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The standard electrokinetic equations for a spherical uncharged insulating particle suspended in a binary
electrolyte solution with an applied ac electric field are analytically solved in the general case when both the
ion diffusion coefficients and valences have arbitrary values. It is shown that under these conditions, the
field-induced ion density profiles extend at low frequencies at far larger distances from the particle than in
the case when both diffusion coefficients have the same value. The corresponding induced charge density
modifies the dipolar coefficient, leading to an additional low-frequency dielectric dispersion.

Introduction

The theory of the frequency response of suspensions of
uncharged spherical particles goes back to the works of
Maxwell1 and Wagner.2 It was later extended by O’Konski3 to
the case of particles bearing a surface conductivity. Finally, ion
diffusion effects in the surrounding electrolyte solution were
taken into account in ref 4. All these treatments agree in that
the system undergoes just one high-frequency dispersion, which
is usually in the 1 MHz to 10 MHz range. Moreover, this
frequency range is essentially independent of the size of the
suspended particles.

The situation is totally different when the suspended particles
are charged. Theoretical5-11 and numerical12-14 treatments
developed in the last 40 years, as well as numerous experimental
studies,15-24 show that the suspension undergoes an additional
dispersion at low frequencies, usually in the 100 Hz to 100 kHz
range. In contrast with the high-frequency dispersion, the
characteristic time of the LFDD is proportional to the square
of the radius of the suspended particles.

In this work we present rigorous analytical results that show
that the LFDD is also to be expected in suspensions of
uncharged particles when the diffusion coefficients of the two
types of ions are different. Though this situation was generally
considered in the formalisms of the LFDD of suspensions of
charged particles, it was apparently omitted when the particles
are uncharged. For charged particles, the effect of the difference
of the diffusion coefficients on the dielectric properties of the
suspension is obscured by the presence of the usual LFDD.
However, for uncharged particles, it leads to the appearance of
a LFDD in a frequency range where no dispersion process is
classically expected.

Theory

We consider an uncharged suspended particle represented by
an insulating sphere of radiusR and absolute permittivityεi.

The surrounding electrolyte solution is characterized by its
absolute permittivityεe, the valences of its ionsz(, their
diffusion coefficientsD(, and their equilibrium number con-
centrationsC0

(. We consider that there are only two types of
ions in the solution and that there is no ion recombination. We
assume, as is usually done in the framework of the standard
model, that the ion diffusion coefficients and the electrolyte
solution permittivity have constant values everywhere outside
the surface of the particle.

When a macroscopic electric fieldE(t) ) Eeiωt is applied
to the system, the ion concentrationsC((rb) and the electric
potentialΦ(rb) are determined by the following equation sys-
tem.

Equations for the ion flows:

Continuity equations:

Poisson equation:

To first order in the applied field, there is no field-induced
liquid flow because there is no equilibrium volume charge
surrounding the particle. Therefore, neither the fluid velocity
term in eq 1 nor the Navier-Stokes equation need to be
included.

Referring the ion concentrations to their equilibrium values,
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jb( ) -D(∇C( - C(z(eD(∇Φ/(kT) (1)

∇‚ jb( ) -∂C(/∂t (2)

∇2Φ ) -(z+C+ - z-C-)e/εe (3)

C( ) C0
( + δC(
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and keeping only linear terms inE, eqs (1)-(3) transform into
the following system:

that can be solved leading to

where

This solution has already be presented in ref 25, as part of the
calculation of the far-fields around a charged suspended particle.

The unknown coefficientsKd, Ku, andKv, can be obtained
using the usual boundary conditions. The first is obtained from
the continuity of both the electric potential and the radial
component of the displacement:

These expressions together with the linear dependence of the
potential inside the particle onr cosθ, lead to

The other two conditions express the assumption that the ions
from the electrolyte solution cannot penetrate inside the particle:

The results so obtained are

where

For D+ ) D- ) D, these expressions simplify to

These results reduce to those presented in ref 4 in the simplest
case: z+ ) z- ) 1.

The main difference between the solutions corresponding to
D+ ) D-, eqs 9 and 10, andD+ * D-, eqs 4 and 5, is that in
the first case the field-induced ion concentration profiles extend
to a distance of the order of 1/κ from the surface of the particle,
eq 10. On the contrary, in the second case, they extend much
further away at low frequencies, leading to volume charge
densities at distances on the order of the radius of the particle.

∇2δC+ ) (C0
+z+z+e2

εekT
+ iω

D+)δC+ -
C0

+z+z-e2

εekT
δC-

∇2δC- ) -
C0

-z-z+e2

εekT
δC+ + (C0

-z-z-e2

εekT
+ iω

D-)δC-

∇2Φ ) -(z+δC+ - z-δC-)e/εe

Φ
E cosθ

) (KdR
3

r2
- r) + (A + â)KuH(F,r)eF(R-r) +

(B + 1)KvH(σ,r)eσ(R-r) (4)

δC(

E cosθ
) Nz-(1 - z(â)KuH(F,r)eF(R-r) +

Nz-(R - z()KvH(σ,r)eσ(R-r) (5)

R )
d - a - x(d - a)2 + 4bc

2c
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2b
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a + d - x(d - a)2 + 4bc

2

σ2 )
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2

a ) iω
Def

b ) ∆z+z-a c ) ∆a d ) Qa + κ
2
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κ ) xz+z-(z+ + z-)e2N
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-/z+
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εi

∂Φi
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) εe

∂Φ
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-

C0
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) 0
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(6)
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-3εiRRG2

εi(B - AR)RG1G2 + 2{εeRG1G2(Râ - 1) + εi[(B + 1)H2G1 - R(A + â)H1G2]}
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D
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Dσ2
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These densities are at the origin of the appearance of an
additional low-frequency dispersion in the system.

Discussion

The dielectric behavior of colloidal suspensions of uncharged
particles predicted by eqs 4 and 6 is better analyzed considering
an extreme case when the diffusion coefficients widely differ
and when the size of the particle is comparable to the Debye
screening length. Figures 1 and 2 show the modulus of the field-
induced charge density profiles,δF* ) e(z+δC+ - z-δC-)/(E
cosθ), calculated using eqs 10 and 5, respectively. To be able
to use (9)-(13), deduced forD+ ) D- ) D, in a case when
D+ * D-, it is essential to set in eq 13 the valueD ) (z+D+ +
z-D-)/(z+ + z-) rather thanD ) Def.

Figure 1 shows that when the two diffusion coefficients have
the same value, the field-induced charge density profile around
the particle has approximately an exponential shape that is
frequency independent up to the Maxwell-Wagner relaxation
frequency (fMW ≈ 3.5 MHz). It then rapidly decreases at higher
frequencies, as expected. A totally different behavior is repre-
sented in Figure 2, which corresponds to the general case when

the two diffusion coefficients have different values. The lowest
frequency profile is almost the same as in Figure 1, except for
the long-reaching tail that appears at very low charge concentra-
tions. This tail is ever more important at higher frequencies
whereas the charge density increases instead of remaining
constant as in Figure 1. This increment stops at around 10 kHz,
and the charge density profiles remain approximately constant
and then rapidly decrease at very high frequencies, just as in
Figure 1.

This behavior clearly shows that a difference in the diffusion
coefficient values of the two types of ions leads to the
appearance of an additional low-frequency dispersion. It is due
to the small charge densities that build up far away from the
surface of the particle, at distances on the order of its radius
rather than the reciprocal Debye length. This large distance has
two main consequences: it requires a long time to build up so
that the dispersion phenomenon appears at low frequencies, and
it leads to significant contributions to the dipolar coefficient
despite the small value of the charge densities involved.

Figure 3 shows the permittivity and conductivity increments
calculated using the usual expressions:26

wherep is the volume fraction of suspended particles andke is
the conductivity of the electrolyte solution:

The different curves correspond to eqs 6 and 11 and the classical
expression obtained from the solution of the Laplace equation,
fully neglecting all diffusion related effects:26

As can be seen, diffusion effects are all important in the extreme

Figure 1. Modulus of the field-induced charge density profiles around
an uncharged spherical particle calculated using eqs 10 and 12 for the
indicated frequencies and forD+ ) D- ) 6.8 × 10-9 m2/s. Other
constants used:z+ ) 1, z- ) 2, εi ) 2ε0, εe ) 80ε0, N ) 1022 m-3,
T ) 300 K, R ) 10-7 m, ke ) 2.52× 103 S/m,κR ) 2.29.

Figure 2. Modulus of the field-induced charge density profiles around
an uncharged spherical particle calculated using eqs 5, 7, and 8, for
the indicated frequencies and forD+ ) 2 × 10-8 andD- ) 2 × 10-10

m2/s. Remaining constants as in Figure 1.

Figure 3. Theoretical permittivity (full lines) and conductivity (dashed
lines) increment spectra for colloidal suspensions of uncharged insulat-
ing particles calculated using the classical expression (14) (D+ )
D- ) 6.8× 10-9), eq 11 (D+ ) 2 × 10-8 andD- ) 2 × 10-10 m2/s),
and eq 6. Remaining constants as in Figure 1.
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case chosen, reducing the dispersion amplitude to less than half
its classical value. Moreover, the difference of the two diffusion
coefficients introduces an additional low-frequency dispersion
totally ignored in the existing theories, eqs 14 and 11. Although
the total amplitude of the dispersion is very small (as expected
for low-permittivity insulating particles suspended in a high-
permittivity conducting medium), it should be noted that the
amplitude of the new dispersion term can be of the same order
of magnitude as that of the high-frequency term, Figure 3.

As a concluding remark, it is worth noting that the results
obtained draw attention to a possible difficulty of numerical
calculations dealing with the dielectric and electrokinetic
properties of suspensions. Such calculations typically integrate
the concentration and potential profiles starting at distances of

the order of 20 Debye lengths12 from the surface of the particle,
where it is assumed that the system is electroneutral so that
asymptotic expressions apply. The above results show that this
assumption could be unjustified when the diffusion coefficients
differ, because the charge density profiles could then extend to
much longer distances. The small values of these charge
densities are misleading, as can be seen in Figures 4 and 5,
where the modulus of the potential minus the term corresponding
to the applied field, eqs 4 and 9, is divided by the modulus of
the dipolar potential calculated using eqs 6 and 11. Figure 5
shows that both potentials reduce to the same value a few Debye
lengths from the surface of the particle whenD+ ) D-. On the
contrary, according to Figure 4, which corresponds toD+ *
D-, a distance of 10 particle radii is still not sufficient to
numerically determine the dipolar coefficient at a frequency of
1 kHz. Further study is required to establish whether these
conclusions, valid for uncharged particles, also apply to charged
ones.
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Figure 4. Modulus of the electric potential (minus the applied field
term) profile around an uncharged spherical particle divided by the
modulus of just the dipolar potential, eqs 4 and 6, calculated for the
indicated frequencies and forD+ ) 2 × 10-8 and D- ) 2 × 10-10

m2/s. Remaining constants as in Figure 1.

Figure 5. Modulus of the electric potential (minus the applied field
term) profile around an uncharged spherical particle divided by the
modulus of just the dipolar potential, eqs 9 and 11, calculated for the
indicated frequencies and forD+ ) D- ) 6.8× 10-9 m2/s. Remaining
constants as in Figure 1.
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