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Dielectric spectra of a suspension of cells in electrolyte solution and dipole coefficient spectra induced by an
AC electric field are numerically calculated using a network simulation method. The cell model consists of
a conducting internal medium surrounded by an insulating membrane and by a charged permeable cell wall.
The dependence of the low-frequency dielectric spectra with the internal medium properties is analyzed.

1. Introduction

The electrokinetic behavior of cell suspensions has been
widely studied both experimental and theoretically in the high-
frequency range, where the dispersions related to the conductiv-
ity and permittivity differences between the media that constitute
the system occur.1-9 However, the low frequency dielectric
behavior (that is in the frequency range related to the double
layer polarization) has been mainly studied experimentally.2,7,10-14

As for the few theoretical studies, it was generally assumed that
the low frequency behavior does not depend on the internal
composition of the dispersed particle, but only on itsú-potential,
so that the theories developed for homogeneous particles can
also be used for cells.2,13-15

This hypothesis was analyzed in a previous paper,16 where
the dipole coefficient spectra of cells with different internal
medium properties were numerically calculated. It was found
that the low-frequency behavior of the dipole coefficient is
indeed independent of the internal medium properties if the
charge of the cell is kept constant. In the present work, the same
hypotheses are reconsidered, analyzing in this case the depen-
dence of dielectric spectra of cell suspensions with the internal
medium properties. In contrast with the preceding results, it is
shown that the low frequency dielectric spectra of cells are
mainly determined by the internal medium properties, unless
the particle is highly charged and the double layer sufficiently
thin.

The cell model is the same as the one considered in the
preceding paper,16 and it consists of a conducting internal
medium surrounded by an insulating membrane and a charged
permeable cell wall. The permittivity and conductivity of the
cell suspension are calculated numerically using a network
simulation method. This method has been successfully applied
over the past few years to study different aspects of the dielectric
and electrokinetic properties of electrolyte solutions and colloidal
systems,17-20 and was recently applied to the prediction of
electrorotation spectra of latex type particles,21 and cells.16 The
procedure consists of discretizing the domain and the differential
equations, as in the linear finite difference method, and
establishing the similitude between the discretizated equations
inside every differential region and the equations that represent

an elementary electric circuit composed of basic electronic
components (resistors, capacitors, and current and voltage
sources). Hence, the solution of the original problem is reduced
to the solution of potentials and currents in a network composed
of a set of these elementary subcircuits. The direct solution of
the governing differential equations is thus avoided, and any
commercially available circuit analysis software can be em-
ployed to obtain the dynamic behavior of the system.

2. Theory and Procedure

As mentioned in the previous section, the system considered
consists of an electrolyte suspension of cells. The cells are
modeled as spherical conductive particles surrounded by a
nonconductive shell representing the membrane and by an
external uniformly charged conductive shell representing the
cell wall (Figure 1). The following hypotheses are, moreover,
assumed on the system.

•The conductivity of the membrane is considered to be null,
so the interfaces atr ) Rb andr ) Rc are impermeable to the
ions. Even though biological membranes are not strictly
nonconductive, their conductivity is in general very low for
living cells.

•Only two types of ions are considered for every conductive
medium.

•The cell wall is generally composed of a porous material
that allows the exchange of ions with the external medium, and
has been previously modeled as an ion-exchange resin.22
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Figure 1. Model considered for the cell. The internal layer (membrane)
is nonconductive, whereas all the other media are conductive. The
external layer (cell wall) has an uniformly distributed density of fixed
charge, and is in equilibrium with the external medium. So, the
interfaces atr ) Rb andr ) Rc are impermeable to the ions, whereas
the interface atr ) Ra is totally permeable to the ions.
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Consequently, the external shell is considered conductive, with
an uniform distribution of fixed charges, and with the interface
at r ) Ra perfectly permeable to the ions.

•As a consequence of the preceding hypothesis, the wall and
the external medium are in equilibrium, so the valences of the
mobile ions are the same in both media.

•The wall and external medium permittivities are assumed
identical in order to avoid the calculation of the Born energy
term in the Poisson equation.23

•The hydrodynamic permeability of the wall is sufficiently
low to impede liquid flow in this region. However, the ions
can move inside the wall (with a mobility possibly different to
the ions mobility in the external medium), since it is assumed
to be conductive.

•Due to a possible structure present in the internal part of
the cell, the viscosity in the internal medium is considered high
enough to impede the liquid flow.

•The applied electric field is weak, and as a consequence,
only the linear nonequilibrium problem is solved.

According to these hypotheses, the system can be described
by the following system of equations

/Laplace equation in the membrane

/Poisson equation in the internal medium, cell wall, and
external medium

/Nernst-Planck equations in the internal medium, cell wall,
and external medium

/continuity equations in the internal medium, cell wall, and
external medium

/Navier-Stokes equation in the external medium

/incompressibility equation in the external medium

and by the following boundary conditions:
fcontinuity of the potential over the whole space;
fcontinuity of the normal component of the displacement

over the whole space;
fpotential at infinity defined by the applied electric field;

fderivative of the equilibrium potential (potential without
an applied field) null at the center of the particle due to the
central symmetry of the system in equilibrium;

fvariation of the potential induced by the applied field null
at the center of the particle due to symmetry;

ffield induced variations of the ion concentrations at infinity
null since there is no applied concentration gradient;

ffield induced variations of the ion concentrations at the
center of the particle null due to symmetry;

fcontinuity of the normal component of the ion fluxes at
the wall outer interface;

fcontinuity of the electrochemical potentials at the wall outer
interface;

fnormal components of the ion fluxes null at the membrane
interfaces;

fradial component of the velocity constant at infinity;
fnonslipping condition of the solution at the wall outer

interface;
fwall impermeable to the solution;
fbalance of forces acting on the particle.
Hereφ(rb, t) is the electric potential,C((rb, t) is the number

concentrations of positive and negative ions,Vb(rb, t) is the
velocity of the electrolyte solution,p(rb, t) is the pressure,zj

(,
Dj

(, andjb((rb, t) are the signed valences, diffusion coefficients,
and fluxes of positive and negative ions,Cf andzf are the number
concentration and signed valence of fixed charges in the wall,
η andFm are the viscosity and mass density of the electrolyte
solution,εj andεo are the relative permittivity and permittivity
of the free space,e is the elementary charge,k is the Boltzmann
constant,T is the temperature, and the subindexes “e” , “w” ,
“m” and “i” stand for the external medium, wall, membrane,
and internal medium, respectively.

The mathematical and numerical procedure followed to
calculate the electric potential, ion concentration and fluid
velocity, was previously described in detail in reference.16 Using
these results, the induced dipole coefficient (γ*) and electro-
phoretic mobility (µ*) are easily obtained

whereEo(t) is the electric field,δφ(r, t) is the field induced
change of the electric potential,Vr(r, t) is the radial component
of the fluid velocity in a reference frame that instantly moves
with the particle, andω is the field angular frequency.

The permittivity (εs) and conductivity (σs) of the dilute
suspension can be calculated using the previous results together
with the Maxwell mixture formula

whereν is the volume concentration of cells (defined as the
volume of the cells including their wall, divided by the volume
of the suspension),εe and σe are the relative permittivity and

∇2
φ( rb, t) ) 0, Rc < r < Rb (1)

∇· jb(( rb, t) ) -
∂C(( rb, t)

∂t
, 0 < r < Rc, Rb < r < ∞ (4)

η∇2Vb( rb, t) - ∇p( rb, t) )
e (ze

+C+( rb, t) + ze
-C-( rb, t)) ∇φ( rb, t) +

Fm[∂Vb( rb, t)
∂t

+ (Vb( rb, t)·∇)Vb( rb, t)], Ra < r < ∞ (5)

∇·Vb( rb, t) ) 0, Ra < r < ∞ (6)

γ* ) lim
rf∞[ r2

Ra
3Eo(t)

(δφ(r, t) + Eo(t)r)] (7)

µ* )
-Vr(r f ∞, t)

Eo(t)
(8)

δεs ) εs - εe ) 3νεe[Re{γ*} +
σe

ωεoεe
Im{γ*}] (9)

δσs ) σs - σe ) 3νσe[Re{γ*} -
ωεoεe

σe
Im{γ*}] (10)
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the conductivity of the electrolyte solution, andεo is the
permittivity of the free space.

3. Results and Discussion

Permittivity and dipole coefficient spectra of cells, calculated
for different values of either the productκeRa, theú-potential,
or the wall thickness (hw), are presented in Figures 2-7. κe is

the reciprocal Debye screening length in the external medium,
and theú-potential is the equilibrium potential at the cell outer
boundary, where the velocity of the fluid remains null with an
applied field. As expected from previous works,4,7,9,16,24 the
permittivity spectra (Figures 2, 4, and 6) clearly show three
dispersion regions: one at low frequencies (between 1 Hz and
1 kHz) related to the double-layer polarization and therefore to
the charge of the particle (R-dispersion); a second one between
1 kHz and 1 MHz related to the process of charge of the

Figure 2. Permittivity spectra of cell suspensions, for different values
of the productκeRa: (a) 3, (b) 6, (c) 12, (d) 24, (e) 48, (f) 96.ú = kT/e
= 25 mV; dw ) 50 nm. The other parameters are specified in Tables
1 and 2.

Figure 3. Spectra of the real (full lines) and imaginary (dotted lines)
dipole coefficient components, for the same systems as in Figure 2.

Figure 4. Permittivity spectra of cell suspensions, for different values
of the ú-potential: (a) 0.25kT/e, (b) 0.5kT/e, (c) 1kT/e, (d) 2kT/e, (e)
4kT/e, (f) 6kT/e. κeRa ) 48; dw ) 50 nm. The other parameters are
specified in Tables 1 and 3.

Figure 5. Spectra of the real (full lines) and imaginary (dotted lines)
dipole coefficient components, for the same systems as in Figure 4.

Figure 6. Permittivity spectra of cell suspensions, for different values
of the wall thicknessdw (nm): (a) 300, (b) 100, (c) 50, (d) 30, (e) 10,
and (f) 5.κeRa ) 48, ú = 2kT/e. The other parameters are specified in
Tables 1 and 4.

Figure 7. Spectra of the real (full lines) and imaginary (dotted lines)
dipole coefficient components, for the same systems as in Figure 6.
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membrane (â-dispersion); the third one at high frequencies
(above 10 MHz) is related to the Maxwell-Wagner dispersion
(δ-dispersion). In contrast, in the case of the dipole coefficient
spectra (Figures 3, 5, and 7), only two dispersions can be
observed in most of the curves shown in Figures, while the
R-dispersion mechanism only determines the low-frequency
limit of the real component of the dipole coefficient.

The spectra in Figures 2 and 3 correspond to systems with
approximately the sameú-potential and different values of the
product κeRa. In the high-frequency region, all the spectra
coincide, since the characteristic frequency of the Maxwell-
Wagner dispersion is mainly determined by the highest con-
ductivity in the system that, for the considered cases, is the
internal medium conductivity. Moreover, the amplitude does
not change either, since it is independent of the conductivity
for very high internal medium conductivities.24

For the intermediate frequency region, on the other hand, the
characteristic frequency of theâ-dispersion is determined by
the time required to charge the membrane. This time depends
on the membrane capacitance and on the conductivity of the
surrounding media. However, the membrane capacitance only
has a weak increase withκeRa,25 so in Figures 2 and 3, the
characteristic frequency of theâ-dispersion is mainly determined
by the conductivity of the external medium (lowest conductiv-
ity). Hence, an increment on the external medium conductivity
reduces the time of the charging process and, as a consequence,

increases the characteristic frequency of the dispersion, as can
be seen in the figures.

In the case of the amplitude of theâ-dispersion, it is almost
independent of the productκeRa for the dipole coefficient spectra
(Figure 3). This amplitude is determined by the limiting high
and low-frequency values of the real part of the dipole
coefficient. Theâ-dispersion high-frequency limit is almost
constant because the conductivity in the internal medium is
constant and much higher than the conductivities in the wall
and in the external medium.24 In theâ-dispersion low frequency
limit, on the other hand, the dipole coefficient does not depend
on the internal medium properties but is determined by the ratio
of the wall and external medium conductivities. Even though
both of these conductivities strongly change for every curve in
Figure 2, their ratio remains nearly constant, leading to the very
small variation that can be observed in the figure.

On the contrary, for the permittivity spectra there is a
noticeable increment of theâ-dispersion amplitude withκeRa

(Figure 2). This increment is related to the change of the wall
conductivity to external medium conductivity ratio (that de-
creases withκeRa), and also to the previously mentioned weak
increment of the effective membrane capacitance. This capaci-
tance corresponds to a series connection of the capacitance of
the bare membrane and of the capacitances of the field induced
charge densities surrounding it. While the capacitances of the
bare membrane and of the charge density in the internal medium
do not change in Figures 2 and 3, there is a change of the field
induced charge density thickness in the wall and, consequently,
of the capacitance in this region. This change is due to the
increment of the fixed charge density in the wall, as a
consequence of the increment of the productκeRa, at constant
ú-potential. An increased capacitance allows a higher value of
the stored energy, which corresponds to a higher permittivity
increment.

At low frequencies, the real part of the dipole coefficient
decreases due to the counterion polarization. However, in view
of the low value of theú-potential used in Figure 3, this
decrement can barely be seen, as is the corresponding positive
peak of the imaginary part of the dipole coefficient. Neverthe-
less, this last component is responsible for the strong increment
of the permittivity (eq 9) since its vanishingly small value is
divided by the frequency that also tends to zero. As expected,
the dielectric increment strongly increases withκeRa,26 due to
the increment of the fixed charge density in the wall, required
in order to keep constant theú-potential. Moreover, Figure 2
shows that the characteristic frequency of theR-dispersion is
practically independent ofκeRa, at least for relatively high values
of this product.

The spectra in Figures 4 and 5 correspond to systems with
the same value ofκeRa, and different values of theú-potential.
As expected, the Maxwell-Wagner andâ-dispersions do not
change with theú-potential for low values of this parameter.
However, for higher values ofú, the excess conductivity created
by the charge in the wall, screens the membrane and, conse-
quently, hides theâ-dispersion in both the dipole coefficient
and the permittivity spectra.

In the low-frequency region, theú-potential determines the
behavior of the dipole coefficient and permittivity spectra. For
the dipole coefficient (Figure 5), theR-dispersion can only be
observed for sufficiently high values of theú-potential. However,
theú-potential determines the low-frequency limit of the dipole
coefficient in all the cases.

The spectra in Figures 6 and 7 correspond to systems with
the same value ofκeRa, the same value of the external radius

TABLE 1: Parameter Values Used in Figures 2-8a

Ra ) 1.5µm σi ) 0.5 S/m Fm ) 103 kg/m3

dw ) 50 nm ze
( ) zi

( ) (1 Fp ) 1.2× 103 kg/m3

Rb - Rc ) 5 nm De
( ) Dw

( ) η ) 8.904× 10-4 Pa s
εe ) 78.36 Di

( ) 2 × 10-9 m2/s T ) 298.4 K
εm ) 4 zf ) 1
εi ) 70 φeq ) 0 V

a For the full description of symbols, see ref 16.

TABLE 2: Fixed Charge Concentrations in the Wall (Cf),
and Ionic Concentrations in the External Medium
(ce∞

( ) for Curves in Figures 2 and 3

κeRa Cf (1/m3) ce∞
( (1/m3)

a 3 6.89× 1021 2.23× 1020

b 6 1.35× 1022 8.93× 1020

c 12 3.09× 1022 3.57× 1021

d 24 8.71× 1022 1.43× 1022

e 48 3.08× 1023 5.71× 1022

f 96 1.21× 1024 2.29× 1023

TABLE 3: Fixed Charge Concentrations in the Wall (Cf) for
Curves in Figures 4 and 5

úe/kT Cf (1/m3)

a 0.25 6.18× 1022

b 0.5 1.30× 1023

c 1 3.08× 1023

d 2 1.05× 1024

e 4 8.45× 1024

f 6 6.28× 1025

TABLE 4: Fixed Charge Concentrations (Cf) and Fixed
Charge (Qf) in the Wall for Curves in Figures 6 and 7

dw (nm) Cf (1/m3) Qf (C)

a 300 9.52× 1023 1.05× 10-12

b 100 9.52× 1023 4.03× 10-13

c 50 9.52× 1023 2.08× 10-13

d 30 9.64× 1023 1.28× 10-13

e 10 1.30× 1024 5.85× 10-14

f 5 2.05× 1024 4.63× 10-14
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(Ra), approximately the sameú-potential, but different values
of the wall thickness (hw). Similarly as in Figures 2 to 5, the
Maxwell-Wagner dispersion does almost not change with the
wall thickness since the conductivities and permittivities are the
same for all the curves. However, for very thick walls (curves
a and b), the internal medium becomes small, and since the
Maxwell-Wagner dispersion depends on the equivalent proper-
ties of the particle rather than on the internal medium properties,
a slightly different behavior in the spectra is observed. Moreover,
the dispersion produced by the interface atr ) Rb is not hidden
by the other dispersions in curves a and b and can be observed
at frequencies between 1 and 10 MHz.

For the â-dispersion (frequencies between 10 kHz and 1
MHz), the characteristic frequency is almost independent of the
wall thickness since both the effective membrane capacitance
and the lower conductivity in the system are almost constant
for all the curves. However, the amplitude of the dispersion
decreases when the wall thickness increases. This is a conse-
quence of the increment in the wall charge density, that is
required in order to keep constant theú-potential value when
the wall thickness is increased. As a result, the ratio of the wall
and external medium conductivities increases with the wall
thickness, screening the membrane.

Similarly as in Figures 2-5, the R-dispersion is better
observed in permittivity spectra (Figure 6) than in dipole
coefficient spectra (Figure 7), where it only determines the low-
frequency limit of the real part of the dipole coefficient (except
for curves a and b). This limit is higher for thick walls, indicating
a more conductive equivalent particle. Moreover, the dielectric
increment (Figure 6) also increases with the wall thickness, for
the same reason.

Figure 8 shows the dependence of the permittivity spectra
on the internal medium conductivity. Full and dashed lines
correspond to charged and uncharged particles, respectively. In
this case, the different spectra change in the frequency region
related to the Maxwell-Wagner dispersion for those cases
where the internal medium conductivity is higher than the
conductivity of the external medium. On the other hand, the
behavior for frequencies related to theâ-dispersion is similar
to the one observed in Figure 2.

In the low-frequency region, the spectra for charged and
uncharged cells split up and the charged cells (full lines) present
the additionalR-dispersion. In former works that analyzed the

dielectric spectra of cells,4,15 it was assumed that the low-
frequency region could be interpreted using the same equations
as for homogeneous insulating particles with either a null
internal permittivity15 or an internal permittivity identical to that
of the membrane. Our results show that even though this is
correct for the dipole coefficient spectra and, therefore, for the
conductivity (Figure 9), for the mobility (as previously dem-
onstrated in ref 27), and for the electrorotation,16 this assumption
does not hold for the permittivity. This was previously analyti-
cally predicted,24,28and can be seen in Figure 8, comparing the
different full lines with the curve with heavy dots that corre-
sponds to a homogeneous particle surrounded by the cell wall
(internal medium identical to that of the membrane). From this
figure it is clear that the full spectra are obtained by adding the
dispersions corresponding to each process.24 However, this
simple rule only holds for sufficiently separated processes.
Moreover, it should be noted that (for sufficiently separated
processes) the amplitude and characteristic frequency of the
R-dispersion do not depend on the internal medium properties
since, in the model considered, the membrane is nonconductive.

4. Conclusion

In this work, we present numerical results for the dielectric
properties of diluted cell suspensions, calculated over a broad
frequency range. We show that for typical situations where the
ú-potential is low andκeRa is not too high, the low frequency
permittivity spectra strongly differ from those obtained replacing
the internal medium and the membrane by a insulating
homogeneous particle.

This fact is often overlooked in view that the dipole
coefficient spectra of these two types of particles do coincide
in the low-frequency range. Because of this, the low-frequency
conductivity and electrophoretic mobility spectra do not depend
on the dielectric properties of the particle. The reason the
permittivity behaves differently can be understood on the basis

Figure 8. Permittivity spectra for suspensions of charged (full lines)
and uncharged (dotted lines) cells, for different values of the internal
medium conductivity; and permittivity spectrum of a homogeneous
particle with a charged wall (internal medium identical to the
membrane) (curve with heavy dots).σi [S/m] ) (a) 1× 10-5, (b) 1×
10-4, (c) 5 × 10-4, (d) 2 × 10-3, (e) 1× 10-2, (f) 5 × 10-2, and (g)
5 × 10-1. κeRa ) 48,dw ) 50 nm, andú = kT/e for the charged systems.
The other parameters are specified in Tables 1 and 5.

Figure 9. Same as in Figure 8 for the conductivity of the suspension
(a constant was added to the conductivity in order to allow logarithmic
scale).

TABLE 5: Ionic Concentrations in the Internal Medium
(cio

() for Curves in Figures 8 and 9

σi (S/m) cio
( (1/m3)

a 1× 10-5 4.02× 1020

b 1× 10-4 4.02× 1021

c 5× 10-4 2.01× 1022

d 2× 10-3 8.04× 1022

e 1× 10-2 4.02× 1023

f 5 × 10-2 2.01× 1024

g 5× 10-1 2.01× 1025
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of the relationship between the permittivity and the stored
energy. At low frequencies, the electric field (and therefore the
dipole coefficient) around a cell is the same as around an
insulating homogeneous particle surrounded by the same wall.
However, under these conditions the cell carries a fully charged
membrane and stores, consequently, more energy.

It is important to note, finally, that the interpretation of the
low-frequency permittivity spectra of cells using the homoge-
neous particle theory, does not always lead to wrong results: it
all depends on theú-potential andκeRa values. This can be seen
in Figure 10, where the difference between the low-frequency
permittivity of a suspension of cells and a suspension of
homogeneous particles surrounded by a wall (divided by the
permittivity of the cell suspension) is presented as a function
of the ú-potential, and calculated for different values ofκeRa.
As can be seen, the homogeneous particle model can be
satisfactorily used for cells when theκeRa and theú-potential
values are sufficiently high.
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