches the
solution were considered trivial and therefore dis-
carded.

On the contrary, we focused on modelling sys-
tems where processes were capable of activating
children nodes which possibly can survive their
creator. In consequence, global termination hap-
pens when every process decides to finish its exe-
cution by itself.

The children nodes activation method, i.e. the
method used to choose among candidate nodes
(idle at the time), is a very important one, as is
the information needed to make this choice. Once
again, this problem allows either a centralized or
a distributed solution. In order to keep the coher-
ence of both implementations and not affect the
results, the centralized termination model uses a
centralized children activation method, and the
distributed one uses its respective ring-based fash-
ion method.

2 Design
Three different entities were clearly set apart in

the design of both systems: the Worker which is
the process that carries out the solution of tasks

April 2004

JCS&T Vol. 4 No. 1

inside a node, and the Local Termination Man-
ager (LTM) which, combined with the Global Ter-
mination Manager (GTM), performs the neces-
sary cleaning to make the activation and termi-
nation detection algorithms work properly.

Both system are composed of many worker
nodes subordinated to a unique manager node.
The worker nodes solve the problem, which in-
volves deciding when to be idle and when a new
worker node must be set active . The manager
node coordinates all these activities according to
the implemented model.

Each worker node contains one Worker in-
stance and one LTM instance which run on dif-
ferent threads. This allows the former to work on
the task while the latter waits for incoming mes-
sages. These nodes exist throughout the whole
execution of the system alternating between the
active and idle states. When a worker node is
in the idle state, its Worker instance is latent,
waiting for the LTM instance to receive an acti-
vation signal. Once this signal arrives the Worker
switches to the active state and starts consuming
CPU cycles. From time to time it stops and de-
cides whether to be idle or to activate a node. In
any case the Worker communicates the require-
ment to the LTM which in turn becomes respon-
sible for its fulfillment.

Notice that once the Worker asks for the ac-
tivation of another worker node to the LTM, it
resumes consuming CPU cycles while the LTM
negotiates with the global system for an effective
node activation. Every activation request issued
by a Worker activates an idle process unless all
processes in the system are already in the active
state. In that case the LTM discards the request.
The Worker nodes are not allowed to switch back
to the idle state if they have pending requests.

The ultimate goal of the system is the efficient
management of the activations and deactivations
of worker nodes. In other words, when an activa-
tion request is issued the system must rapidly find
out whether it can be performed or it has to be
discarded. Moreover, when a deactivation occurs
it must realize if the termination conditions are
satisfied. Recall that communication efficiency is
central to the performance of distributed systems.

The environment parameters formerly men-
tioned define the probability of node activation
and deactivation. These two probabilities were
included in order to evaluate the implementa-
tions’ performance in terms of different environ-
ments. The first one defines the likelihood that
a Worker will choose to activate a child when
it has the chance (AP, Activation Probability).
The second one defines the probability of a worker
node local termination (TP, Termination Proba-
bility). For example, an environment where both
the activation probability and the local termina-
tion probability are high characterizes a system

-33-

where worker nodes need many children to solve
their tasks but single tasks are in fact very simple.

Worker instances do not directly know the
probability values because they are hidden behind
another object, instance of a class called Action-
Generator. This object generates actions with
uniform distribution in accordance to the given
probabilities. Possible actions are activate a new
worker node, terminate and continue.

Just before starting to solve the problem, the
configuration phase takes place. As part of it,
the GTM provides each Worker node instance
with an ActionGenerator. Then, at run time, each
Worker has its own ActionGenerator instance to
which it can ask for actions to perform.

In the two following sections we explain the par-
ticular facts about both the centralized and dis-
tributed approaches.

3 Centralized Model

Due to its simplicity, the first model described is
the centralized one. As seen in the previous sec-
tion, both systems’ architectures have one man-
ager node and many worker nodes. In the cen-
tralized model, the manager node has complete
knowledge of the states of every worker node.
Making use of this information, it coordinates ev-
ery activation request and local termination ac-
knowledge.

As shown in Figure 1, each worker node is
mainly composed of two objects which carry out
the task related to the solution of the problem
(Worker) and the coordination with the manager
node (CentLTM). This last object is an instance
of the CentLTM class derived from LTM that im-
plements its functionality.

Following the centralized strategy, when some
Worker decides to activate another node, it sends
the request to the CentLTM which forwards it
to the CentGTM (GTM derived class instance)
present at the manager node. Knowing the state
of each node, the CentGTM object chooses one
worker node among the idle ones and switches it
to the active state through its local CentLTM ob-
ject. Once again, if the system is on its maximum
load, none is activated, the request is discarded,
and the asking CentLTM notified.

On the other hand, when a Worker decides to
switch back to the idle state, it notifies its decision
to the local CentLTM object which forwards it to
the CentLTM. When the CentGTM receives this
notification it checks for active worker nodes. If
there are none, the CentGTM can guarantee that
both termination conditions have been satisfied.
Finally, one more message is sent to the worker
nodes to report the global termination so they
can free their local allocated resources.

April 2004

JCS&T Vol. 4 No. 1

RN

Manager

Deactivate/
New Child

Activate

) o4

Worker

Figure 1: Centralized Termination

4 Distributed Model

Most common distributed detection termination
models are based on ring structures. In this pa-
per we implement the dual-pass ring termination
algorithm [3] adding two slight variations.

The first one consists of the distributed node
activation mechanism explained in Section 1. The
second variation adds a new termination token
colour to inform each node in the ring that the
global termination conditions are satisfied.

Analogous to the centralized version, this
model is based on the RingLTM and RingGTM
classes derived from LTM and GTM respectively.
Among the worker nodes, there is a distinguished
one called first node in the ring. This node is
responsible for changing the termination token
colour in each pass.

Tokens come in two flavours depending on their
purpose and the information they carry:

Activation Token As explained in Section 2,
this model implements a distributed node ac-
tivation scheme which must run efficiently
over a ring structure. A new token type,
called activation token, is added. It carries an
activation request around the ring looking for
an idle worker node. Notice that there is one
activation token for each request made. In
case of reaching back its creator without find-
ing an idle worker node, the local RingLTM
must decide what to do. A second pass can
be attempted or the request can just be dis-
carded and the local Worker notified. The
information carried by this token is its cre-
ator id.

Termination Token Temination tokens are
used for termination detection purposes.
Only one token of this type circulates
through the ring but it can be of different
colours. Its functionality is exactly the same
as in [4] but we have added the red colour.
The colour meanings are the following:

-34-

White: According to the dual-pass termina-
tion algorithm the token is white when
it has not visited any node which had
activated a previous node in the ring.

Black: On the contrary, the token is
coloured black when it visits a node
which has activated a previous node in
the ring. The distinguished node is re-
sponsible for turning the token back to
white after each pass is completed.

Red: When the first node receives a white
token, all nodes are idle . In that case
it makes a red token circulate through
the ring informing every node that the
global termination was reached and that
they can release their local allocated re-
sources.

Figure 2 shows the distributed model scheme.

N;
S

Primer
Token de
Activacion

N I
RingLTM

1

W(%er

Token de
Terminacién
Blanco/Negro/Rojo

Token de
Activacion

N

No

RINgGTM
T

Manager

N
Token de
Activacion

e

N

Figure 2: Distributed Termination

5 Performance analysis

5.1 Measures and metrics

Performance metrics were calculated based on
three measures taken from each execution:

Number of activations (NA) Total number
of succesfully activated nodes.

Number of discarded requests (N D) Total
number of activation requests that did not
activate a worker node. Useful for evaluating
the activation method.

Execution Elapsed Time (FET) Elapsed
time from the moment that the first activa-
tion request is issued until the global termi-
nation is reached, expressed in seconds.

April 2004

JCS&T Vol. 4 No. 1

According to these measures, the following met-
rics were calculated:

Number of activation requests (NR) Total
number of activation requests managed by
the system. Obtained as NR = NA+ ND.

Requests per Second (Rys) Number of re-
quests that the system managed per second
of execution. This metric is useful in com-
paring activation efficiency on systems with
the same activation probability. Calculated
as follows:

NR
B = gpr

Activations per second (Ay;) Number of
activations yielded per second of execution.
This metric is useful in calculating activation
efficiency on finding idle nodes. Obtained as
follows:

NA
** " EET

Request discard ratio (DR) Discarded acti-
vation request ratio. The activation method
is supposed to fulfill as many activation re-
quests as possible. This metric evaluates to
which degree it has succeded.

From now on, the acronym Awvg. means the
average of values found on the executions with
the same input parameters. Besides, Var means
the variance calculated from those values.

5.2 Execution environments

Every execution was carried out on Pentium
200Mhz. computers connected with a 10Mbit
Ethernet network. Each case study was evalu-
ated performing 10 executions with the same in-
put parameters. The executions with a number
of activations smaller than the number of nodes
in the system were laid apart. The last case is an
exception where exactly the opposite was meant.

Due to the Ethernet interconnection nature, no
physical communication parallelism is possible. In
order to provide some communication parallelism
more than one node per computer is run (affecting
CPU overhead, of course). The notation is the
following:

W = computers x nodes_per_computer

For instance, W = 5 x 2 means that there are
10 worker nodes, 5 computers with 2 nodes each.

Messages between nodes in the same computer
do not make use of the physical interconnection.
Thus, more than one message can be sent at the
same time.

5.3 Case Study 1

In this case a system with a significant amount
of computation and one node per computer is
represented. Then, all the communication takes
place through the physical interconnection net-
work, disallowing any communication parallelism.
As shown in Figure 3, AP = 0.05 and TP = 0.10
with 5 computers running only one process each.
The results are as follow:

TP=0.05 AP=0.10 W=5 (+) Cent. (°) Dist. TP=0.05 AP=0.10 W=5 (+) Cent. (°) Dist.

18 4

16 - +

1224 °

10

o -
~
® -
© -
[
5]
i
ey

T T T 7
012 3 45
Execuf

2
E
m
x
s —
Q
=3
5]
E

Figure 3: Ry, and Ay in study case 1

Impl. | Avg.Rxs|Var.Rxs| Avg.Axs|Var.Axs| DR
Cent.| 15.52 0.63 7.16 0.38 [53.83
Dist. | 12.88 0.90 6.40 0.68 [50.45

The centralized implementation clearly over-
comes the distributed one. It shows better general
performance and stability but it suffers a fairly
high request discard ratio.

5.4 Case Study 2

This case keeps the previous input parameters but
duplicates the number of worker nodes, placing
two of them in each computer. This highly in-
creases CPU utilization. When communication
between nodes in the same computer takes place,
some communication parallelism is achieved be-
cause they do not make use of the physical net-
work. Notice that it is only needed in the dis-
tributed approach, so it will benefit the ring based
implementation without affecting the centralized
one.
The results are as follow (See also Figure 4):

Impl. | Avg.Rxs|Var.Rxs| Avg.Axs|Var.Axs| DR
Cent.| 14.69 1.89 7.61 0.01 47.82
Dist. | 10.44 0.02 6.31 0.04 [39.53

The communication parallelism benefit does
not counteract the high CPU overhead caused by

JCS&T Vol. 4 No. 1

TP=0.05 AP=0.10 W=5x2 (+) Cent. (°) Dist. TP=0.05 AP=0.10 W=5x2 (+) Cent. (°) Dist.

16 12
v I
14 " M + 10
« |n
x 12 — x 8 .
o < L
+
°
° o o 5 o o o o
0 ° e °o o 6l ° o Lo o o© °
8 T T T T 17T T 17T 17T 4 T T T T T T 17T 17T
0123 456 78 91011 012 3 456 7 8 91011
Execution Execution

Figure 4: Ry and Ay, in study case 2

such activation probability. The increase in com-
munication between adjaeent nodes negatively in-
fluences the distributed implementation. Much of
that communication is carried out by the CPU
and therefore its performance falls significantly.
In spite of this low performance it has both low
variance and low request discard ratio.

5.5 Case Study 3

A system with high CPU usage but low task gen-
eration is characterized in this third case (Fig-
ure 5). Much communication is needed and it is
carried out through the physical interconnection
network.

The results are as follow:

TP=0.02 AP=0.03 W=5 (+) Cent. (°) Dist. TP=0.02 AP=0.03 W=5 (+) Cent. (°) Dist.

8 8
6 - 6 —|
.
w + 4 (%)
xad o, S . %4
o o o
o
N * tT wém H ® T
o +
2 2 +
. : ° 5
0 L O B B 0 L O B B B
0123456 7891011 0123456 7891011
Execution Execution

Figure 5: Ry and Ay, in study case 3

5.6 Case Study 4

The activation and termination probabilities are
increased keeping the same proportion. The num-
ber of nodes per computer is duplicated. See Fig-
ure 6.

The results are as follow:

TP=0.05 AP=0.075 W=5x2 (+) Cent. (°) Dist.

12 12

10 N - * 10 |

+ +

8 | + 6 0 o © 8 |
» o ° 5)
% x N .
@ < + . F

6 o © 6 o

o
4 ° + N 4 ° + N
. 1 .
2 T T 2 T

Figure 6: Ry and Ay, in study case 4

TP=0.05 AP=0.075 W=5x2 (+) Cent. (°) Dist.

Impl. | Avg.Rxs|Var.Rxs|Avg.Axs | Var.Axs| DR
Cent. 7.44 7.84 5.51 1.65 20.06
Dist. 7.00 1.47 5.35 0.27 |22.00

This case is rather similar to Case Study 2; how-
ever, the lower activation probability and CPU
usage allows the distributed model to take advan-
tage of the communication parallelism. Thus, it
improves considerably, almost reaching the per-
formance of the centralized model. The dis-
tributed model request discard ratio is higher and
its variance lower.

5.7 Case Study 5

In this case only 2 computers are used and 5 nodes
are placed on each one. The idea is to test CPU
overhead vs. communication paralellism.

The results are as follow:

TP=0.05 AP=0.075 W=2x5 (+) Cent. (°) Dist. TP=0.05 AP=0.075 W=2x5 (+) Cent. (°) Dist.

Impl. | Avg.Rxs|Var.Rys|Avg.Axs|Var.Axs| DR
Cent. 3.31 1.18 2.17 0.22 30.43
Dist. 3.65 0.04 2.41 0.12 33.81

The distributed model fairly beats the central-

8 8
6 | 6 |
» + + 4
x4 o+, ‘o x 4 -
o .
o o o o
° e * o 56*6;+ be ®
24 ° + 24 ° +
? ?
o
o T T T T T o T
01234567

T
Execution

T T
8 9 10 11

o
T T 71 T T 7
0123 456 7 8 91011

T
Execution

ized one in terms of managed requests and activa-
tions per second, obtaining low variance but high
request discard ratio.

Figure 7: Rys and Ay, in study case 5

April 2004

JCS&T Vol. 4 No. 1

Impl. | Avg.Ryxs |Var.Rxs | Avg. Axs|Var.Axs| DR
Cent. 3.39 1.08 2.42 0.23 24.12
Dist. 2.51 0.67 2.07 0.29 |[14.39

As seen in Case Study 2 the CPU overhead
caused by the internal messages is significantly
higher than the benefit given by communication
parallelism. Therefore, the distributed implemen-
tation performance falls considerably. On the
other hand, the centralized model yields a higher
request discard ratio and lower variance.

5.8 Case Study 6

Finally both implementations are compared by
the extreme case of AP =1 and TP = 0.5. Only
one node is placed on each computer so messages
go through the physical inteconnection network.
See Figure 8.

The results are as follow:
TP=0.50 AQ=1.00 W=5 (+) Cent. (°) Dist. TP=0.50 AP=1.00 W=5 (+) Cent. (°) Dist.

70 70

60 | oy 60
50 o ° .0 50
n 1 + o " 1
x40 | ° % 40
14 B < 1
. .

30 | . * 30 |

+ o

o +
20 o N 20

10

T T T T T T T
0123 456 7 8 91011
ecuti

Figure 8: Ry and Ay, in study case 7

Impl. | Avg.Ryxs|Var.Rxs| Avg.Axs|Var.Axs| RD
Cent.| 37.46 213.01 30.44 103.20 [16.18
Dist. | 40.74 183.86 30.78 89.06 |20.60

The distributed activation benefits are clearly
shown in this case. The centralized implementa-
tion needs both activations and deactivations to
be managed by only one node. This node, facing
such a high activation probability, gets saturated.

6 Conclusion

Two alternatives for activation and termination
detection models in distributed systems were pre-
sented and implemented in this paper. After eval-
uating various execution environments we found
those which could lead us to a worthwile compar-
ison.

Although the centralized implementation is
never considerably overcome by its distributed
counterpart, we must take into account that every

evaluation was executed over an Ethernet physical
network. The ring based approach is significantly
damaged by this fact since all the communication
is carried out sequentially, sharing only one phys-
ical channel.

The fact that must be brought out is that the
amount of available communication parallelism is
central to the distributed approach performance.
Thus, we can assert that the main cause of its
lower performance is the single channel network
configuration.

On the other hand, we found out that the sys-
tem which yields better performance suffers a
higher ratio of discarded activation requests. This
might be considered natural for a system working
most of the time at maximum capacity.

Therefore, we can conclude that the centralized
model is the best choice for systems with a small
number of nodes and a shared single channel com-
munication arquitecture. On the contrary, when
the number of nodes grows and the need for com-
munication gets higher, the distributed model be-
comes a competitive alternative. It is feasible that
on a ring based physical communication arquitec-
ture the distributed approach will be the only one
to consider.

References

[1] A. L. BEGUELIN, J. J. DON-
GARRA, G. A. GEIST, W. C.
JIANG, R. J. MANCHECK, V. S.
SUNDERAM, PVM: Parallel Virtual
Machine, A Users’ Guide and Tuto-
rial for Networked Parallel Comput-
ing, The MIT Press, Cambridge Mas-
sachusetts, London, England.

[2] BERTSEKAS, D. P., AND J. N.
TSITSIKLIS (1989), Parallel and
Distributed Computation Numerical
Methods, Prentice Hall, Englewood
Cliffs, New Jersey.

[3] WILKINSON, B., AND M. ALLEN
(1999) Parallel Programming : tech-
niques and applications wusing net-
worked workstations and parallel
computers, Prentice Hall, Upper Sa-
dle River, New Jersey.

[4] E.-W. DISJKSTRA, W.H.J. FEIJEN,
A.J.M. VAN GASTEREN Derivation
of a Termination Detection Algo-
rithm for Distributed Computations.

Information Processing Letters 16(5),
1983, pp 217-219.

April 2004

	header: JCS&T Vol. 4 No. 1 April 2004
	footer32: -32-
	footer33: -33-
	footer34: -34-
	footer35: -35-
	footer36: -36-
	footer37: -37-

