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Recent studies show that ecological interaction networks depart
from the ‘‘scale-free’’ topologies observed in many other real
world networks. Such a departure has been hypothesized to result
from non-matching biological attributes of species, such as
phenology or morphology, that prevent the occurrence of certain
interactions (‘‘forbidden links’’). Here I compare the topology of
17 plant�/animal mutualistic networks with that predicted by a
simple null model that assumes that a species’ degree (number of
interspecific interactions) is a function of its frequency of
interaction. The topology predicted by this null model is
strikingly close to that observed in the real networks. Thus, this
null model provides a simple alternative interpretation of patterns
observed in ecological interaction networks that does not require
the existence of non-matching species traits.

Ecologists often have depicted interactions among coex-

isting species as a network, in which nodes represent

species and links between pairs of nodes represent

interspecific interactions (Paine 1966, May 1974, Pimm

1982, Jordano 1987, Polis 1991). A primary goal of this

research has been the search for regularities in network

topology and the mechanisms behind such regularities

(Cohen and Newman 1985, Jordano 1987, Martinez

1992, Williams and Martinez 2000). Two recent studies

(Dunne et al. 2002, Jordano et al. 2003) have shown that

ecological interaction networks depart from the scale-

free topology observed in many other real world net-

works (such as the world wide web, the internet,

networks of scientific citations and collaborators, and

metabolic and protein networks; Barabási and Albert

1999, Albert and Barabási 2002, Newman 2003).

Under a scale free topology, the number of links per

node (hereafter ‘‘degree’’) follows a powerlaw distribu-

tion, usually represented as P(k)�/k�g, where k is the

degree, P(k) is the cummulative degree distribution (the

proportion of nodes with k or more links), and g is a

constant (Amaral et al. 2000, Newman 2003). Such a

distribution may result from a process of network

growth through preferential attachment, whereby new

nodes are added to the network by preferentially

attaching to highly connected nodes (Barabási and

Albert 1999). In contrast, degree distribution in ecolo-

gical interaction networks typically decays faster than

expected under a power law (Dunne et al. 2002, Jordano

et al. 2003). In the particular case of plant�/animal

mutualistic interactions, most networks follow a ‘‘broad

scale’’ distribution (Jordano et al. 2003), best described

by a power law distribution with an exponential decay,

P(k)�/k�g exp(�/k/kx), where kx is a constant and k,

P(k) and g are defined as above.

Jordano et al. (2003) suggested the existence of

‘‘forbidden links’’ as the underlying causes of departure

from the scale free degree distribution. These forbidden

links are presumably the result of biological attributes of

species that prevent the occurrence of some interactions.

For example, interactions would not be possible between

species with non-overlapping phenologies or non-match-

ing morphologies. Jordano et al. suggest that this

structural constraint would impose an upper limit on

the number of links per node, causing the degree

distribution to drop off more rapidly than under a

power law.

Although network growth through preferential attach-

ment and the existence of forbidden links are certainly

possible, it is unclear whether these mechanisms

are sufficient explanations of observed degree distri-

butions in plant�/animal mutualistic networks. First,

although forbidden links likely contribute to generate

the observed number of links in a given network

(Jordano 1987), interactions among temporally over-

lapping species seem to be ‘‘allowed’’ in many cases

(Waser et al. 1996, Richardson et al. 2000). Second, and

more importantly, forbidden links resulting from phe-

nological or morphological constraints are equally likely

to affect any species, not just the most connected ones,

and it is unclear whether this assembly constraint would

necessarily lead to a decay in the tail of the degree

distribution.
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In this article I propose a different, more parsimo-

nious mechanism to explain the observed degree dis-

tribution of plant�/animal mutualistic networks. I use a

previously published null model of plant�/animal mu-

tualistic interactions that assumes that the degree of a

species is a function of its frequency of interaction

(i.e. the number of times a species was recorded

interacting in the field). Therefore, the model assumes

that species traits are irrelevant in determining inter-

specific interactions directly, and it thus provides a

simple explanation against which other models could

be compared.

The data

I studied degree distribution in twelve plant�/pollinator

and five plant�/frugivore interaction datasets from

published community-wide studies (Appendix 1). Data

come from field studies at local communities in different

parts of the world, in which the interactions among

most plants at a particular locality and their animal

mutualists (pollinators or frugivores) were recorded.

Data are available through the Interaction Web Data-

base (http://www.nceas.ucsb.edu/interactionweb).

For each dataset, I constructed a binary interaction

matrix, in which rows and columns represent animal and

plant species, respectively, a cell with a ‘‘1’’ represents an

interspecific interaction (hereafter ‘‘link’’) between an

animal and a plant species, and a cell with a ‘‘0’’

represents no interspecific interaction. In addition, the

datasets contained information that allowed estimation

of the frequency with which each species was observed to

engage in an individual interaction (‘‘frequency of

interaction;’’ i.e. the total number of visits of any

pollinator species received by a plant species, or the

total number of visits made by a particular pollinator

species to any plant species).

The null model

I used a previously developed randomization model (i.e.

the ‘‘null model 2’’ of Vázquez and Aizen 2003, 2004) to

simulate interactions among plants and their animal

mutualists. This model assumes that the network is static

(i.e. the number of nodes does not grow with time), and

requires that all species interact with at least one other

species and that the total number of links in the

randomized networks is the same as originally observed.

The model incorporates a correlation between a species’

frequency of interaction and its degree that underlies

most data (Appendix 1). To this end, the model assumes

that the probability of a species to be linked to other

species is roughly proportional to its relative frequency

of interaction. Thus, species with a high frequency of

interaction should have a higher degree than species with

a lower frequency of interaction (Vázquez and Aizen

2003, 2004).

The null model, implemented in Matlab (MathWorks

1999), is based on the randomization of the binary

interaction matrix according to species-specific prob-

abilities. To ensure that each species has at least one link,

the algorithm first assigns one link to each species by

drawing one species from the pool with probability equal

to the relative frequency of interaction of each potential

interaction partner. Subsequent links are then assigned

by selecting one plant and one pollinator species

according to their relative frequencies of interaction;

this process is repeated until the number of links

originally observed is reached. Thus, the probability of

interaction between an animal species i and a plant

species j is approximately pij�/pipj, where pi and pj are

the relative interaction frequencies of animal i and plant

species j (see Vázquez and Aizen [2003, 2004] for more

details about the algorithm). Randomizations were

repeated 1000 times for each dataset. The predicted

cumulative degree distribution was calculated as the

mean of the 1000 randomized degree distributions.

Assessment of model fit

Following previous studies (Amaral et al. 2000, Dunne

et al. 2002, Jordano et al. 2003), I calculated the

cumulative degree distribution for each original dataset

excluding categories that had zero frequency in the

noncumulative probability distribution histogram, and

then assessed the fit of the degree distribution predicted

by the null model. Although the above procedure can be

problematic (because of non-independence of data

points and inflation of model fit; Newman 2003), doing

so makes my results directly comparable with those of

previous studies (Dunne et al. 2002, Jordano et al. 2003).

One important point about the approach taken here is

that it does not involve any parameter-fitting procedure.

Thus, although the model does have several parameters

(the probabilities associated to each species, the observed

number of links), the values of these parameters are set a

priori; i.e. I specify the model before comparing it to the

data. This procedure makes the test of the model

particularly strong (McGill 2003).

In some cases, the categories with the highest degree

had a predicted cumulative probability equal to zero.

The finite number of iterations used in the randomiza-

tion resulted in some cases in zero cumulative probabil-

ities for the highest degree categories, which made

logarithmic transformation impossible. However, in the

limit, when the number of iterations tends to infinity,

all categories should have a nonzero probability. There-

fore, I assumed that the lowest possible associated
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cumulative probability was 1 over the number of

iterations (i.e. 10�3).

Percent variance in the data explained by the model

prediction was estimated as R2� aYiŶi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aY2

i aŶ
2

i

q� �2

;

where Y
i and Ŷi are the observed and predicted values of

the cumulative degree distribution for each bin i of the

cumulative degree histogram. (Note that in traditional

least square regression, such metric is provided by the

coefficient of multiple determination, R2, calculated as

R2�a(Ŷi�Ȳ)2=a(Yi�Ȳ)2; where Yi and Ŷi are de-

fined as above and Ȳ is the mean of the observed and

predicted values, which are assumed to be the same as a

result of the fitting procedure. However, because my

modeling approach did not involve fitting of any free

parameters, the means of observed and predicted

distributions are not necessarily the same, which makes

the use of this form of R2 inappropriate.)
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Fig. 1. Degree distribution in 12 plant�/pollinator and 5 plant�/seed disperser bipartite interaction networks. Dots represent
observed relative frequencies of species with k or more links; lines are expected degree distributions predicted by the randomization
model. Dataset codes are indicated in the lower-left corner of each panel (see Supplementary Information for full references).
The R2 statistic, estimating the proportion of variance in the data explained by the model, is also given for each dataset.
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Results and discussion

Results of my analysis suggest that the null model

provides an accurate prediction of cumulative degree

distribution. Degree distribution predicted by the

null model is very close to the observed distribution in

most datasets (Fig. 1). Thus, the existence of species

traits that act to prevent some pairs of species from

interacting (i.e. forbidden links) is not necessary to

explain the observed topology of real ecological net-

works. Rather, these results demonstrate that the broad

scale patterns observed both in plant�/animal mutualis-

tic networks and in food webs (Dunne et al. 2002,

Jordano et al. 2003) can be explained by an under-

lying correlation between frequency of interaction and

degree.

Of course, showing that a given model fits the data

well is by no means a demonstration that the mechanism

actually operates; more than one mechanism can

produce any given pattern (McGill 2003). However,

because of the simplicity of the model and its close

fit to the data, this mechanism should be considered

at least as good an explanation of observed patterns

as more sophisticated mechanisms proposed in previous

studies, including network growth through preferential

attachment and the existence of forbidden inter-

actions (Jordano et al. 2003). Testing for the effect of

forbidden links may be difficult, and much more detailed

information about the biology of species interactions

will be necessary; until these data are available, the

hypothesis that topological patterns of interaction net-

works are simply the result of a stochastic process like

the one assumed in the present null model cannot be

rejected.

Several important implications emerge from this

study. First, my results should warn against the over-

interpretation of topological patterns observed in ecolo-

gical interaction networks. The fact that the assumption

that frequently interacting species have a higher degree

than rarely interacting species is sufficient to explain

observed topological patterns suggests that most phe-

notypic characteristics of interacting species may be

irrelevant in determining broad patterns of interspecific

interactions. However, species frequency of interaction

does probably emerge from species traits, such as those

determining species abundance, flower and fruit attrac-

tiveness to pollinators and frugivores, and animal

mobility (Vázquez and Aizen 2005). Thus, species traits

may be important in structuring interaction networks,

but in a fundamentally different way from the one

envisioned in previous studies (Bascompte et al. 2003,

Jordano et al. 2003).

Second, the fact that this simple null model consis-

tently generates patterns observed in real communities

suggests that we may be looking at the wrong patterns.

The aggregated statistical descriptions that have been the

focus of recent work on networks (including my own

work) remove much of the details of the interactions;

thus, that these simplified patterns are well explained by

equally simplified mechanisms does not mean that more

complex patterns that require more complex explana-

tions do not exist. I suggest that a better understanding

of ecological interactions will come from studies that

attempt to delve deeper into the details of interactions.

Particularly, as many have previously argued (Cohen

et al. 1993, Memmott 1999, Borer et al. 2002), it will be

important to move beyond binary representations of

interactions to quantitative measures involving interac-

tion strength.
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Appendix 1. Datasets included in the study. Data are available through the Interaction Web Database (http://www.nceas.ucsb.edu/

interactionweb)

Interaction
type

Number of species f�/s correlation§ Reference

Dataset
code

Plants Animals Plants Animals

Pollination bar 12 102 0.78 0.78 Barrett and Helenurm (1987)
elb 23 118 0.97 0.90 Elberling and Olesen (1999)
ino 42 91 0.72 0.85 Inouye and Pyke (1988)
kat 89 679 0.96 0.87 Kato et al. (1990)
mem 25 79 0.95 0.91 Memmott (1999)
mos 11 18 0.90 0.70 Mosquin and Martin (1967)
mot 13 44 0.92 0.85 Motten (1982)
o_a 14 13 0.08 0.57 Olesen et al. (2002)
o_f 10 12 0.85 0.91 Olesen et al. (2002)
sch 7 32 0.88 0.89 Schemske et al. (1978)
sma 13 34 0.88 0.31 Small (1976)
vaz 14 93 0.72 0.73 Vázquez and Simberloff

(2002, 2003)$

Seed dispersal bee 31 9 0.89 0.96 Beehler (1983)
pou 13 11 0.86 0.98 Poulin et al. (1999)
s71 65 14 0.86 0.89 Snow and Snow (1971)
s88 22 20 0.75 0.91 Snow and Snow (1988)
sor 12 14 0.70 0.38 Sorensen (1981)

§
Pearson’s correlation coefficient between a species’ frequency of interaction (f) and the number of species of interaction partners (s),

calculated separately for plants and animals. Correlation coefficients with associated probability PB/0.05 are highlighted in bold.
$
This dataset consisted of data from eight sites with the same community type within a 25 km radius; because analyses done

separately for each site and for all sites pooled gave similar results, I report results for the pooled data only.
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