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Nematic quantum phases in the bilayer honeycomb antiferromagnet
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The spin−1/2 Heisenberg antiferromagnet on the honeycomb bilayer lattice is shown to display
a rich variety of semiclassical and genuinely quantum phases, controlled by the interplay between
intralayer frustration and interlayer exchange. Employing a complementary set of techniques, com-
prising spin rotationally invariant Schwinger boson mean field theory, bond operators, and series
expansions we unveil the quantum phase diagram, analyzing low-energy excitations and order pa-
rameters. By virtue of Schwinger bosons we scan the complete range of exchange parameters,
covering both long range ordered as well as quantum disordered ground states and reveal the exis-
tence of an extended, frustration induced lattice nematic phase in a range of intermediate exchange
unexplored so far.

Frustrated magnets are of great interest to a broad
range of sub fields in physics, harboring new quantum
states of condensed matter [1, 2], fueling progress on fun-
damental paradigms of topological ordering [3–5], pro-
viding realistic prospects for quantum computing [6–8]
and devices for thermal management technologies [9, 10],
inspiring research on ultra cold atomic gases [11, 12],
realizing elementary excitations related to Grand Uni-
fied Theories (GUT) [13–15], and exhibiting correlations
found in soft matter, liquid crystals, and even cosmic
strings [16, 17]. Strong frustration in quantum magnets
can ultimately lead to spin liquids, free of any broken
symmetries, featuring long-range entanglement, topolog-
ical order and anyonic excitations [2, 18]. Proximate to
such liquids, a rich variety of additional exotic quantum
matter, including valence bond crystals, also termed lat-

tice nematics [19], chiral liquids [20], multipolar states
[21], and more complex phases compete for stability. Un-
derstanding such phases of matter and their interplay is
a critically outstanding problem for theory and experi-
ment. In this letter we take a major step forward into
this direction and detail the emergence of lattice nematic
order in a yet unexplored region of frustrated magnets
on bilayer honeycomb lattices.

Recently, frustrated Heisenberg models on single layer
honeycomb lattices have become a test-bed for compet-
ing spiral order, lattice nematicity and plaquette valence
bond states [22–38]. This interest has been propelled by
the discovery of bismuth oxynitrate, Bi3Mn4O12(NO3)
[39], where Mn4+ ions of spin 3/2 form honeycomb layers,
with both, nearest and next-nearest neighbor antiferro-
magnetic (AFM) exchange. Early on however, it was no-
ticed that in this compound Mn4+ ions are grouped into
pairs along the c-axis, rendering the structure rather that
of a bilayer honeycomb lattice. Despite a significant sep-
aration through bismuth atoms, density functional calcu-
lation [40] resulted in comparable inter- and intralayer ex-
change, consistent with experimental findings [41]. This
has lead to first investigations of bilayer honeycomb sys-

tems [42–48]. Most of these studies have focused on the
stability of the semi-classical phases, extending previous
work on the single layer case.

First indications of quantum disordered phases, gen-
uinely related to the bilayer geometry and not present in
the single layer case have been provided in a small pa-
rameter window in [46], following ideas of [49, 50] and
similar works [51–55]. However a complete understand-
ing of the quantum phase diagram of the bilayer is miss-
ing. Therefore, in this letter we provide a comprehensive
analysis of the quantum phases of the frustrated Heisen-
berg model on the honeycomb bilayer over a wide range
of coupling strengths, including in particular the inter-
mediate regime, where both, the interlayer exchange and
intralayer frustration are comparable to the intralayer
first neighbor couplings. This part of the phase diagram
has remained largely unexplored, representing a chal-
lenge for most of the existing state-of-the-art numerical
techniques. Here, by means of a combination of methods,
among which Schwinger Bosons stand out for their ability
to explore the full quantum phase diagram and to treat
on equal footing quantum and semi-classical states, we
unveil a rich structure of phases, where the interplay of
frustration and interlayer coupling is most essential, de-
stroying magnetic order and giving rise to exotic phases.
Most noteworthy, we will provide evidence for a new lat-
tice nematic phase in the intermediate coupling regime.

The model we consider is shown in Fig. 1. Its Hamil-
tonian reads

H =
∑

i,l,m

J
(l,m)
i

~Sl(~r) · ~Sm(~r + ~ei), (1)

~r and ~ei label sites and primitive vectors of the triangular
Bravais lattice. ~Sl(~r) are spin operators at basis sites ~r,

l=1...4 of the bilayer. The couplings J
(l,m)
i are non-zero,

with values J⊥, J1 and J2 as depicted in Fig. 1.
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FIG. 1: (Color online) Schematic representation of the model.
The sites (green spheres) in each unit cell are labeled from 1
to 4. Bold vertical blue lines indicate J⊥ interlayer couplings,
whereas thin black and red lines indicate J1 and J2 first and
second nearest neighbors, respectively.

Before describing our calculations, we focus on the
main results, summarized in Fig. 2A. On the classical
level, S → ∞, and in the single plane limit, i.e. at
J⊥ = 0, there are two phases. Néel order for J2/J1 < 1/6
and spiral order for J2/J1 > 1/6. Allowing for interlayer
coupling this single transition point extends into a line,
independent of J⊥. Quantum fluctuations lead to new
non-classical intermediate phases and renormalize the
Néel and spiral phases. Previous studies [38] have iden-
tified continuous transitions into two frustration induced
genuine quantum phases. A gapped spin liquid (GSL)
phase, preserving all lattice symmetries for 0.2075 .

J2/J1 . 0.3732 and a staggered-dimer lattice nematic
phase (VBC1) which maintains the SU(2) spin rotational
and lattice translational symmetries, but breaks Z3 sym-
metry, corresponding to 2π/3 rotations around an axis
perpendicular to the plane for 0.3732 . J2/J1 . 0.398.
Another limiting case is J⊥ → ∞. Here an interlayer
dimer product phase (IDP) is formed.

Connecting these two limits, the interplay between the
interlayer couplings J⊥ and the frustration J2 reveals the
complex phase diagram we find in Fig. 2A. Starting from
the limit of decoupled planes, we consider the semiclas-
sical Néel and spiral phases first. Figure 2A shows, that
small interlayer couplings extend each of their windows
of stability along the J2 direction, leading even to a re-
gion of competition. However for sufficiently large J⊥ the
semiclassical phases recess and are suppressed in favor of
the IDP. Regarding the GSL and VBC1 phases, inter-
layer coupling has a dramatic consequence, suppressing
them very rapidly, reentering semiclassical phases at fi-
nite J⊥. Finally, the Néel-to-IDP is direct. This is not
so for the Spiral-to-IPD transition. In fact we find yet
another lattice nematic region (VBC2) which intervenes.
To the best of our knowledge, this has not been observed
before.

Next we detail how to arrive at our main result, i.e.
Fig. 2, using three complementary techniques, namely,
Schwinger bosons mean field theory (SBMFT)[26], Bond
operators (BO)[56] and series expansions (SE) [57].
While being a mean field approach, primarily gauged to-

wards bosonic fixed point models, SBMFT is superior in
addressing on equal footing both semi-classical as well
as genuinely quantum phases, allowing to scan all of Eq.
(1)’s parameter space. The other two methods are best
suited to obtain additional information, for large inter-
layer coupling (BO), and for weak frustration (SE).
SBMFT.— Here, spin operators are represented by
two bosons ~Sl(~r) = 1

2
~b†
l (~r) · ~σ · ~bl(~r) [58–60], where

~b†
l (~r) = (b†

l,↑(~r),b
†
l,↓(~r)) is a spinor, ~σ are the Pauli

matrices, and
∑

σ b
†
l,σ(~r)bl,σ(~r) = 2S is a local con-

straint. Using the rotationally invariant representa-
tion [26, 30, 38, 61–66], we define two SU(2) invariants
Alm(~x, ~y) = 1

2

∑
σ σbl,σ(~x)bm,−σ(~y) and Blm(~x, ~y) =

1
2

∑
σ b

†
l,σ(~x)bm,−σ(~y), where the former generates a spin

singlet between sites l and m, and the latter a coherent
hopping of the Schwinger bosons. At the mean field level,
the exchange follows as 〈(~Sl(~x) · ~Sm(~y))MF 〉 = |Blm(~x−
~y)|2 − |Alm(~x− ~y)|2, with A∗

lm(~x− ~y) = 〈A†
lm(~x, ~y)〉 and

B∗
lm(~x − ~y) = 〈B†

lm(~x, ~y)〉. These equations are solved
self-consistently taking into account the constraint in the
number of bosons Bll(~R = ~0) = 4NcS, whith Nc repre-
senting the total number of unit cells and S the spin
strength [26, 38].
After solving the mean-field equations on finite but

large lattices we primarily extract the extrapolation of
the elementary excitation gap ∆. This is used to clas-
sify magnetic phases, for which ∆ has to be zero. If
∆ 6= 0, Bose condensation cannot occur and the phase
is quantum disordered. We can also obtain the real
space spin correlation function Cl and magnetization ml

[67]. Lattice nematic phases, which preserve the lattice
translational invariance, but break Z3 lattice symmetry
have come under scrutiny early on in single layer hon-
eycomb systems. These imply a nonzero order parame-
ter ρ = 4

3 |(〈~S1(~r) · ~S2(~r)〉 + ei2π/3〈~S1(~r) · ~S2(~r + ~e1)〉 +
ei4π/3〈~S1(~r) · ~S2(~r − ~e2)〉)| [22, 23]. Here we have inves-
tigated this order parameter over all of the parameter
space of Fig. 2A.
To clarify the procedure we detail our SBMFT results

along the two paths (a-d), at J2 = 0.3 and (f-g), at
J2 = 0.38 in a representative part of the phase diagram,
depicted in Fig. 2B. The corresponding evolution of ∆
(connected red dots) and ρ (connected black dots) are
shown in Fig. 2C and 2D for the paths (a-d) and (f-g),
respectively.
We start in the blue-light phase around point (a),

where panel C) features a finite gap and unbroken Z3

symmetry. This identifies the GSL phase. As J⊥ in-
creases from zero, the gap rapidly decreases and closes
simultaneously with ρ growing finite. A blowup of this is
shown in the left upper inset of Fig. 2C. This behavior
is consistent with a spiral phase, which is gapless and
breaks Z3 symmetry. As J⊥ increases further, ρ runs
through a maximum and decreases up to a point where
∆ 6= 0 again. In stark contrast to the GSL however a nar-
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FIG. 2: (Color online) Panel (A): the different colored regions
identify the phases of model (1) in J2 − J⊥ plane (in units of
J1) determined by SBMF. The blue and red lines represent
the border of the IDP phase predicted by SE and BO respec-
tively. Panel (B): Zoom of the phase diagram where two paths
along J⊥, for J2 = 0.3 and J2 = 0.38 are indicated with red
dashed lines. Lower panels (C-D), depict the evolution of the
gap (connected red dots) and the Z3 directional symmetry-
breaking order parameter ρ (connected black dots), along the
mentioned paths.

row yellow region of broken Z3 symmetry and gapful be-
havior surfaces around point (c). This characterizes the
lattice nematic phase (VBC2). Right upper inset of Fig.
2C shows a blowup of this region. Very different than the
VBC1 phase, VBC2 can be found in a much larger range
of parameters running all along the upper spiral phase
boundary. Finally, entering the blue region around point
(d), there is a near 1st order jump to rather large values
of ∆ where ρ turns zero, restoring Z3 symmetry. This is
consistent with the IDP, adiabatically connecting to the
limit of decoupled dimers at J⊥ = ∞
Turning to the second path (points f and g), it is obvi-

ous from Fig. 2D, that the phases corresponding to point
(g) is identical with the corresponding one at point (b).
However, different from the GSL at (a), the phase VBC1
around (f) displays a behavior of ∆ and ρ identical to
point (c), i.e. a lattice nematic. We cannot exclude the
existence of observables beyond our study which allow
for further discrimination between VBC1 and VBC2.

Series Expansion and Bond Operator Approach.— For
a complementary analysis of the evolution of the quan-
tum disordered phases, starting from the limit of decou-
pled dimers, J⊥ → ∞, we use both, series expansion
(SE) [68] and bond operator theory (BOT) [56, 69, 70].
In BOT, spins at the vertices of each dimer are writ-
ten as Sα = (±s†tα ± t†s−∑

β,γ iεαβγt
†
βtγ)/2, with the

constraint s†s +
∑

α t†αtα = 1, where s†(t†α) create sin-
glet(triplet) states of the dimer, and α = 1, 2, 3 labels
the triplet multiplet. BOT maps the spin model onto an
interacting Bose gas, for which several schemes of treat-
ment have been proposed [56, 69–72]. Here we use the
Holstein-Primakoff (HP) approximation [69, 70], where
s(†) is replaced by a C-number and s = (1−∑

α t†αtα)
1/2

is expanded to obtain a quadratic triplon Hamiltonian.
Standard Bogoliubov diagonalization yields a ground
state energy per unit cell of E = −9

4 + 3
4N

∑
k,±[1 ±

ǫ±(k)]
1/2, with the triplon dispersions ǫ±(k) = J1

J⊥

[3+

2 cos(kx) + 4 cos(kx/2) cos(
√
3ky/2)]

1/2 ±2 J1

J⊥

(cos(kx)+

2 cos(kx/2) cos(
√
3ky/2)). At J1=J2=0, and for the lat-

ter one recovers the bare singlet-triplet gap ∆ = J⊥, and
for the former E = −3J⊥/4 consistent with a bare sin-
glet.
For SE we use the continuous unitary transformation

(CUT) method [53, 57, 73–76] starting from the limit of
decoupled dimers. This method allows to obtain analyt-
ical expressions for the ground state energy and the dis-
persion of the elementary triplon excitations of the IDP
versus J1,2/J⊥. We have evaluated these up to O(4).
Their rather lengthy expressions are detailed elsewhere
[77].
In Fig. 2A we show the critical lines of the gap clo-

sure of the triplon dispersion of the IDP obtained from
both, BOT-HP (red solid) and SE-CUT (blue dotted
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FIG. 3: (Color online) Contour plot corresponding to the Bond operator boson dispersion close to condensation for (a):
J2/J1 = 0.1, (b) J2/J1 = 0.4 and (c) J2/J1 = 0.6. Red dashed lines correspond to curves in the k space determining the
classical manifold of spiral ground states.

line). Clearly, contrasting them with regions of mag-
netic ordering obtained from SBMFT, the general trend,
i.e. the breakdown of magnetic order versus J2 and J⊥
is fully consistent with the IDP gap closure. Quanti-
tatively however, comparing SBMFT and BOT-HP to
SE-CUT, the latter predicts a smaller range of stability
for semiclassical phases. Since the former two are mean-
field theories, such a tendency to prefer ordered phases
is a well known shortcoming. In fact, SE-CUT locates
the IDP-Néel transition at J⊥ ≃ 1.6 for J2 = 0 in Fig.
2A, in excellent agreement with quantum Monte-Carlo
calculations [42], and moreover SE-CUT is rather close
to coupled-cluster results for finite, but small J2 . 0.2
[47]. For larger J2 the CUT-SE bcomes less reliable and
we remain with only BOT-HP to compare to within the
IDP.

Finally, we comment on the location in ~k-space of
Bose condensation within the BOT-HP, as compared to
the classical magnetic pitch vector ~Q of the bilayer at
S → ∞. As mentioned previously, the latter is indepen-
dent of J⊥, comprising a Néel state for each plane for
0 < J2/J1 < 1/6 and for 1/6 < J2/J1 a set of classically

degenerate coplanar spiral ground states with ~Sl(~r) =

(−1)lS[cos( ~Q ·~r+ θl )̂i+sin( ~Q ·~r+ θl)ĵ], where the pitch
vector lies on the closed curve cos(Qx) + cos(−Qx/2 +√
3Qy/2)+cos(Qx/2+

√
3Qy/2)+3/2 = (J1/J2)

2/8, and
the phase θi obeys θ1,2 = π + θ3,4 [22]. Comparing this

now, to the critical wave vector ~Q for Bose condensation
within the BOT-HP, we first have ~Q = (0, 0) correspond-
ing to a Néel order for J2 < 1

6 . For J2 > 1
6 , condensation

does not occur at a single point, but on lines in ~k-space.
Remarkably, these are identical to those from the clas-
sical states. This is illustrated in Fig. 3(a-c), where we
plot contours of the boson dispersion close to condensa-
tion at J2 = 0.1, 0.4 and 0.6 and incorporate the degen-
erate classical spiral pitch vector locations by red dashed

lines. In turn, while quantum fluctuations may modify
such agreement, it is nevertheless interesting to realize
that BOT-HP provides some guidance as to the type of
semiclassical phase to emerge upon gap closure.

In conclusion, the interplay between intralayer frustra-
tion and interlayer exchange allows for a rich variety of
classical and quantum disordered phases to compete for
stability in the bilayer honeycomb antiferromagnet. In
this letter, evidence for these phases has been provided
over a wide range of coupling constants using three com-
plementary methods, yielding consistent results. Most
noteworthy, at intermediate coupling, we have discov-
ered a new lattice nematic phase, which exists in a re-
gion of parameter space substantially larger than similar
phases observed previously in the model at small inter-
layer coupling. While we have carried out our analysis
on a spin-1/2 model, our findings may be relevant to un-
derstand the absence of magnetic order in the spin-3/2
honeycomb bilayer materials Bi3Mn4O12(NO3) , where
first principle calculations suggest exchange paths iden-
tical to our microscopic model and to be all of similar
magnitude.
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