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Numerical Calculation of the Dielectric and Electrokinetic Properties of Vesicle Suspensions
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The dielectric and electrokinetic properties of aqueous suspensions of vesicles (unilamellar liposomes) are
numerically calculated in the 1 Hz to 1 GHz frequency range using a network simulation method. The model
consists of a conducting internal medium surrounded by an insulating membrane with fixed surface charges
on both sides. Without an applied field, the internal medium is in electric equilibrium with the external one,

so that it also bears a net volume charge. Therefore, in the presence of an applied ac field, there is fluid flow
both in the internal and in the external media. The obtained results are qualitatively different from those
corresponding to suspensions of charged homogeneous particles, mainly due to the existence of an additional
length scale (the membrane thickness) and the corresponding dispersion mechanism, charging of the membrane.
Because of this dispersion, the shapes of the spectra change with the size of the particles (at &onstant
potential and particle radius to Debye length ratio) instead of merely shifting along the frequency axis. A
comparison between the numerical results and those obtained using approximate analytical expressions shows
deviations that are, in general, sufficiently large enough to show the necessity to use numerical results in
order to interpret broad frequency range dielectric and electrokinetic measurements of vesicle suspensions.

Introduction Numerical Calculations

Most of the numerical studies on dielectric and electrokinetic ) ) )
properties of colloidal suspensions deal with homogeneous 1h€ suspended vesicle is modeled as a spherical volume of

insulating particles, such as latex, alumina, or silichln more ~ electrolyte solution with radiusa — h, surrounded by an
recent works, particles coated with a permeable membrane (softnsulating shell with thicknesk representing the membrane.
particles) have also been extensively investigaté&iHowever, The membrane bears uniform surface charge distributions on

there are practically no numerical studies of suspensions of both sides. In view of this fixed surface charge, the internal
inhomogeneous particles, such as a conducting core surroundednedium acquires a volume distribution of free charge of
by an insulating membrane, despite the obvious importance of opposite sigrt#~1¢ This charge can be thought of as due to
such systems that can be used as a basis for the modeling ofounterions trapped inside the membrane when the vesicle is
biological systems. formed or as the result of an electric current slowly leaking

In two recent work&"15we presented numerical studies of through the membrane until the equilibrium state is reached.
the dielectric and electrokinetic properties of cell suspensions, \ye f1ther assume, as usual, that there are only two types of
using a model consisting of a conducting internal medium

rrounded by an insulatng membrane and an ion permeabl ions in the solution, that the permittivity and viscosity have
surrounded by an insulaling memporane and an 10n permeabl€, o n; vajues throughout the solution up to the inner or outer
wall. In that model, which could be appropriate for some

biological cells, it was assumed that the electric charge of the surfaces of the membrane, and that there are no dissociation or

cell was made of a free volume charge density located in the recombination phenomena. For the .sake of simpllicity, and. in
inner medium and a fixed charge density uniformly distributed order to be able to compare the obtained results with analytical

over the cell wall. It was considered, moreover, that due to a XPressions, we further assume that the ions are univalent.

possible structure in the internal part of the cell, there was no  According to these hypotheses, the electric poteiifgt),

fluid flow in the inner medium. the ion number concentrations of positive and negative ions
In the present work we apply the same numerical method C*(F t), and the fluid velocity?(f,t) are obtained solving the

for the study of vesicle suspensions. The model used for thesefollowing equation system:

systems is sm_nplerthan that for_ cells since _there is no cell wall. Laplace equationa(— h < r < a)

However, the internal medium in a vesicle is made of the same

electrolyte solution as the surrounding medium, so that it is free

to move in response to an applied field. This internal fluid flow V2¢ =0
is qualitatively similar to the flow inside a closed electrophoretic
cell. Poisson equation (& r <a—h,a<r < )
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Nernst-Planck equation (6 r <a—h,a <r < o)

7= —D*vCt F % CtVg + Ct7
Continuity equation (O<r <a—h,a <r < )

_act

vVit= =

Navier—Stokes equation (6 r <a—h,a <r < o)

NV2% — Vp=e(C" — C )V + pe[aa—lt’ + (7D

Incompressibility equation (& r <a—h,a <r < )

V=0

where p(f,t) is the pressureD* and J*(r,t) the diffusion
coefficients and fluxes of positive and negative iopsge, and
€e the viscosity, mass density, and absolute permittivity of the
electrolyte solutiong the elementary chargé Boltzmann’s
constant, andr the temperature. In the equation system, the
explicit dependence with the variablé&st) is omitted in order

to simplify the notation.

To solve this equation system, it is first separated into
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and to the final expression for the boundary condition
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Heredi*(r t) are the dimensionless electrochemical poteffidis
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Ot =——40¢
Co
the lower index O represents the equilibrium situation (no applied
field), and thed symbol stands for the variations with respect
to equilibrium.
This boundary condition is analogous to the condition for

equilibrium and nonequilibrium parts. The nonequilibrium part the vorticity in the outer mediurt, which is deduced starting

is further simplified by keeping only linear terms in the applied with eq 1 instead of eq 2

field. The resulting equation systems and boundary conditions

used in their solution are given in ref 14. Here we shall only ab(r t)

show the new boundary conditions used in the inner medium, b(at) —a ar lar =

in view of the existence of a field-induced fluid flow that was av (a)

not considered in previous calculations. aéﬂ; + g ®
an”?

déo 2

Clop™ — Cyom™) ——r?dr
Radial Component of the Velocity.The nonslipping condi- n ot (Coor 00k ) dr
tion on the inner surface of the impermeable membrane together

with symmetry considerations lead to where

v (r.t)

3 3
a’—(a—h
Th:o:o Ap=#

3 (pm - pF)

a
v(a—ht)y=0 , . :
is the difference between the average mass density of the whole

Vorticity. The vorticity, defined ai)(r,t) = curl 7(r.), particle and the mass density of the electrolyte solution.

vanishes at the center of the vesicle in view of symmetry
considerations. On the other hand, its value at the inne
membrane interface is obtained starting with the balance of
forces acting on the membrane

rAnalytical Expressions

To help the interpretation of the numerical results, analytical
expressions for the different properties were deduced.

High-Frequency Dipolar Coefficient. While no rigorous
analytical expression for the high-frequency response of a
suspended charged particle exists, an approximate expression
can be obtained by solving the Laplace equation. The model is
the same as the one used in the numerical calculations, except
. ) i for the equilibrium volume charge densities that are represented
where pm is the mass density of the membrane. The first two p, gyrface conductivities on both sides of the membrane.

addends in this expression represent the total mechanical force “ e complex equivalent conductivity of the vesicle can be
(due to pressure and viscous contributions) so that they aregetermined using the Maxwell mixture formula

calculated by integrating the stress tensor over the outer and

inner surfaces of the membrane. The next two addends represent

the electrical force, which is calculated as minus the electrical Kr=L +K
force acting on the volume charge densities both in the inner ©
medium and outside the particle, in view of the electroneutrality

of the whole system. Combining this expression with the balance

of forces written for the whole particle

FmectlavL + I:mectJ(al—h)— + FelecJaJr + FeIeJ (a—h)— =

4 97 ()
Sla— @ o

L K 2K+ 20K — K
m . x *
Ki' 4 2K§, = p(KT = K3)

: G,
Le +lw (TM)T\, + va) (3)
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where

=iwe, K =0 +L +ioe

_@—h’

a3

== P

The symbols denotes the conductivites, and the lower indexes
m, i, and e stand for membrane, internal, and external media.
The resulting relaxation parameters of the vesicle are

9pe, 2

m
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The high-frequency dipolar coefficient of the suspended vesicle
is determined as

= = - + . +
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where
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Ke = 0, T lwe,

The resulting high-frequency dispersion parameter values of the
suspension are
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and the lower indexeg and 6 stand for the corresponding
relaxations.

Low-Frequency Dipolar Coefficient. The expression for the
low-frequency dipolar coefficient of a homogeneous, charged,
insulating particle, suspended in an univalent electrolyte solution,
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is, according to the ShilovDukhin theory718
2
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and C() is the counterion or co-ion concentration far from
any particle.

General Expression for the Dipolar Coefficient.A general
expression for the dipolar coefficient, valid in the whole
frequency range, can be obtained by repladngin eq 5 with
eq 4

14-\/%,ﬁwra

<

I —
d Cq > ) +l+iw‘liﬁ+
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_ %44, @0
1+iwt, e (10)

This substitution requires that the high-frequency limit of eq 5
coincides with the low-frequency limit of eq4,

I-e — Og
L.+ 20,

_R-1
R+2

O =dy(0)=
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(a) Z: Zz TABLE 1: Parameter Values Used in All the Calculations

07 o1 T=298.4K n = 8.904x 107 Poise
06 1 -~ 00 € = €e = 78.36¢p em=6.0¢o
% h=50x 107°m D*=D"=20x10°m?s*
A pe = 1000 kg n13 om= 850 kg nr3
0.3 -0.3

3% 04 g the S process, associated with the charging of the membrane.
::; 150 Z: Actually there is also & process, associated with the Maxwell
o o7 Wagner polarization of the whole particle, but its amplitude is
02 100 08 negligible because the dielectric properties of the uncharged
03 09 vesicle are almost identical to those of the surrounding medium.
o 2 0 e When the charge of the particle is increased, the amplitude of
ee e w2 e s me e me me this high-frequency relaxation also increases due to the increas-

Frequency [Hz]

ing effective conductivity of the particle, eq 3, while the
amplitude of thes relaxation decreases due to the electrical
shielding of the membrane. At the same time, the low-frequency
o dispersion also increases as can be clearly seen fdf the
150 mV curves. It is to be noted that, despite the relatively high
value, ka = 32, there is a large discrepancy between the
% analytical and numerical results in the frequency range ofthe
- dispersion. This happens because the Debye screening length,
despite being much smaller than the particle radius, is actually
o8 larger than the membrane thickness. Therefore, the effective
03 o7 thickness of the membrane is larger than the theoreticatette,

50

04 08 so that the membrane capacity and the associated relaxation

05 ° 09 time are lower. Furthermore, fGr= 150 mV, the low-frequency

i limit of the dipolar coefficient does not coincide with the
Figure 1. (a) Real (|0wer Curves) and imaginary (upper Curves) parts analytlcal pred|ct|0n Thls |S a We”'knoy\/n ||m|tat|0n Of the
of the dipolar coefficient of large vesiclea & 1 um) calculated for theoretical modéP with no clear explanation to date.
the indicated values of thé potential (in mV) and forka = 32. These same considerations generally apply to Figure 1b,
Numerical results (heavy lines) and analytical results (thin lines), eq \hich corresponds ta = 100 nm. As expected, the low- and
10, are shown. Remaining parameters are given in Table 1. (b) Samey, o high_frequency relaxations are merely shifted two decades

fi Il icl 1 . . . .
as part a but for small vesiclea € 100 nm) higher in frequency. However, the medium-frequefiagelax-

(b) -

05

04

03

02 100

which determines the value of the surface conductivity ation shifts up nearly three decades, because the corresponding
relaxation time is roughly proportional to the radius of the
21 particle divided by the electrolyte solution conducti¢fyand
o R oe is proportional tac?, eqs 8 and 11, so thag increases with

the cube of the radius at constasat Another difference with
respect to Figure 1a is the good agreement between the analytical
and numerical curves in the frequency range oftelaxation.
This is a consequence of decreasing the radius at consiant
which leads to a Debye screening length that is smaller than
2/ ~+ - the thickness of the membrane.

:M (11) Figure 2a, which corresponds ® = 1 um, shows the

dependence of the dipolar coefficient on the produgtwhile

the ¢ potential is kept at a constant value of 50 mV. Under

these conditions, when the valuexaf decreases, the agreement

Numerical calculations were made usiggand xa as free between analytical and numerical results worsens due to two
parameters considering, furthermore, two different values for main factors. The first is the increment of the effective
the vesicle radiusa = 1 um anda = 100 nm. It is well-known membrane thickness and the corresponding decrement of the
that, at constanta, this last parameter has no bearing on the membrane capacity. This change shiftsghrelaxation to higher
dielectric spectra of suspensions made of charged homogeneoufequencies separating more and more the numerical and
particles: For larger particles the spectra merely shift to lower analytical curves in the frequency range of fhealispersion.
frequencieg! However, this is not the case for inhomogeneous Furthermore, it diminishes the corresponding relaxation ampli-
particles due to the additional dispersion term related to the tude. The second is the strong increment, with respect to the
charging of the membrang,relaxation. This happens because analytical value, of the real part of the dipolar coefficient at
the corresponding relaxation timg is roughly proportional to low frequencies, which occurs when the Debye length becomes
the radius of the particté instead of its square as is the case comparable to the radius of the particle and is caused by the
for the low-frequency dielectric dispersion; see eq 6. The growth of the effective particle radig$:26
parameters used in the calculations are given in Table 1. The same arguments generally apply to Figure 2b, which
Dipolar Coefficient. The obtained results for the real and corresponds ta = 100 nm. However, the agreement between

imaginary parts of the dipolar coefficient calculated as a function analytical and numerical results is much better because the
of the ¢ potential and fowa = 32 are represented in Figure 1. Debye lengths are smaller, so that the membrane capacities are
Figure 1a, which corresponds &= 1 um, shows that, for an better represented by the theoretical values. Anyway, this partial
uncharged particle, the system undergoes just one relaxationagreement breaks down for the lowest valuegapfas expected.

Furthermore, the electrolyte solution conductivity used in the
high-frequency model must be expressed in terms of the
parameters defining the low-frequency one

O,

e:o‘.

' KT

Results and Discussion
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_ It is worth noting that these equations can be combined
02 4 02 leading to the following expression for the complex conductivity
§ of the suspension
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Figure 2. (a) Real (lower curves) and imaginary (upper curves) parts Except for the presence of the two high-frequency dispersion
of the dipolar coefficient of large vesiclea & 1 um) calculated for terms, eq 15 has exactly the same form as the empirical
the indicated values of the produa and for§ = 50 mV. Numerical expression proposed by Nettelblad and Niklag&dor the
results (heavy lines) and analytical results (thin lines), eq 10, are shown. description of the low-frequency dielectric dispersion of colloidal
Remaining parameters are given in Table 1. (b) Same as part a but for, ;
small vesiclesg = 100 nm). suspensmns. . . .
Figure 3 shows the obtained results for the relative permit-
tivity and conductivity increments calculated as a function of
Permittivity and Conductivity Increments. Numerical the ¢ potential and foa = 32. The most striking feature of
permittivity and conductivity values were calculated using the Figure 3a, which correspondsdc= 1 um particles, is the sharp
general expressions, valid for small values of the volume fraction drop at high frequencies of the conductivity for suspensions of
v of particles in the suspension particles with the highest charge. While this phenomenon has
already been numerically calculated for polymer-coated and
o bare-latex particle suspensiol#g? it is particularly strong in
e=¢,+ 3vee(d' + —d") (12) the considered case. While a full understanding of this phe-
Wee nomenon would require a specific study in which all the
intervening parameters are varied, it is certainly related to inertial
) (13) effects and their influence on the dipolar coefficient. Due to
fluid inertia, the contribution of the electro-osmotic tangential
fluid flow to the field-induced dipole moment should diminish

When these equations are used together with the analyticalin amplitude and change phase (the capillary-osmotic flow is
expression for the dipolar coefficient, one difficulty arises: the negligible at these frequencies). Furthermore, the contribution
||m|’[|ng high_frequency form of the imaginary part of the low- of the eleCtrOphoretiC motion of the partiCle to the field-induced
frequency expression of the dipolar coefficient is proportional dipole moment should also diminish in amplitude and change
to w2 see eq 5. This behavior, which is due to the use of the Phase.
hypothesis of local equilibrium in the double layer that ceases As for the other features of the curves, Figure 3a shows that
to be valid at high frequenciég, leads to a conductivity the agreement between the analytical and numerical results is

expression that becomes proportionabfd? for » — w, instead ~ generally quite poor. For highly charged particles, it is poor at
of a constant value independent of low frequencies because of the above-mentioned limitations of

d: the theoretical model. For weakly charged particles, the agree-
ment at low frequencies becomes even worse for the permit-
tivity, because of the overestimated contribution of the
relaxation in the analytical results and the fact that the low-
frequency limit of the permittivity, unlike the dipolar coefficient,
depends on all the dispersion processes, since it is related to
the field-induced energy stored in the syst&# On the
o contrary, the low-frequency agreement of the conductivity
€=¢€,+ 3ved, + _& (d +dy" greatly improves because for these frequencies the conductivity
Wee only depends on the real part of the dipolar coefficient, eq 13

we,
o=0,+3vo|d ——d"
Oe

To deal with this problem, the usual approximation was use
21,271t was considered that only the imaginary part of the low-
frequency dipolar coefficient enters in the permittivity expression
(eq 12), and correspondingly, only the real part of the low-
frequency dipolar coefficient enters in the conductivity expres-
sion (eq 13)
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Figure 3. (a) Relative permittivity (decreasing curves) and conductivity Figure 4. (a) Relative permittivity (decreasing curves) and conductivity
(increasing curves) increments of suspensions of large vesigles ( (increasing curves) increments of suspensions of large veskles (

1 um) calculated for the indicated values of thepotential (in mV) 1 um) calculated for the indicated values of the produatand for

and forca = 32. Numerical results (heavy lines) and analytical results & = 50 mV. Numerical results (heavy lines) and analytical results (thin
(thin lines), eq 14, are shown. Remaining parameters are given in Tablelines), eq 14, are shown. Remaining parameters are given in Table 1.
1. (b) Same as part a but for small vesiclas( 100 nm). (b) Same as part a but for small vesiclas< 100 nm).

and Figure la. Finally, the agreement is generally poor both gecreases for smaller particles. This greatly improves the
for the permittivity and for the conductivity in thedispersion  agreement between the numerical and the analytical results at
frequency range, because the theory strongly overestimates thgoyy frequencies. As for the low-frequency conductivity incre-
membrane capacity. The situation strongly improvesder ment, it is much higher than the theoretically predicted value
100 nm particles, as can be seen in Figure 3b, which showsat |ow values ofca. This is due to the strong increase, relative
that, in this case, the analytical expressions properly predict bothig the analytical result, of the real part of the dipolar coefficient
the permittivity and conductivity increments, except for the 5t |ow frequencies, Figure 2, caused by the growth of the

highestZ potential value. . effective particle radiud®
Figure 4 shows the obtained results for different values of  Dynamic Electrophoretic Mobility. An analytical expression
xaand forf =50 mV. In Figure 4a, which correspondsee= for the dynamic, dimensionless electrophoretic mobility includ-

1um, the numerical permittivity increment curves clearly show jng inertial effects, can be easily obtained starting with the result
two dispersion regions: the LFDD and a broad dispersion made deduced by O’Brief? for the high-frequency response
of the superposition of th and d processes. The analytical
results show the same qualitative behavior but with a much * :
larger amplitude of the high-frequency component. Again, this u* = 3en = Z(l —d) n + «/E)
is mainly due to the overestimated value of the membrane 2kTe, E n(1+ \/ﬁ) +'ﬂaz(2p + po)
capacity that is used in analytical expressions. The discrepancy 9 !
between numerical and analytical results further worsens when . . )
the value of the producta is decreased, as expected. As for Where v, and p, are the electrophoretic velocity and the
the conductivity increment, it is fairly well represented by the 2verage mass density of the vesicle and
analytical expressions for high values«@fbut is strongly sub- )
estimated at low frequencies wherm decreases. At high _awp,
frequencies, the agreement is fairly good for all valuegaf o= n

For a = 100 nm particles, Figure 4b, the permittivity
increment values become much lower than those in Figure 4a,In this expression, deduced from the equation for the drag force
despite having the same values of the low-frequency limit of acting on a spherical particle that performs low-amplitude
the dipolar coefficient; see Figure 2. This phenomenon is due periodic oscillations in a fluid® the term (1— d,)E represents
to the inhomogeneous nature of the particles: Flspersion the total tangential electric field on the equator of the particle.
amplitude is roughly proportional to the radius of the partféle, If the low-frequency response is to be included in the
so that the stored energy is lower and, consequently, thecalculation, two additional terms must be addédhe first is
contribution of this dispersion to the low-frequency permittivity related to the field-induced volume charge density outside the

(16)
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Figure 5. (@) Modulus (lower three pairs of curves) and phase (Upper Figyre 6. (a) Modulus (lower four pairs of curves) and phase (upper
curves) of the dimensionless dynamic electrophoretic mobility of large ¢rves) of the dimensionless dynamic electrophoretic mobility of large
vesicles § = 1 um) calculated for the indicated values of thpotential ~  yesicles & = 1 um) calculated for the indicated values of the product
(in mV) and fora = 32. Numerical results (heavy lines) and analytical 3 and for¢ = 50 mV. Numerical results (heavy lines) and analytical
results (thin lines), eq 17, are shown. Remaining parameters are givenyegyits (thin lines), eq 17, are shown. Remaining parameters are given
in Table 1. (b) Same as part a but for small vesickes=(100 nm). in Table 1. (b) Same as part a but for small vesickes=(100 nm).

double layer, which appears at low frequencies whenever the
diffusion coefficients of counterions and co-ions differ, and
contributes to the tangential electric field. The second is related
to the capillary-osmotic flow along the surface of the particle,
which is due to the field-induced changes of electrolyte
concentration that arise at low-frequencies. This leads to

high-frequency limit of the phase angle. Far — o, the
imaginary part of the brace in eq 17 tends to zero while the last
term has the following limiting behavior
(L + Vio) 1-i
20, p

(1 + Via) + % a0, +p) Vo (—e)
e

z do, —d.
w =§{1—d* —T[A
gln(coshg)]} n+ Via)

7L+ Via) + 2 &(2p, + )

which shows that, according to O’Brien’s theory, the limiting
phase angle value is45° (0.785 rad). On the contrary, the
obtained numerical results lead to values that are nearly two
times larger (in modulus).

17)

where For the smaller particles, Figure 5b, the inertial drop is shifted
two decades toward higher frequencies, as expected from the

D -DF definition of the variablex; see eq 16. The agreement between

- DY+ D" the numerical and analytical results is quite good over the whole

frequency range, except for the discrepancy in the phase angle
R —R)A- AZ) —UT@-A)+U (1+A) that starts to show at the highest frequencies.
= m — Figure 6 shows the obtained results for different values of
RI1-A+R 1+A)+4 rxaand for =50 mV. As can be seen, the characteristic features

Figure 5 shows the obtained results for the modulus and phaseOlue to the inhomogeneous nature of the particles per_sist to a
of the dimensionless electrophoretic mobility calculated as a SMmaller degree while the agreement between numerical and

function of the¢ potential and fowa = 32. Figure 5a, which gnalytical results markgdly worsens. This is d.ug to the strong
corresponds t@ = 1 um particles, shows that the inhomo- influence of thes dlsp_ersmn on the (_1|p_ola_r coefficient for small
geneous nature of the particles leads to a marked structure of@lués of the potential and to the limitations of the theory for
both the amplitude and the phase curves. The maxima of thesesMall values oka; see Figure 2.

curves roughly correspond to the and 6 extremes of the
imaginary part of the dipolar coefficient, Figure la. The
analytical expression reproduces these features fairly well, In this work we present numerical results for the dielectric
including the inertial drop at high frequencies, except for the and electrokinetic properties of vesicles in a broad frequency

Conclusion
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range extending from 1 Hz to 1 GHz. The calculations (2) O'Brien, R. W.; White, L. R.J. Chem. Soc., Faraday Trans. 2
performed using the network method are not a simple extension1978 74 1607.
of existing results, since they require new boundary conditions Dequgh;ngzﬁgggcgéé' i'ggg}'as’ A, Delgado, A.; HomoRkcent Res.
|nS|d_e the v_eS|cIe tha@ are associated with the convective fluid (4) Mangelsdorf, C. S.: White, L. Rl. Chem. Soc., Faraday Trans.
flow in the inner medium. 199Q 86, 2859.
The obtained results show important qualitative differences (5) Wunderlich, R. W.J. Colloid Interface Sci1982 88, 385.
with respect to suspensions of charged homogeneous particles, (6) Levine, S.; Levine, M.; Sharp, K. A.; Brooks, D. Biophys. J.
which are mainly due to the existence of an additional dispersion 1983 42, 127.
mechanism, charging of the membrane. Because of this disper-  (7) Sharp, K. A; Brooks, D. EBiophys. J.1985 47, 563.
sion, the spectra for particles of different size but constant (8) Ohshima, HJ. Colloid Interface Sci1994 163 474.
and«a values change their shape instead of merely shifting along ~ (9) Saville, D. A.J. Colloid Interface Sci200Q 222, 137.
the frequency axis. The additional dispersion also introduces ~(10) Ohshima, HJ. Colloid Interface Sci200Q 228 190. _
new features in the permittivity, conductivity, and electrophoretic 20(()21)26'-50%9227'(33@' J. J.; Grosse, C.; Horno, l.Colloid Interface Sci.
mobility Spe.Ctra' . . . . (12) Lopez-Gard@a, J. J.; Grosse, C.; Horno,Jl.Colloid Interface Sci.
A comparison of the obtained numerical results with analyti- 2003 265, 341.
cal predictions shows deviations that generally increase with  (13) Lepez-Garéa, J. J.; Grosse, C.; Horno, 1. Colloid Interface Sci.
the size of the particle and the value of th@otential, while 2005 286, 400.
they decrease with increasirg. However, unlike the case of (14) Zimmerman, V.; Grosse, C.; Shilov, V. Bl.Phys. Chem. B003
homogeneous patrticles, the agreement between numerical and?? 14612.
analytical results is always bad in the frequency range ofthe (15 Zimmerman, V.; Grosse, Q. Phys. Chem. B004 108 12617.
dispersion, even for moderate valuesgoénd high values of 20(()126)25'10%%2_'(3“@' J. 3.3 Homo, J.; Grosse, €. Colloid Interface Sci.
«a. This is due to the existence in these systems of.a second (17) Dukhin, S. S.; Shilov, V. NDielectric Phenomena and the Double
length scale: the thickness of the membrane, which is usually Layer in Disperse Systems and Polyelectrolytgey: New York, 1974.
much smaller than the radius of the particle but comparable, (18) Grosse, C.; Shilov, V. NJ. Phys. Chem1996 100, 1771.
nevertheless, with the Debye length. (19) Zimmerman, V.; Shilov, V. N.; Lpez-Garta, J. J.; Grosse, C.
Two additional discrepancies appear at very high frequencies,J- Phys. Chem. 2002 106 13384.
both related to inertial effects. The first is the decrease of the _ (20) Shilov, V. N.; Delgado, A. V.; Gonzalez-Caballero, F.; Grosse, C.
e : . Colloids Surf., A2001, 192, 253.
conductivity increment with frequency, specially pronounced

: . . - 21) Grosse, C.; Arroyo, F. J.; Shilov, V. N.; Delgado, A.J/ Colloid
for large and highly charged particles (this phenomenon is not mtérfa)ce Sci2001, 242 7y5. oV g '

predicted by the analytical expressions since they do notinclude (22) Grosse, Qnterfacial Electrokinetics and Electrophoresi3elgado,
any inertial terms). The second is a strong decrease with A. V., Ed.; Marcel Dekker: New York, 2002; Chapter 11.
frequency of the phase angle of the electrophoretic mobility  (23) Simonov, V. N.; Shilov, V. NKolloidn. Zh.1977, 39, 878.
which, according to the obtained numerical results, could greatly =~ (24) Garca, A.; Barchini, R.; Grosse, Q. Phys. D: Appl. Physl985
exceed the theoretical limit of 45 18,1891 . _

These findings lead to the general conclusion that dielectric (29 Pedrosa, S.; Grosse, L.Colloid Interface Sci1999 219 37.
and electrokinetic measurements made on vesicle suspensiongoégs)%%“isg? C.; Pedrosa, S. E.; Shilov, V.NColloid Interface Sci.
should only be interpreted using numerical, rather than analyti- (27) Grosse, C.; Tirado, M.; Pieper, W.: Pottel, R Colloid Interface
cal, results. Sci. 1998 205, 26.
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