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Machine learning and artificial intelligence have strong roots on principles of neural

computation. Some examples are the structure of the first perceptron, inspired in the

retina, neuroprosthetics based on ganglion cell recordings or Hopfield networks. In

addition, machine learning provides a powerful set of tools to analyze neural data,

which has already proved its efficacy in so distant fields of research as speech

recognition, behavioral states classification, or LFP recordings. However, despite the

huge technological advances in neural data reduction of dimensionality, pattern selection,

and clustering during the last years, there has not been a proportional development of

the analytical tools used for Time–Frequency (T–F) analysis in neuroscience. Bearing this

in mind, we introduce the convenience of using non-linear, non-stationary tools, EMD

algorithms in particular, for the transformation of the oscillatory neural data (EEG, EMG,

spike oscillations…) into the T–F domain prior to its analysis with machine learning tools.

We support that to achieve meaningful conclusions, the transformed data we analyze

has to be as faithful as possible to the original recording, so that the transformations

forced into the data due to restrictions in the T–F computation are not extended to

the results of the machine learning analysis. Moreover, bioinspired computation such

as brain–machine interface may be enriched from a more precise definition of neuronal

coding where non-linearities of the neuronal dynamics are considered.

Keywords: neuronal coding, non-linear signals, NA-MEMD, machine learning classification, single trial

classification

INTRODUCTION

The mutual benefits of the interplay between natural and artificial computation are well-known.
Moreover, the increasing volume and complexity of the generated data in neuroscience exceeds
the capacity of classical analysis, and they are becoming more and more difficult to analyze. In
this scenario, the emergence of artificial computation and machine learning (ML) techniques is
becoming crucial for the interpretation and analysis of these complex data. Some examples are the
interaction between networks and behavior (Bathellier et al., 2012), stimulus coding (Nikolić et al.,
2009; Klampfl et al., 2012), population dynamics in neural networks (Buonomano and Merzenich,
1995), classification of behavioral states (Kabra et al., 2012), and spike sorting procedures
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(Bongard et al., 2014; Carlson et al., 2014; Dimitriadis et al., 2016).
On the other hand artificial computation has received inspiration
from neuroscience since the first artificial neuron developed in
the 40’s (McCulloch and Pitts, 1943), continuing to the first
perceptron, inspired in the circuitry of the retina (Rosenblatt,
1957), Hopfield networks (Hopfield, 1982), or Self-Organizing
maps (Kohonen, 1982) and is still widely present nowadays.

The scope of this perspectives paper is to highlight the
reliability and usefulness of ML techniques for the analysis of
electrophysiological recordings. In particular, we will address the
manipulation of the data prior to its analysis and classification,
specifically regarding to Time–Frequency (T–F) features. In
this framework we think that T–F analysis tools have not
been as extensively implemented as other ML algorithms in
neuroscience research. To facilitate the analysis of relevant T–
F information using ML analysis, we propose to use Empirical
Mode Decomposition data-driven algorithms (Huang et al.,
1998, EMD) to extract the relevant T–F features to be studied.
This procedure is widely used in signal analysis and has been
proved successfully in the analysis of electrophysiological data
(Li, 2006; Huang et al., 2013; Hu and Liang, 2014; Al-Subari
et al., 2015; Alegre-Cortés et al., 2016); nevertheless, they have
not yet become of common use and are sparsely found in
neuroscience publications. As a result, we still use linear and
stationary techniques that are unavoidably biasing and blurring
relevant information, since they are not able to accurately depict
the intermittency and non-linearity of the data. This approach
usually leads to the underperformance of classification or pattern
extraction using ML algorithms, hence limits the strength of the
posterior analysis (Mandic et al., 2013). The general idea behind
this suggestion is that a more precise transformation into the T–F
domains of the data will improve the result of the classification
and/or search for patterns in the data performed by the ML
algorithms.

SYNERGY BETWEEN EMDS, MACHINE
LEARNING, AND BRAIN PROCESSES

Most of the brain processes are non-linear and non-stationary.
Hence, the selected analytical tools require the capability to
deal with these properties of the data. EMDs (Huang et al.,
1998) are data driven algorithms designed to extract oscillatory
information without its projection onto any predefined function,
converting the original signal into a sum of oscillatory
components called Intrinsic Mode Functions (IMFs). In this way
they facilitate the extraction of meaningful information from the
data without temporal or waveform restrictions, usually using the
Hilbert transform (Huang et al., 1998). In addition, there exist
multivariate variations of these algorithms (Rehman andMandic,
2010; Ur Rehman and Mandic, 2011) that allow a simultaneous
decomposition of multiple recorded neuronal signals. This
is possible thanks to the simultaneous decomposition of all
dimensions of the data, which ensures the same number of
IMFs containing the information in the same frequency ranges
(Rehman and Mandic, 2010). Thus, thanks to the advantages
of EMD algorithms over classic linear analysis, they are being

increasingly used in neuronal analysis (Liang et al., 2005; Huang
et al., 2013; Al-Subari et al., 2015; Alegre-Cortés et al., 2016),
and they are helping us to achieve a better understanding of the
oscillatory properties of neuronal activity (Buzsáki and Draguhn,
2004).

Despite the advantages of this approach, we should take into
account that EMD algorithms increase the dimensionality of the
data, since they convert the original signal in a set of IMFs. Hence
these procedures increase the difficulties in the management
of the data to extract useful results or perform any desired
classification.

In this context, ML techniques are the perfect tools to analyze
and classify the decomposed neuronal activity. ML is a subfield
of statistics and computer science, which takes advantage of
the power of computers to perform iterative computations to
identify the existing patterns on the data to make future models
and predictions. Furthermore, the projection of the data into a
higher dimensional space provides an additional advantage, since
it helps to improve discrimination (Cover, 1965).

To support these ideas and the advantages of the
proposed approach, we will briefly introduce a couple of
real examples based on different experimental approaches and
electrophysiological techniques.

TEXTURE DISCRIMINATION FROM
VIBRISSAL NERVE RECORDINGS

The first example are electrophysiological recordings from
rat vibrissal nerve during a texture discrimination task (see
Albarracín et al., 2006 for details). Previous work with this data
(Lucianna et al., 2016) using linear techniques for T–F features
extraction (Root Mean Square value to estimate signal energy
and Burg parametric estimation method to compute the Power
Spectrum Density) and a simple perceptron (Hertz et al., 1991)
concluded that five sweeps were required for an adequate texture
classification. To probe our thoughts, we performed a similar
analysis on the discrimination of the pair of materials of hardest
discrimination, wood vs. L1000 sandpaper (Figure 1A), using
information from single sweeps on the surface. Previous results
on these pair of textures had described that a single swept
provided just 70% correct texture classification and had great
variability.

We decomposed the data using Noise Assisted Multivariate
Empirical Mode Decomposition (NA-MEMD, Ur Rehman and
Mandic, 2011) to obtain the T–F spectrum of the response
to each texture (see Alegre-Cortés et al., 2016 for details).
Standard stopping criterion is described in Rilling et al. (2003).
The obtained mean amplitude and mean IF of the different
IMFs between 115 and 384Hz were used to train a multilayer
perceptron (MLP) to perform the classification (Cybenko, 1989).
We used a single hidden layer of 14 neurons and scaled
conjugated gradient as supervised training algorithm (Powell,
1977). We repeated this analysis on a sliding window to compute
the temporal profile of discrimination between these textures
during 100ms after stimulus offset. To prevent from biased
results due to the finite number of experiments, we shuffled
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FIGURE 1 | Texture discrimination using NA-MEMD plus MLP. (A) Mean vibrissal nerve response to sweeping wood (top) and sandpaper (bottom). (B) Percentage of

correct classification (green) and classification after shuffling (gray). Shadow square represents maximum discrimination window, used in (C). Error displayed as s.e.m.

(C) t-SNE representation of vibrissal nerve activity during the first 5ms of the response.

texture across our data to determine the average error in
classification. This process was repeated 100 times in each
window.

Figure 1 shows the main results. Discrimination was maximal
(99.5 ± 0.5%, shadow square, Figure 1B) during a 5ms
window starting 5ms after stimulus offset. Discrimination
performance decreased during time, but a second peak of
discrimination was seen 15–20ms after stimulation, coinciding
in time with the second contact with the surface during the
withdrawal of the whisker. When we compared this maximum
value of discrimination (Figure 1B) with the previous results
obtained on the discrimination on these dataset (≈70% on
average, Lucianna et al., 2016) we confirmed an evident
increase in texture discrimination thanks to the combined use
of NA-MEMD followed by ML classification. Moreover, the

classification was based on single-trial recordings and was shown
to had almost no variability in the peak of discrimination
(Figure 1B), providing an additional improvement over previous
results.

We used the t-distributed stochastic neighbor embedding
algorithm (t-SNE) (van der Maaten and Hinton, 2008) as an
additional ML technique to differentiate the vibrissal nerve
response to the different stimulating textures (wood and
sandpaper), starting from the same parameters we used to
train the MLP in a time window of 5ms length starting 5ms
after stimulation, coinciding with maximum discrimination in
Figure 1B. This technique is useful to reduce the dimensionality
of the data and allowed us to classify our complex data into two
different and well-separated clusters, each one corresponding to
one of the stimulating textures: wood and sandpaper (Figure 1C).
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FIGURE 2 | Stimulation electrode discrimination. (A) Example of a single stimulation in each stimulation electrode. Raster plot of the whole electrode and mean

activity vector. (B) Percentage of correct classification using NA-MEMD (green), Morlet wavelet (red), and spectrogram (gray). Error displayed as s.e.m. (C) Distribution

of individual trials after using PCA (crosses) and clusterization using DBSCAN algorithm (circles).

STIMULATION ELECTRODE
DISCRIMINATION FROM
MULTIELECTRODE PRIMARY CORTICAL
NEURONS CULTURE RECORDINGS

To further illustrate the power and potential of this approach,
we carried out an additional analysis of simultaneous recordings
in primary cortical neurons cultures (see Calvo et al., 2016
for details). Briefly, embryonic primary cortical neurons were
cultured on a multielectrode array; then, population activity
was recorded simultaneously at 60 points of the culture while
electrically stimulated in two different electrodes of the array
(Figure 2A). We decomposed the averaged activity present in
the electrode to obtain the mean oscillatory activity during 100
stimulations in each of the stimulation electrodes independently
using NA-MEMD. Then, we extracted different values of mean
amplitude and mean IF at different T–F windows (IMFs
ranging from 30 to 90Hz) to train a MLP to discriminate
the stimulation electrode, from the recorded activity when a
minimum number of spikes were evoked in the whole response
window. We used a single hidden layer of 15 neurons and
scaled conjugated gradient as supervised training algorithm. An
equivalent shuffling procedure was done to subtract chance-level
classification. This process was repeated 100 times.

Once we subtracted chance-level classification, stimulation
electrode had its maximum discrimination peak 200–300ms
after stimulation, exceeding 75% successful classification when
we used NA-MEMD as the feature extraction tool (Figure 2B).
Therefore, we were able to discriminate the electrode on which
the unique stimulation had occurred analyzing the oscillatory

properties of the generated response. This was not possible when
we extracted the T–F features to train the MLP using either
spectrogram or wavelet (Morlet) analysis. When we used these
linear techniques, stimulation electrode classification was similar
to chance-level classification (Figure 2B).

We performed an additional analysis applying a density-based
algorithm for discovering clusters in large spatial databases with
noise named DBSCAN that is designed to discover clusters of
arbitrary shape (Ester et al., 1996). This algorithm was applied
to the extracted parameters during the window of maximum
discrimination using NA-MEMD in Figure 2B (200–300ms
after stimulus onset). We found two clusters (Figure 2C),
corresponding to the two stimulation electrodes. A total of 83%
of the trials were in the correct clusters, in clear coincidence
with the mean percentage of correct classification of the MLP in
that window of time before the subtraction of the chance-level
classification.

CONCLUDING REMARKS

Over the last decade, many technical and conceptual issues
related with the analysis of neuronal recordings have been
addressed, but there are still some problems related with
the analysis of T–F data. We suggest that a combination of
T–F signal decomposition via EMD algorithms (NA-MEMD,
in our case) plus a posterior classification of the obtained
parameters using ML techniques are powerful tools in this
framework. Therefore, the implementation of this combination
of analytical tools in the daily neuroscience research would
improve the information extracted from the recorded single or
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multiple neuronal activities and, in ultimate extent, increase our
understanding of the nervous system. Furthermore, although
more studies are still needed, these tools could be also useful for a
better understanding of some pathological processes of the brain.
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