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The validity of the hypothesis of electroneutrality outside the double layer of a suspended particle with an
applied ac electric field is analyzed. It is shown that the electrolyte solution remains electroneutral for distances
greater than a few Debye lengths from the particle surface only when the diffusion coefficients of the two ion
species are identical. On the contrary, in the general case, a volume charge density around the particle builds
up, which extends to distances that are proportional to the square root of the effective diffusion coefficient
value divided by the frequency. These distances can easily attain many particle radii. Numerical results for
both uncharged and charged suspended particles are presented, and a correction to existing analytical expressions
for the field-induced ion distributions around uncharged particles (J. Phys. Chem.2004, 108, 8397) is given.
While the charge densities far from the particle are usually very weak, it is shown that they strongly contribute
to the dipole coefficient value and, therefore, to the calculated values of the permittivity and conductivity
increments. The errors that would be committed if these charge densities were ignored, assuming local
electroneutrality and determining the dipole coefficient at a few Debye lengths from the particle surface, are
analyzed and shown to be substantial.

Introduction

It is well-known that, due to the presence of the particles,
the complex permittivityε*(ω) of a suspension differs from that
of the supporting electrolyte solutionεe*(ω).1,2 For dilute
suspensions:

where p is the volume fraction of solids,ω is the angular
frequency and∆ε*(ω) is the complex permittivity increment.
This last magnitude mainly depends on the zeta potential of
the particles,ú, on the conductivity of the electrolyte solution:

and on the productκR, whereκ is the reciprocal Debye length,

and R is the particle radius. In these expressionsz( are the
unsigned valences of the two ionic species in the electrolyte
solution, D- are their diffusion coefficients andz - N their
number concentrations (ions per unit volume) far from any
particle. On the other hand,k is the Boltzmann constant,T the
absolute temperature,e the elementary charge, andεe the
absolute permittivity of the electrolyte solution.

Equation 1 makes it possible to calculate the permittivity and
conductivity increments:1

where Kd ) K′d + iK′′d is the complex induced dipole coef-
ficient of the particle. To calculate this coefficient, the coupled
equation system made of the Nernst-Planck, Poisson, and
Navier-Stokes equations, needs to be solved in the region
outside the particle. Since this is in general very complicated,
because of the triple origin (convective, diffusive, and electrical)
of the ionic transport in the suspension, a number of methods
have been devised in order to obtain either approximate1,3-6 or
numerical solutions.7-9 In all the numerical works, the induced
dipole coefficientKd is calculated assuming that outside the
electrical double layer there is local electroneutrality

whereδC( are the ion concentration changes induced by the
applied fieldEB. Under this assumption, the electric potential
Φ(rb,ω) takes the following form:

Therefore, if the value of the electric potential at a point outside
the double layer is known, expression 7 permits one to easily
calculate the induced dipole coefficient.
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However, condition 6 is not required in analytical calcula-
tions,1,6 which only use the hypothesis of an approximate local
electroneutrality: the sum of the low-frequency field-induced
changes of the counterion and co-ion densities outside the double
layer is much greater than their difference.

In most of the literature, it is accepted that the thickness of
the electric double layer is of the order of a few Debye lengths.
Therefore, for greater distances to the particle surface, the
electroneutrality condition is fulfilled and expressions 6 and 7
can be used to calculate the permittivity and conductivity
increments. In what follows we shall show that while, as is
usually accepted, electroneutrality in the solution is reached at
a few Debye lengths from the particle surface both for dc and
ac electric fields when the diffusion coefficients of the two ionic
species are identical, the situation drastically changes when these
diffusion coefficients differ from one another. Under these more
general conditions, the distance to the particle surface of the
spatial points at which eq 7 is valid is given by the characteristic
diffusion lengths of the ions. This fact should be taken into
account in order to avoid substantial errors in the evaluation of
the permittivity and conductivity increments.

Theory

Basic Equations.We consider a nonconducting spherical
particle with absolute permittivityεi, immersed in an electrolyte
solution with viscosityη. The equations governing the dynamics
of the system are well-known:1-2

(i) Nernst-Planck equations for the ionic flows:

(ii) Conservation equation for each ionic species:

(iii) Poisson equation:

(iv) Continuity equation for an incompressible fluid:

(v) Navier-Stokes equation for a viscous fluid:

wherejb( is the local ionic flux (ions per unit area and time),Vb
is the velocity field of the suspending medium,P is the pressure,
t the time variable, andFf the mass density of the suspending
medium.

Equilibrium Situation. Without an applied electric field there
are no net forces acting on the particles and ions in the system,
so thatVb(rb) and jb ((rb) are all equal to zero. In this case, eq 8
can be solved and the results combined with eq 10 leading to
the Poisson-Boltzmann equation:

Here

is the dimensionless potential and the lower index “0” denotes
that there is no applied electric field; i.e., the system is in
equilibrium.

Solutions for this equation have been given in numerous
works,10-14 where it is demonstrated that the thickness of the
equilibrium electric double layer of the order of a few Debye
lengths. This is illustrated in Figure 1 where the charge density
profiles (normalized to their value at the particle surface) are
represented for aú potential of 100 mV,R ) 100 nm, and the
indicatedκ-1 values. These last values have also been plotted
by means of vertical lines for comparison. The different curves
show that, in all cases, the Debye length is a good approximation
of the equilibrium electric double layer thickness: further than
a few Debye lengths from the surface of the particle the system
is locally electroneutral. Besides, these results are independent
of the ion diffusion coefficient values, as expected, due to the
independence of the Poisson-Boltzmann eq 13 on these
parameters.

Nonequilibrium Situation. When an external fieldEB(t) is
applied to the system, all scalar variables are perturbed around
their equilibrium values:

These expressions were written using the usual assumption that
the applied field is sufficiently weak so that all the perturbation
terms are linear inE, and considering a reference frame, centered
on the particle, with polar axis in the direction ofEB. The vector
quantities of the problem are also linear inE and can be written
as

where êr and êθ are the unit vectors in spherical coordinates.
Substituting expressions 15-18 into the basic equations 8-12

and neglecting second and higher orders terms in the perturba-
tions, leads to the equation system that is actually solved. The
boundary conditions for this problem have been widely
described,1-2 so only a brief account will be given here.

Conditions far from the particle:

whereVp(t) is the electrophoretic velocity of the particle and
ΩB (r,t) is the vorticity of the fluid defined as

jb (( rb,t) ) - D (∇C (( rb,t) -
z(eD(

kT
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δC((r f ∞,t) f 0 (21)
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Conditions at the particle surface are as follows.
Continuity of the electric potential and of the normal

component of the displacement vector:

Adhesion condition for the radial component of the fluid
velocity:

Adhesion condition for the tangential component of the fluid
velocity combined with the incompressibility equation:

Impenetrability for all the ion types combined with the
Nernst-Planck equation and eq 25:

Equation of motion for the suspended particle:

wheremp is the mass of the particle whileFBe andFBm are the
electrical and mechanical forces acting on the particle.

Numerical Calculations. Numerical calculations for the
solution of this system are somewhat more involved than in
the case of the Poisson-Boltzmann equation. In this paper, we
use the network simulation method, which consists of modeling
the governing differential equations by means of an electrical
circuit that is analyzed using a circuit simulation program. The
methodology is simple, because it only requires the use of a
few branch elements (resistors, capacitors, and current and
voltage sources) that are connected in such a way that Kirch-
hoff’s laws for currents and voltages are fulfilled. To perform
the simulation, it is not necessary to manipulate the equations
that describe the network, since the circuit simulation software
does that automatically. Therefore, neither numerical nor
computational aspects need to be considered. Over the past few
years this method has been successfully applied to a variety of

problems, including ionic transport in both membranes and
electrochemical cells,15 and nonequilibrium phenomena in
colloidal suspensions.9,13,16-18 A full account of the network
model used in this work is given in ref 9, and a more general
explanation of the use of the network simulation method is given
in reference.18

An example of the results obtained solving the resulting
equation system in the steady state, that is with a dc applied
electric filed, is shown in Figure 2, where the perturbations of
the charge density profiles (normalized to their values at the
surface of the particle) and calculated in the direction of the
applied field are represented for the indicated parameter values.
Each curve in the figure is actually the superposition of three
curves corresponding to the results obtained for the three
different combinations of diffusion coefficient values. Note that
in all cases the conductivity of the electrolyte solution remains
unaltered. This shows that in a dc field these values have a
negligible effect on the deformation of the electric double layer
and that the Debye length is, again, a good approximation of
the electric double layer thickness.

Results

In what follows, we will show that the generally accepted
notion that the electric double layer thickness is of the order of
a few Debye lengths ceases to be valid in ac electric fields when
the diffusion coefficients of the two ionic species differ from
one another.

Except when indicated, the simulations were made using the
parameter values shown in Table 1.

To distinguish between cases with the same conductivity but
different diffusion coefficient values, we define the parameter
∆, as

Figure 1. Equilibrium charge density profiles for the indicatedκ-1

values, univalent ions,R ) 100 nm,ú ) 100 mV.

∂δΦ(r,t)
∂r |r)R )

εi

εe

δΦ(r ) R,t)
R

(24)

Vr(r ) R,t) ) 0 (25)

∂Vr(r,t)

∂r |r)R ) 0 (26)

∂

∂r[δC ((r,t)

C0
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-
z(eδΦ(r,t)

kT ]|r ) R ) 0 (27)

Fe + Fm ) - mp

∂Vr(rf∞,t)

∂t
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Figure 2. Perturbation of the charge density profiles, normalized to
their values at the particle surface, with an applied dc electric field for
the indicatedκ-1 values. Each curve is the superposition of three curves
corresponding to the three indicated combinations of diffusion coef-
ficients. Other parameters of the simulation: univalent ions,R ) 100
nm, andú ) 100 mV.

TABLE 1. Parameter Values Used in All the Simulations
Except When Indicated Otherwise

R)100 nm z+ ) z- ) 1 N ) 6.022 1023 m-3

ú ) 100 mV εe/ε0 ) 78.54 εi/ε0 ) 2
T ) 298 K η ) 0.8904‚10-4 poises Ff ) 1000 kg/m3

ke ) 0.075 (Ω‚m)-1 κ-1 ) 10 nm E ) 1 V/m

∆ ) D- - D +

D+ + D- (29)
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which coincides forz+ ) z- ) 1 with the definition used in ref
19. Note that a zero value for this parameter indicates equal
diffusion coefficients.

Uncharged Particles.Dependence on the Diffusion Coef-
ficients. We start considering that the colloidal particles are
uncharged. Exact analytical solutions for this case were recently
obtained by Grosse et al.,19 so that numerical methods are not
required in order to analyze this situation. Unfortunately, there
is a mistake in the presented solution for the electric potential,
which is corrected in the Appendix.

In Figure 3, the real part of the charge density atr ) 2 µm
(measured in the direction of the applied field) is represented
as a function of the frequency for the indicated parameter values.
The figure represents, therefore, the field-induced charge density
at a distance of approximately 200 Debye lengths from the
particle surface. According to the usual understanding and the
results presented above for the equilibrium and dc solutions,
the charge density should be essentially zero at this point. Figure
3 shows that this is only the case when the diffusion coefficients
of the positive and negative ions have the same value, i.e., when
∆ ) 0. However, when these values are different, nonzero values
of the charge density in a range of the frequency spectrum
appear. Although these charge density values are small, they
are not negligible as we will show. The most important
characteristics of the curves shown in Figure 3 are as follows.

(a) The charge density increases in absolute value as the
difference between the two diffusion coefficients grows.

(b) The behavior of the charge density does not change when
the two diffusion coefficient values are exchanged. Thus, the
curves corresponding toD+ < D- andD- < D+ are superposed
in the figure.

(c) The real part of the charge density changes its sign with
frequency.

(d) The frequencies at which the charge density appears and
vanishes depend on the difference between the diffusion
coefficients: when the value of∆ increases, the charge density
appears at lower frequencies.

These results are related to the different values of the diffusion
lengths of each ionic species, and are not expected in the
classical theory that does not explain them either. To analyze
this seemingly anomalous behavior, we use the analytical results
presented in ref 19 and corrected in this work, from which the
following limiting expression for the field-induced charge

density can be deduced

where

and

Expression 30, which is only valid for low frequencies

and far from the surface of the particle

permits one to explain the most important features observed in
Figure 3. The dependence ofδF on ∆2 explains properties a
and b. The sign changes ofδF′ with frequency occur due to the
imaginary part of the exponential argument in eq 30. Finally, it
follows from this equation that the frequencies at which the
charge density appears and vanishes can be approximated by
means of

The results obtained using these expressions are marked in
Figure 3 with vertical lines, which are in good agreement with
the numerical results in all cases.

Dependence on the Distance to the Particle and on the
Particle Radius.Moreover, the arguments presented here explain
other properties that can be observed performing simulations
under different conditions. Thus, for spatial points closer to the
particle, the charge density should appear at higher frequencies.
This prediction is confirmed in Figure 4, which shows the charge
density at different spatial points, all of them corresponding to
many Debye lengths from the particle, as a function of
frequency. Note that in this figure the charge densities are
normalized to their maximum absolute values. The values
obtained using expressions 35 and 36 are in good agreement
with the numerical results as can be observed. Also, according
to these approximate expressions, the frequency range corre-
sponding to an appreciable charge density mainly depends on
the distance to the particle surface, not to the center of the
particle. This leads to a weak dependence of the charge density
on R at constantr (except whenR is of the order ofr), as can
be observed in Figure 5, where the real part of the charge density
is represented as a function of the frequency for different values
of the particle radius.

Dependence on the Reciprocal Debye Length.Finally, in
Figure 6, we represent the real part of the charge density for
different values of the reciprocal Debye length. It can be seen
that, in agreement with expressions 35 and 36, the minimum
and maximum frequencies corresponding to the charge density

Figure 3. Real part of the perturbation of the charge density atr ) 2
µm with an applied ac electric field for the indicated values of the
parameter∆. The remaining parameter values are given in Table 1,
except forú ) 0 mV. The vertical lines represent the approximate
analytical results for the minimum and maximum frequency values at
which the charge densities appear and vanish: eqs 35 and 36.

δF*
E cosθ

f
K1∆

2ω2

κ
4Def

2r2(1 + x iω
Def

r) exp[- x iω
Def

(r - R)]
(30)

K1 ) 3Ne2R3

kT

εi(2 + 2κR + κ
2R2)

εi(2 + 2κR) + 2εe(2 + 2κR + κ
2R2)

(31)

Def ) 2D+ D-

D+ + D- (32)

ω , κ
2Def (33)

κr . 1 (34)

fmin ) 1
4

Def

(r - R)2
(35)

fmax ) 75
Def

(r - R)2
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are practically independent of the value ofκ-1. Only for κ-1 )
333 nm andκ-1 ) 1 µm the curves strongly change showing
that the charge density persists even for very low frequencies.
This behavior is to be expected since, in these cases, the values
of κ-1 are of the order ofr. This is also the reason expression
30 ceases to be valid for these cases.

Charged Particles.Dependence on the Diffusion Coefficients.
Up to this point we only considered uncharged particles, but
what happens when we consider that they are charged? To

answer this question, we plotted in Figure 7 the real part of the
perturbation of the charge density as a function of frequency
for a particle with aú potential equal to 100 mV.

We first note a remarkable similarity with results correspond-
ing to uncharged particles, Figure 3, mainly in the shape of the
curves. However, there are also important differences:

(a) The perturbations of the charge density are nearly 5 orders
of magnitude greater than in the case of uncharged particles.

(b) An exchange of the diffusion coefficient values now alters
the results. This behavior is to be expected since the symmetry
of the equilibrium ionic concentrations is lost: the system
changes depending on whether the highly mobile ions are
counterions or co-ions.

Dependence on theú Potential.The dependence of the charge
density on theú potential can be seen in Figure 8, parts a and
b. Figure 8a shows that the charge density merely grows with
the ú potential, while the value of this parameter has no
appreciable influence neither on the shape nor on the location
of the curves. This property is stressed in Figure 8b where the
charge density has been normalized to its maximum value: the
curves corresponding to the three indicatedú potential values
overlap. The second curve appearing in this figure corresponds
to uncharged particles. It should be noted that the frequency
ranges in which there is an appreciable charge density, coincide
for charged and uncharged particles.

This leads us to the general conclusion, valid for charged
and uncharged particles, that in order to guarantee electroneu-
trality in a system with different diffusion coefficients when ac
electric fields are used, it is necessary to move to a distance
from the particle surface that is larger than:

wherefi is the lowest frequency considered in the analysis.
Dipole Coefficient.This conclusion alone is, however, insuf-

ficient since it says nothing about the influence of the charge
density far from the particle on the calculated values of the
dipole coefficient and the permittivity and conductivity incre-
ments. In other words, it is still necessary to determine how
big are the errors that are committed when expression 7 is used
at a point where there is no electroneutrality, that is when the
usual assumption of electroneutrality at a few Debye lengths

Figure 4. As in Figure 3 but for different values ofr and normalized
to the value at the particle surface.

Figure 5. As in Figure 3 but for different values ofR and normalized
to the value at the particle surface.

Figure 6. As in Figure 3 but for different values ofκ. Note that the
charge density values are multiplied by the ion concentrationzN.

Figure 7. Real part of the perturbation of the charge density atr ) 2
µm with an applied ac electric field for the indicated values of the
parameter∆. The remaining parameters of the simulation are given in
Table 1. Vertical lines indicate thefmin andfmax frequency values given
by eqs 35 and 36, respectively, for∆ ) (0.9 (dash lines) and∆ )
(0.5 (dot lines).

L > x75
Def

fi
(37)
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from the particle surface is used. Parts a and b of Figure 9 show
the real and imaginary parts of the dipole coefficient, respec-
tively, as functions of the frequency. Unlike previous figures
that illustrated rather extreme cases, parts a and b of Figure 9
correspond to∆ ) 0.2, that is to a NaCl solution. The line with
full circles indicates the value of the dipole coefficient,
calculated using expression 7 at a point that is electroneutral
for the whole range of the considered frequencies. The dashed
line shows, for comparison, the results obtained for equal
diffusion coefficients. The remaining curves correspond to
values calculated assuming electroneutrality at the spatial points
indicated in the figure.

According to the usual assumption, the electroneutrality
condition should be fulfilled at all these points so that expression
7 could be used. However, the figures show that perturbations
of the charge density at distances from the particle surface
smaller than the diffusion length given in expression 37 lead to
substantial deviations of the calculated dipole coefficient value.
This is why these deviations disappear at high frequencies, when
the charge density perturbations also disappear. It can also be
seen that the lowest frequency boundary, below which the
deviations of the calculated dipole coefficient values occur,
moves to higher frequencies for points that are closer the
particle. It should finally be noted that all these discrepancies
in the calculation ofKd disappear when both diffusion coef-
ficients have the same value.

PermittiVity and conductiVity increments.The corresponding
results for the permittivity and conductivity increments calcu-
lated using expressions 4 and 5, combined with the dipole
coefficient values shown in Figure 9, appear in Figure 10, parts
a and b. As can be seen, the substantial deviations appearing in
the calculated dipole coefficient values lead to even greater
deviations of the calculated permittivity and conductivity
increments. This is especially true for the permittivity increment,
due to the frequency dependence of the imaginary part of the
dipole coefficient curves, that even change sign at low frequen-
cies. It should be noted that both Figure 9a and 10b could lead
to the wrong conclusion that, for low frequencies, all the thin
lines coincide with the dashed curve. This is not true in
general: for higher values of the∆ parameter, the thin lines
converge to a limit that differs from the dashed curve.

We finally note that Figures 9 and 10 should not be
interpreted in the sense that all numerical calculations on NaCl
suspensions, performed assuming electroneutrality at a few
Debye lengths from the particle, should lead to the huge
deviations shown in these figures. When the dipole coefficient
is numerically calculated at a distance of a few Debye lengths
from the particle, the assumption is made that the system is
electroneutral at this and at all greater distances. Therefore, it
is also postulated that the charge density far from the particle
does not exist. This means that two errors are made: the first

Figure 8. Real part of the perturbation of the charge density atr ) 2
µm with an applied ac electric field, for the indicated values of theú
potential (a). In part b, the same values are displayed, normalized to
their corresponding maximum values. The remaining parameter values
are given in Table 1.

Figure 9. Real (a) and imaginary (b) parts of the dipole coefficient as
functions of frequency, calculated using expression 7 at the indicated
values ofr (thin lines). The heavy lines with full circles correspond to
the correctly calculated values, while results corresponding to identical
diffusion coefficients (dash lines) are included for comparison. The
parameter values are given in Table 1, except forKe ) 0.025 (Ω‚m)-1.
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in the calculation of the potential, without considering the
influence of the charge density far from the particle. The second
in the calculation of the dipole coefficient at a point that is not
electroneutral in reality, but becomes electroneutral by hypoth-
esis. On the contrary, Figures 9 and 10 show results obtained
when the potential is correctly calculated, while the only error
is in the calculation of the dipole coefficient, by using eq 7 at
a point where it is not valid. It appears that this way of doing
amplifies the deviations, while the above-mentioned errors
mostly compensate each other when electroneutrality is imposed
upon the system.

Conclusions

The main conclusions of this work can be summarized as
follows.

•Electroneutrality in the electrolyte solution is always attained
at a few Debye lengths from the particle surface for dc electric
fields. However, for ac fields, this is only true when the diffusion
coefficients of the two ionic species are identical.

•In the general case, i.e., when the diffusion coefficient values
differ from one another and for ac fields, electroneutrality is
attained at a much larger distance from the particle surface that
is determined by the characteristic diffusion lengths of the ions.
It is proportional, therefore, to the square root of the effective
diffusion coefficient divided by the electric field frequency.

•While the value of the field-induced charge density increases
with theú potential, numerical results for charged particles show
that electroneutrality is attained at a distance that does not
depend on theú potential and coincides, furthermore, with the
corresponding distance for uncharged particles, eq 37.

•Although the charge densities far from the particle are usually
very weak, they strongly contribute to the dipole coefficient
value and, therefore, to the calculated permittivity and conduc-
tivity increments.

•The errors that would be committed if these charge densities
were ignored, assuming local electroneutrality and determining
the dipole coefficient at a few Debye lengths from the particle
surface, can be very important.

•Even when the dipole coefficient is determined at a point
distant many Debye lengths from the particle surface, it should
only be used to calculate the permittivity and conductivity
increments for frequencies higher than a limiting value given
in expression 37.
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Appendix

The expression for the electric potential presented in ref 19,
eq 4, contains a mistake. The corrected result is

Because of this correction, the expressions for the coefficients
determined from the boundary conditions, change to

where the different symbols are defined in ref 19.
Fortunately, these corrected results have no bearing on the

final expression for the dipole coefficientKd, so that all the
conclusions in ref 19 related to the dielectric properties of the
system remain unaltered. However, the final expressions for the
ion concentrations and, therefore, for the field-induced charge
density do change.
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Φ
E cosθ

) (KdR
3

r2
- r) +

kTκ
2

e [âKu

F2
H(F,r)eF(R-r) +

KV

σ2
H(σ,r)eσ(R-r)] (38)

Kd ) {(εi - εe)(1 - Râ)F2σ2G1G2R -

εiκ
2[F2G1(G2R - H2) - Râσ2G2(G1R - H1)]}/

{(εi + 2εe)(1 - Râ)F2σ2G1G2R - εiκ
2[F2G1(G2R + 2H2) -

Râσ2G2(G1R + 2H1)]} (39)

Ku ) {3εieRF2σ2G2R/(kT)}/

{(εi + 2εe)(1 - Râ)F2σ2G1G2R - εiκ
2[F2G1(G2R + 2H2) -

Râσ2G2(G1R + 2H1)]} (40)

KV ) { - 3εieF2σ2G1R/(kT)}/

{(εi + 2εe)(1 - Râ)F2σ2G1G2R - εiκ
2[F2G1(G2R + 2H2) -

Râσ2G2(G1R + 2H1)]} (41)
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