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The dielectric and electrokinetic properties of aqueous suspensions of vesicles (unilamellar liposomes) are
numerically calculated in the 1 Hz to 1 GHz frequency range using a network simulation method. The model
consists of a conducting internal medium surrounded by an insulating membrane with fixed surface charges
on both sides. Without an applied field, the internal medium is in electric equilibrium with the external one,
so that it also bears a net volume charge. Therefore, in the presence of an applied ac field, there is fluid flow
both in the internal and in the external media. The obtained results are qualitatively different from those
corresponding to suspensions of charged homogeneous particles, mainly due to the existence of an additional
length scale (the membrane thickness) and the corresponding dispersion mechanism, charging of the membrane.
Because of this dispersion, the shapes of the spectra change with the size of the particles (at constantú
potential and particle radius to Debye length ratio) instead of merely shifting along the frequency axis. A
comparison between the numerical results and those obtained using approximate analytical expressions shows
deviations that are, in general, sufficiently large enough to show the necessity to use numerical results in
order to interpret broad frequency range dielectric and electrokinetic measurements of vesicle suspensions.

Introduction
Most of the numerical studies on dielectric and electrokinetic

properties of colloidal suspensions deal with homogeneous
insulating particles, such as latex, alumina, or silica.1-4 In more
recent works, particles coated with a permeable membrane (soft
particles) have also been extensively investigated.5-13 However,
there are practically no numerical studies of suspensions of
inhomogeneous particles, such as a conducting core surrounded
by an insulating membrane, despite the obvious importance of
such systems that can be used as a basis for the modeling of
biological systems.

In two recent works14,15 we presented numerical studies of
the dielectric and electrokinetic properties of cell suspensions,
using a model consisting of a conducting internal medium
surrounded by an insulating membrane and an ion permeable
wall. In that model, which could be appropriate for some
biological cells, it was assumed that the electric charge of the
cell was made of a free volume charge density located in the
inner medium and a fixed charge density uniformly distributed
over the cell wall. It was considered, moreover, that due to a
possible structure in the internal part of the cell, there was no
fluid flow in the inner medium.

In the present work we apply the same numerical method
for the study of vesicle suspensions. The model used for these
systems is simpler than that for cells since there is no cell wall.
However, the internal medium in a vesicle is made of the same
electrolyte solution as the surrounding medium, so that it is free
to move in response to an applied field. This internal fluid flow
is qualitatively similar to the flow inside a closed electrophoretic
cell.

Numerical Calculations

The suspended vesicle is modeled as a spherical volume of
electrolyte solution with radiusa - h, surrounded by an
insulating shell with thicknessh representing the membrane.
The membrane bears uniform surface charge distributions on
both sides. In view of this fixed surface charge, the internal
medium acquires a volume distribution of free charge of
opposite sign.14-16 This charge can be thought of as due to
counterions trapped inside the membrane when the vesicle is
formed or as the result of an electric current slowly leaking
through the membrane until the equilibrium state is reached.

We further assume, as usual, that there are only two types of
ions in the solution, that the permittivity and viscosity have
constant values throughout the solution up to the inner or outer
surfaces of the membrane, and that there are no dissociation or
recombination phenomena. For the sake of simplicity, and in
order to be able to compare the obtained results with analytical
expressions, we further assume that the ions are univalent.

According to these hypotheses, the electric potentialφ(rb,t),
the ion number concentrations of positive and negative ions
C((rb,t), and the fluid velocityVb(rb,t) are obtained solving the
following equation system:

Laplace equation (a - h < r < a)

Poisson equation (0< r < a - h, a < r < ∞)
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Nernst-Planck equation (0< r < a - h, a < r < ∞)

Continuity equation (0< r < a - h, a < r < ∞)

Navier-Stokes equation (0< r < a - h, a < r < ∞)

Incompressibility equation (0< r < a - h, a < r < ∞)

where p(rb,t) is the pressure,D( and jb((rb,t) the diffusion
coefficients and fluxes of positive and negative ions,η, Fe, and
εe the viscosity, mass density, and absolute permittivity of the
electrolyte solution,e the elementary charge,k Boltzmann’s
constant, andT the temperature. In the equation system, the
explicit dependence with the variables (rb,t) is omitted in order
to simplify the notation.

To solve this equation system, it is first separated into
equilibrium and nonequilibrium parts. The nonequilibrium part
is further simplified by keeping only linear terms in the applied
field. The resulting equation systems and boundary conditions
used in their solution are given in ref 14. Here we shall only
show the new boundary conditions used in the inner medium,
in view of the existence of a field-induced fluid flow that was
not considered in previous calculations.

Radial Component of the Velocity.The nonslipping condi-
tion on the inner surface of the impermeable membrane together
with symmetry considerations lead to

Vorticity. The vorticity, defined asbB(r,t) ) curl Vb(r,t),
vanishes at the center of the vesicle in view of symmetry
considerations. On the other hand, its value at the inner
membrane interface is obtained starting with the balance of
forces acting on the membrane

whereFm is the mass density of the membrane. The first two
addends in this expression represent the total mechanical force
(due to pressure and viscous contributions) so that they are
calculated by integrating the stress tensor over the outer and
inner surfaces of the membrane. The next two addends represent
the electrical force, which is calculated as minus the electrical
force acting on the volume charge densities both in the inner
medium and outside the particle, in view of the electroneutrality
of the whole system. Combining this expression with the balance
of forces written for the whole particle

leads to

and to the final expression for the boundary condition

Hereδµ̃((r,t) are the dimensionless electrochemical potentials17-19

the lower index 0 represents the equilibrium situation (no applied
field), and theδ symbol stands for the variations with respect
to equilibrium.

This boundary condition is analogous to the condition for
the vorticity in the outer medium,14 which is deduced starting
with eq 1 instead of eq 2

where

is the difference between the average mass density of the whole
particle and the mass density of the electrolyte solution.

Analytical Expressions

To help the interpretation of the numerical results, analytical
expressions for the different properties were deduced.

High-Frequency Dipolar Coefficient. While no rigorous
analytical expression for the high-frequency response of a
suspended charged particle exists, an approximate expression
can be obtained by solving the Laplace equation. The model is
the same as the one used in the numerical calculations, except
for the equilibrium volume charge densities that are represented
by surface conductivitiesλ on both sides of the membrane.

The complex equivalent conductivity of the vesicle can be
determined using the Maxwell mixture formula
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where

The symbolσ denotes the conductivites, and the lower indexes
m, i, and e stand for membrane, internal, and external media.
The resulting relaxation parameters of the vesicle are

The high-frequency dipolar coefficient of the suspended vesicle
is determined as

where

The resulting high-frequency dispersion parameter values of the
suspension are

where

and the lower indexesâ and δ stand for the corresponding
relaxations.

Low-Frequency Dipolar Coefficient.The expression for the
low-frequency dipolar coefficient of a homogeneous, charged,
insulating particle, suspended in an univalent electrolyte solution,

is, according to the Shilov-Dukhin theory17,18

where

and C(∞) is the counterion or co-ion concentration far from
any particle.

General Expression for the Dipolar Coefficient.A general
expression for the dipolar coefficient, valid in the whole
frequency range, can be obtained by replacingdL∞ in eq 5 with
eq 4

This substitution requires that the high-frequency limit of eq 5
coincides with the low-frequency limit of eq 4,20
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which determines the value of the surface conductivity

Furthermore, the electrolyte solution conductivity used in the
high-frequency model must be expressed in terms of the
parameters defining the low-frequency one

Results and Discussion

Numerical calculations were made usingú and κa as free
parameters considering, furthermore, two different values for
the vesicle radius:a ) 1 µm anda ) 100 nm. It is well-known
that, at constantκa, this last parameter has no bearing on the
dielectric spectra of suspensions made of charged homogeneous
particles: For larger particles the spectra merely shift to lower
frequencies.21 However, this is not the case for inhomogeneous
particles due to the additional dispersion term related to the
charging of the membrane,â relaxation. This happens because
the corresponding relaxation timeτâ is roughly proportional to
the radius of the particle22 instead of its square as is the case
for the low-frequency dielectric dispersion; see eq 6. The
parameters used in the calculations are given in Table 1.

Dipolar Coefficient. The obtained results for the real and
imaginary parts of the dipolar coefficient calculated as a function
of theú potential and forκa ) 32 are represented in Figure 1.
Figure 1a, which corresponds toa ) 1 µm, shows that, for an
uncharged particle, the system undergoes just one relaxation,

the â process, associated with the charging of the membrane.
Actually there is also aδ process, associated with the Maxwell-
Wagner polarization of the whole particle, but its amplitude is
negligible because the dielectric properties of the uncharged
vesicle are almost identical to those of the surrounding medium.
When the charge of the particle is increased, the amplitude of
this high-frequency relaxation also increases due to the increas-
ing effective conductivity of the particle, eq 3, while the
amplitude of theâ relaxation decreases due to the electrical
shielding of the membrane. At the same time, the low-frequency
R dispersion also increases as can be clearly seen for theú )
150 mV curves. It is to be noted that, despite the relatively high
value, κa ) 32, there is a large discrepancy between the
analytical and numerical results in the frequency range of theâ
dispersion. This happens because the Debye screening length,
despite being much smaller than the particle radius, is actually
larger than the membrane thickness. Therefore, the effective
thickness of the membrane is larger than the theoretical one,23,24

so that the membrane capacity and the associated relaxation
time are lower. Furthermore, forú ) 150 mV, the low-frequency
limit of the dipolar coefficient does not coincide with the
analytical prediction. This is a well-known limitation of the
theoretical model25 with no clear explanation to date.

These same considerations generally apply to Figure 1b,
which corresponds toa ) 100 nm. As expected, the low- and
the high-frequency relaxations are merely shifted two decades
higher in frequency. However, the medium-frequencyâ relax-
ation shifts up nearly three decades, because the corresponding
relaxation time is roughly proportional to the radius of the
particle divided by the electrolyte solution conductivity22 and
σe is proportional toκ2, eqs 8 and 11, so thatτâ increases with
the cube of the radius at constantκa. Another difference with
respect to Figure 1a is the good agreement between the analytical
and numerical curves in the frequency range of theâ relaxation.
This is a consequence of decreasing the radius at constantκa,
which leads to a Debye screening length that is smaller than
the thickness of the membrane.

Figure 2a, which corresponds toa ) 1 µm, shows the
dependence of the dipolar coefficient on the productκa, while
the ú potential is kept at a constant value of 50 mV. Under
these conditions, when the value ofκa decreases, the agreement
between analytical and numerical results worsens due to two
main factors. The first is the increment of the effective
membrane thickness and the corresponding decrement of the
membrane capacity. This change shifts theâ relaxation to higher
frequencies separating more and more the numerical and
analytical curves in the frequency range of theâ dispersion.
Furthermore, it diminishes the corresponding relaxation ampli-
tude. The second is the strong increment, with respect to the
analytical value, of the real part of the dipolar coefficient at
low frequencies, which occurs when the Debye length becomes
comparable to the radius of the particle and is caused by the
growth of the effective particle radius.21,26

The same arguments generally apply to Figure 2b, which
corresponds toa ) 100 nm. However, the agreement between
analytical and numerical results is much better because the
Debye lengths are smaller, so that the membrane capacities are
better represented by the theoretical values. Anyway, this partial
agreement breaks down for the lowest values ofκa, as expected.

Figure 1. (a) Real (lower curves) and imaginary (upper curves) parts
of the dipolar coefficient of large vesicles (a ) 1 µm) calculated for
the indicated values of theú potential (in mV) and forκa ) 32.
Numerical results (heavy lines) and analytical results (thin lines), eq
10, are shown. Remaining parameters are given in Table 1. (b) Same
as part a but for small vesicles (a ) 100 nm).
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TABLE 1: Parameter Values Used in All the Calculations

T ) 298.4 K η ) 8.904× 10-4 Poise
εi ) εe ) 78.36ε0 εm ) 6.0ε0

h ) 50× 10-10 m D+ ) D- ) 2.0× 10-9 m2 s-1

Fe ) 1000 kg m-3 Fm ) 850 kg m-3
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Permittivity and Conductivity Increments. Numerical
permittivity and conductivity values were calculated using the
general expressions, valid for small values of the volume fraction
V of particles in the suspension

When these equations are used together with the analytical
expression for the dipolar coefficient, one difficulty arises: the
limiting high-frequency form of the imaginary part of the low-
frequency expression of the dipolar coefficient is proportional
to ω-1/2; see eq 5. This behavior, which is due to the use of the
hypothesis of local equilibrium in the double layer that ceases
to be valid at high frequencies,20 leads to a conductivity
expression that becomes proportional toω1/2 for ω f ∞, instead
of a constant value independent ofω.

To deal with this problem, the usual approximation was used:
21,27 It was considered that only the imaginary part of the low-
frequency dipolar coefficient enters in the permittivity expression
(eq 12), and correspondingly, only the real part of the low-
frequency dipolar coefficient enters in the conductivity expres-
sion (eq 13)

It is worth noting that these equations can be combined
leading to the following expression for the complex conductivity
of the suspension

where

Except for the presence of the two high-frequency dispersion
terms, eq 15 has exactly the same form as the empirical
expression proposed by Nettelblad and Niklasson28 for the
description of the low-frequency dielectric dispersion of colloidal
suspensions.

Figure 3 shows the obtained results for the relative permit-
tivity and conductivity increments calculated as a function of
the ú potential and forκa ) 32. The most striking feature of
Figure 3a, which corresponds toa ) 1 µm particles, is the sharp
drop at high frequencies of the conductivity for suspensions of
particles with the highest charge. While this phenomenon has
already been numerically calculated for polymer-coated and
bare-latex particle suspensions,12,29 it is particularly strong in
the considered case. While a full understanding of this phe-
nomenon would require a specific study in which all the
intervening parameters are varied, it is certainly related to inertial
effects and their influence on the dipolar coefficient. Due to
fluid inertia, the contribution of the electro-osmotic tangential
fluid flow to the field-induced dipole moment should diminish
in amplitude and change phase (the capillary-osmotic flow is
negligible at these frequencies). Furthermore, the contribution
of the electrophoretic motion of the particle to the field-induced
dipole moment should also diminish in amplitude and change
phase.

As for the other features of the curves, Figure 3a shows that
the agreement between the analytical and numerical results is
generally quite poor. For highly charged particles, it is poor at
low frequencies because of the above-mentioned limitations of
the theoretical model. For weakly charged particles, the agree-
ment at low frequencies becomes even worse for the permit-
tivity, because of the overestimated contribution of theâ
relaxation in the analytical results and the fact that the low-
frequency limit of the permittivity, unlike the dipolar coefficient,
depends on all the dispersion processes, since it is related to
the field-induced energy stored in the system.30,31 On the
contrary, the low-frequency agreement of the conductivity
greatly improves because for these frequencies the conductivity
only depends on the real part of the dipolar coefficient, eq 13

Figure 2. (a) Real (lower curves) and imaginary (upper curves) parts
of the dipolar coefficient of large vesicles (a ) 1 µm) calculated for
the indicated values of the productκa and forú ) 50 mV. Numerical
results (heavy lines) and analytical results (thin lines), eq 10, are shown.
Remaining parameters are given in Table 1. (b) Same as part a but for
small vesicles (a ) 100 nm).
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and Figure 1a. Finally, the agreement is generally poor both
for the permittivity and for the conductivity in theâ dispersion
frequency range, because the theory strongly overestimates the
membrane capacity. The situation strongly improves fora )
100 nm particles, as can be seen in Figure 3b, which shows
that, in this case, the analytical expressions properly predict both
the permittivity and conductivity increments, except for the
highestú potential value.

Figure 4 shows the obtained results for different values of
κa and forú ) 50 mV. In Figure 4a, which corresponds toa )
1 µm, the numerical permittivity increment curves clearly show
two dispersion regions: the LFDD and a broad dispersion made
of the superposition of theâ and δ processes. The analytical
results show the same qualitative behavior but with a much
larger amplitude of the high-frequency component. Again, this
is mainly due to the overestimated value of the membrane
capacity that is used in analytical expressions. The discrepancy
between numerical and analytical results further worsens when
the value of the productκa is decreased, as expected. As for
the conductivity increment, it is fairly well represented by the
analytical expressions for high values ofκa but is strongly sub-
estimated at low frequencies whenκa decreases. At high
frequencies, the agreement is fairly good for all values ofκa.

For a ) 100 nm particles, Figure 4b, the permittivity
increment values become much lower than those in Figure 4a,
despite having the same values of the low-frequency limit of
the dipolar coefficient; see Figure 2. This phenomenon is due
to the inhomogeneous nature of the particles: Theâ dispersion
amplitude is roughly proportional to the radius of the particle,22

so that the stored energy is lower and, consequently, the
contribution of this dispersion to the low-frequency permittivity

decreases for smaller particles. This greatly improves the
agreement between the numerical and the analytical results at
low frequencies. As for the low-frequency conductivity incre-
ment, it is much higher than the theoretically predicted value
at low values ofκa. This is due to the strong increase, relative
to the analytical result, of the real part of the dipolar coefficient
at low frequencies, Figure 2, caused by the growth of the
effective particle radius.26

Dynamic Electrophoretic Mobility. An analytical expression
for the dynamic, dimensionless electrophoretic mobility includ-
ing inertial effects, can be easily obtained starting with the result
deduced by O’Brien32 for the high-frequency response

where Vv
/ and Fv are the electrophoretic velocity and the

average mass density of the vesicle and

In this expression, deduced from the equation for the drag force
acting on a spherical particle that performs low-amplitude
periodic oscillations in a fluid,33 the term (1- dH

/ )E represents
the total tangential electric field on the equator of the particle.

If the low-frequency response is to be included in the
calculation, two additional terms must be added.34 The first is
related to the field-induced volume charge density outside the

Figure 3. (a) Relative permittivity (decreasing curves) and conductivity
(increasing curves) increments of suspensions of large vesicles (a )
1 µm) calculated for the indicated values of theú potential (in mV)
and forκa ) 32. Numerical results (heavy lines) and analytical results
(thin lines), eq 14, are shown. Remaining parameters are given in Table
1. (b) Same as part a but for small vesicles (a ) 100 nm).

Figure 4. (a) Relative permittivity (decreasing curves) and conductivity
(increasing curves) increments of suspensions of large vesicles (a )
1 µm) calculated for the indicated values of the productκa and for
ú ) 50 mV. Numerical results (heavy lines) and analytical results (thin
lines), eq 14, are shown. Remaining parameters are given in Table 1.
(b) Same as part a but for small vesicles (a ) 100 nm).
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double layer, which appears at low frequencies whenever the
diffusion coefficients of counterions and co-ions differ, and
contributes to the tangential electric field. The second is related
to the capillary-osmotic flow along the surface of the particle,
which is due to the field-induced changes of electrolyte
concentration that arise at low-frequencies. This leads to

where

Figure 5 shows the obtained results for the modulus and phase
of the dimensionless electrophoretic mobility calculated as a
function of theú potential and forκa ) 32. Figure 5a, which
corresponds toa ) 1 µm particles, shows that the inhomo-
geneous nature of the particles leads to a marked structure of
both the amplitude and the phase curves. The maxima of these
curves roughly correspond to theâ and δ extremes of the
imaginary part of the dipolar coefficient, Figure 1a. The
analytical expression reproduces these features fairly well,
including the inertial drop at high frequencies, except for the

high-frequency limit of the phase angle. Forω f ∞, the
imaginary part of the brace in eq 17 tends to zero while the last
term has the following limiting behavior

which shows that, according to O’Brien’s theory, the limiting
phase angle value is-45° (0.785 rad). On the contrary, the
obtained numerical results lead to values that are nearly two
times larger (in modulus).

For the smaller particles, Figure 5b, the inertial drop is shifted
two decades toward higher frequencies, as expected from the
definition of the variableR; see eq 16. The agreement between
the numerical and analytical results is quite good over the whole
frequency range, except for the discrepancy in the phase angle
that starts to show at the highest frequencies.

Figure 6 shows the obtained results for different values of
κa and forú ) 50 mV. As can be seen, the characteristic features
due to the inhomogeneous nature of the particles persist to a
smaller degree while the agreement between numerical and
analytical results markedly worsens. This is due to the strong
influence of theâ dispersion on the dipolar coefficient for small
values of theú potential and to the limitations of the theory for
small values ofκa; see Figure 2.

Conclusion

In this work we present numerical results for the dielectric
and electrokinetic properties of vesicles in a broad frequency

Figure 5. (a) Modulus (lower three pairs of curves) and phase (upper
curves) of the dimensionless dynamic electrophoretic mobility of large
vesicles (a ) 1 µm) calculated for the indicated values of theú potential
(in mV) and forκa ) 32. Numerical results (heavy lines) and analytical
results (thin lines), eq 17, are shown. Remaining parameters are given
in Table 1. (b) Same as part a but for small vesicles (a ) 100 nm).
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dL∞ - dL

H [∆ -
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η(1 + xiR) + iω
9

a2(2Fv + Fe)
(17)
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H )
(R+ - R-)(1 - ∆2) - U+ (1 - ∆) + U- (1 + ∆)

R+ (1 - ∆) + R- (1 + ∆) + 4

Figure 6. (a) Modulus (lower four pairs of curves) and phase (upper
curves) of the dimensionless dynamic electrophoretic mobility of large
vesicles (a ) 1 µm) calculated for the indicated values of the product
κa and forú ) 50 mV. Numerical results (heavy lines) and analytical
results (thin lines), eq 17, are shown. Remaining parameters are given
in Table 1. (b) Same as part a but for small vesicles (a ) 100 nm).
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range extending from 1 Hz to 1 GHz. The calculations
performed using the network method are not a simple extension
of existing results, since they require new boundary conditions
inside the vesicle that are associated with the convective fluid
flow in the inner medium.

The obtained results show important qualitative differences
with respect to suspensions of charged homogeneous particles,
which are mainly due to the existence of an additional dispersion
mechanism, charging of the membrane. Because of this disper-
sion, the spectra for particles of different size but constantú
andκa values change their shape instead of merely shifting along
the frequency axis. The additional dispersion also introduces
new features in the permittivity, conductivity, and electrophoretic
mobility spectra.

A comparison of the obtained numerical results with analyti-
cal predictions shows deviations that generally increase with
the size of the particle and the value of theú potential, while
they decrease with increasingκa. However, unlike the case of
homogeneous particles, the agreement between numerical and
analytical results is always bad in the frequency range of theâ
dispersion, even for moderate values ofú and high values of
κa. This is due to the existence in these systems of a second
length scale: the thickness of the membrane, which is usually
much smaller than the radius of the particle but comparable,
nevertheless, with the Debye length.

Two additional discrepancies appear at very high frequencies,
both related to inertial effects. The first is the decrease of the
conductivity increment with frequency, specially pronounced
for large and highly charged particles (this phenomenon is not
predicted by the analytical expressions since they do not include
any inertial terms). The second is a strong decrease with
frequency of the phase angle of the electrophoretic mobility
which, according to the obtained numerical results, could greatly
exceed the theoretical limit of 45°.

These findings lead to the general conclusion that dielectric
and electrokinetic measurements made on vesicle suspensions
should only be interpreted using numerical, rather than analyti-
cal, results.
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