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Neurodegenerative disorders, such as Alzheimer’s, Parkinson’s, and prion dis-

eases, are directly linked to the formation and accumulation of protein aggre-

gates in the brain. These aggregates, principally made of proteins or peptides

that clamp together after acquisition of b-folded structures, also contain hep-

aran sulfates. Several lines of evidence suggest that heparan sulfates centrally

participate in the protein aggregation process. In vitro, they trigger misfold-

ing, oligomerization, and fibrillation of amyloidogenic proteins, such as Ab,
tau, a-synuclein, prion protein, etc. They participate in the stabilization of

protein aggregates, protect them from proteolysis, and act as cell-surface

receptors for the cellular uptake of proteopathic seeds during their spreading.

This review focuses attention on the importance of heparan sulfates in protein

aggregation in brain disorders including Alzheimer’s, Parkinson’s, and prion

diseases. The presence of these sulfated polysaccharides in protein inclusions

in vivo and their capacity to trigger protein aggregation in vitro strongly sug-

gest that they might play critical roles in the neurodegenerative process. Fur-

ther advances in glyco-neurobiology will improve our understanding of the

molecular and cellular mechanisms leading to protein aggregation and neu-

rodegeneration.
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Protein aggregates deposition is a characteristic hall-

mark of several diseases known as protein misfolding

diseases, amyloidosis, or ‘proteinopathies’ [1]. In these

diseases, proteins acquire an abnormal b-sheet folded

conformation, which induces a self-assemblage that

confers to the aggregated protein a strong resistance to

proteolysis, to denaturation, and to the general mecha-

nisms of protein processing that operate in the cells

[2]. This results in the protein deposition in form of

filaments called amyloids, characteristic of pro-

teinopathies. Proteinopathies include several systemic

and neurodegenerative diseases, including Alzheimer’s

disease, Parkinson’s disease, prion diseases, and others

(Table 1). Although the exact mechanisms that lead to

the in vivo protein misfolding and aggregation have

not yet been completely elucidated, it is well-estab-

lished that the deposed proteins are specific of the

disease in where they accumulate. For instance, the
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b-amyloid peptide (Ab) and the abnormally phospho-

rylated protein tau (P-tau) are deposed in Alzheimer’s

disease, a-synuclein in Parkinson’s disease, and prion

protein in an abnormal conformation (known as

PrPsc) in prion diseases [3]. The lack of therapeutic

solutions for the efficient treatment of these and other

proteinopathies has led the biomedical research com-

munity to concentrate efforts on the exploration of the

fine mechanisms priming and/or triggering protein

aggregation in these pathologies.

Depending on the cell location of the protein build-

ing blocks, protein aggregates are formed either intra-

or extracellularly [4,5]. Interestingly, this intra- or

extracellular location also determines the probability

of the building block interactions with aggregation-

promoting macromolecules, such as arachidonic acid,

RNA, or sulfated glycosaminoglycans [6–9]. Among

glycosaminoglycans, heparan sulfates (HS) are of great

interest due to their occurrence in most, if not all,

intra- and extracellular protein aggregates that accu-

mulate in neurodegenerative diseases, including those

made of Ab, tau, and a-synuclein [10,11]. Depending

on their structures, HS can differentially interact with

the soluble proteins, priming their initial misfolding

into insoluble b-folded fibrils, and/or prompting

their aggregation. This review presents an analysis of

the literature focusing on the importance of HS, and

HS structures, as possible key elements in the

Table 1. Diseases characterized by the accumulation of protein aggregates and the respective amyloidogenic proteins involved, their

precursors, and the location of their protein deposits.

Protein precursor

Aggregated

protein Disease/syndrome Location References

Amyloid precursor protein

(APP) and variants

Ab Alzheimer disease, cerebral amyloid

angiopathy (CAA) or congophilic

angiopathy

Brain [43,90,91]

Tau protein Tau Alzheimer’s disease, frontotemporal

dementia, Pick’s disease, progressive

supranuclear palsy (PSP), Corticobasal

degeneration (CBD)

Brain [6,47,91,92]

a-synuclein a-Syn Parkinson’s disease (PD), dementia with

Lewy bodies (DLB), Alzheimer’s disease

with Lewy bodies variant (LBVAD),

multisystemic atrophy (MSA)

Brain [73,74,78,93]

Prion protein (PrP) and

variants

PrPSC Creutzfeldt-Jakob disease (CJD)

Gerstmann-Straussler-Scheinker

syndrome (GSS), Insomnia family lethal

(FFI), Kuru

Brain [36,81,86,87,94]

Huntingtin HTT Huntington’s disease Brain [95]

Superoxide dismutase and

others

SOD1 Amyotrophic lateral sclerosis (ALS) Brain, spinal cord [96]

Ataxin-1 Atxn-1 Spinocerebellar ataxia (SCA) Brain, spinal cord [97]

Atrophin-1 (DRPLA protein) Atn-1 Dentatorubral-pallidoluysian atrophy

(DRPLA)

Brain [98]

Cystatin C Cys Hereditary cerebral amyloid angiopathy

(HCCAA)

Brain [99]

BriPP/DanPP ABri/ADan Familial British dementia and familial

Danish dementia

Brain [100]

Prolactin Pro Prolactinomas of the pituitary gland Pituitary gland [101]

Androgen receptor protein

(AR)

AR Bulbo spinal amyoatrophy (BSMA) or

Kennedy disease

Brain, scrotal sac, dermis,

kidney, heart, testicles,

prostate, spinal cord

[102]

Apolipoprotein A-I ApoAI Systemic hereditary amyloidosis Peripheral nervous system,

heart, liver, kidney, testis,

larynges, skin

[103]

Apolipoprotein A-IV ApoAIV Systemic secondary amyloidosis

associated with inflammation

Systemic, kidney [104]

Transthyretin variants TTR Familial amyloidotic polyneuropathy type I Peripheral and autonomic

nervous system, heart, eyes

[105]
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physiopathologic mechanisms leading to protein mis-

folding and aggregation, particularly in Alzheimer’s,

Parkinson’s, and prion diseases.

Heparan sulfates

Heparan sulfates and their great structural

diversity

Heparan sulfates are linear polysaccharides belonging

to the family of sulfated glycosaminoglycans (GAGs),

which also includes chondroitin sulfates (CS) and ker-

atan sulfate (KS) [12]. HS are the glycanic constituents

of HS proteoglycans (HSPG), classically represented

by the cell membrane-associated syndecans and glypi-

cans, and by the secreted perlecan. Structurally, a HS

chain is presented as the repetition of a disaccharide

building block (Fig. 1), formed by an uronic acid,

either glucuronic acid (GlcA) or iduronic acid (IdoA),

and a glucosamine (GlcN). This disaccharide can carry

sulfate groups at several of their hydroxyl groups, pro-

viding a variety of disaccharide sequences, which struc-

tures are finely dependent on the expression of the

enzymes involved in the HS biosynthetic machinery.

This machinery involves several glycosyl transferases

(EXTs and EXTLs), several sulfotransferases (STs),

and one epimerase [13]. While EXTs and EXTLs will

determine the length of the forming HS chain, STs will

integrate sulfate groups into the elongating sugar

chain, giving high structural complexity to HS. In

humans, STs include HS N-deacetyl sulfotransferases

(NDST1-4) and HS sulfotransferases (HSSTs).

Depending on the sugar position in which the sulfate

group is transferred from the adenosine 30-phosphate
50-phosphosulfate (PAPS) sulfate donor. HSSTSs are

regrouped in HS2ST1, HS3STs (HS3ST1, 2, 3A1, 3B1,

4, 5, and 6), and HS6STs (HS6ST1, 2varL, 2varS, 3).

Thus, during the biosynthetic process, placement of

sulfate groups on the elongating HS chain gives place

to the formation of differently sulfated clusters among

each single chain: NA domains stands for unsulfated

sequences, NS domains for highly sulfated sequences,

and NA/NS domains for sequences carrying intermedi-

ary levels of sulfation (Fig. 1). Among this, epimerase

will additionally provoke an inversion of configuration

at the carbon 5 (C5) of some GlcA units that will be

converted into IdoA by the enzyme action. This will

importantly affect the HS chain structure since the b
1–4 glycosidic linkage between GlcA and GlcN will

become a in the IdoA containing disaccharides, con-

comitantly affecting recognition by heparinase, the

enzyme that cleaves 1–4 glycosidic linkages during HS

catabolism. Moreover, these stereochemical changes in

uronic acids along the HS chain will strongly affect

the polysaccharide flexibility, probably affecting the

strength of interactions with amyloidogenic proteins.

After biosynthesis, HSPGs are typically transported to

the outer cell membrane or secreted into the ECM,

where they exert their known biological functions, and

where HS chains can be cleaved by heparanase, and/or

6-O-desulfated by HS 6-O-sulfatases (Sulf). Endocyto-

sis afterward drives the HSPG to the lysosome path-

way for degradation.

Thus, depending on the expression of the HS meta-

bolic machinery in each particular cell type or tissue,

HS chains can carry different sulfate signatures

(Fig. 1), which can vary as a consequence of aging, tis-

sue injury or disease [14–16]. Accordingly, HS can

interact with a large number of proteins or peptides,

known under the generic name of heparin binding pro-

teins (HBP) [13,17,18]. HBP include growth factors,

cytokines, and most, if not all, proteins able to form

amyloids, such as the Ab peptide, tau, a-synuclein,
huntingtin, superoxide dismutase, prion protein, etc. It

has largely been reported that by interacting with

growth factors and cytokines at the cell surface, HS

participate to modulation of cell signaling [12,19], and

that in the ECM, HS protect HBP proteins from pro-

teolytic degradation, increasing their bioavailability

[20,21]. By analogy, HS can interact with amyloido-

genic proteins, increasing their bioavailability, but also

by prompting their aggregation. The importance of the

Fig. 1. Schematic representation of a heparan sulfate (HS) chain.

The different HS domains are represented: NA (unsulfated

domains), NA/NS (mixed N-sulfated and N-acetyled domains) and

NS (rich N- and O-sulfated domains). The structure of a

disaccharide characteristic of HS is represented to note the framed

groups susceptible to carry sulfate groups.
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HS biosynthetic machinery in the protein aggregation

process has been suggested by the inhibition of amy-

loid deposition, which resulted from the inhibition of

HS biosynthesis in cellular and animal models of neu-

rodegeneration [22,23].

Protein aggregation

Amyloidosis

Protein aggregation is a process in which misfolded

proteins clump together to form well-structured fibrils

that form filaments, known as amyloids. Accumulation

of amyloids in the brain tissue correlates with a wide

variety of neurodegenerative disease including Alzhei-

mer’s disease, Parkinson’s disease, Huntington disease,

prion disease, and others [3,4,11]. Although all amy-

loids show considerable diversity in their constitutive

protein sequences, they all share common characteris-

tics [2]. The amyloids extracted from pathologic tissues

are typically composed of fibrils assembled from two

or three unbranched filaments (protofilaments) twisted

around each other. These filaments are rich in b-sheet
structures that form cross-b fibrils in which individual

filaments are organized perpendicular to the long axis

of the fibrils [2,24]. In solution, fibril formation gener-

ally occurs in a two-phase process (Fig. 2). The first

phase is a nucleation phase, also called the lag phase.

The second phase, in which the fibril is formed, is

known as the polymerization or extension phase

(growth phase). During the lag phase, a slow and

reversible association of monomers forms nuclei struc-

tures. This process is thermodynamically unfavorable

and constitutes the limiting step determining the speed

of the fibrillation process. Once a nucleus has been

formed, addition of monomers to the nucleus becomes

thermodynamically favored, resulting in a rapid exten-

sion and formation of the amyloid fibers [25]. In this

nucleated conversion model, the spherical oligomeric

particles slowly become protofibrils by mediating a

transition of the native protein or peptide into a b-
sheet conformation [26]. This mechanism is at the

basis of most known models of amyloid formation

and has been proposed for several human amyloido-

genic proteins and peptides [27,28]. Another proposed

mechanism for the formation of amyloid fibrils

involves a monomer-directed conversion in which the

transition from a protein native state to a prefibrillar

state directly influences other native monomers to

undergo the same transition; this results in the forma-

tion of an intermediate fibrillar structure that can then

grow to form fibrils [29]. Here, the trajectory of the

formation of the fibrils begins with a prefibrillar

kinetic precursor, represented by protofibrils or by

their intermediate soluble oligomers [30]. Recently, the

interest in the prefibrillar intermediates has grown,

since they have been associated to a cytotoxicity higher

than that of the mature filaments [31]. This has also

led to the idea that the molecular bases of amyloid

pathologies are centrally related to the formation and

activity of prefibrillar protein aggregates. However, the

specific mechanisms by which these species are gener-

ated in vivo and how they exert their toxic effects are

not yet fully understood. Numerous studies suggest

that HS participate to the different phases of amyloids

formation, or that they are involved in alternative fib-

ril growth pathways proposed to compete in the differ-

ent stages of the protein aggregation process

[10,11,19,20,32].

Heparan sulfates and protein aggregation

Several studies have shown that the kinetics of protein

aggregation is catalysed, accelerated, or potentiated,

by polyanionic molecules, including GAGs, particu-

larly HS and heparin [19,32]. Heparin, the prototype

of highly sulfated sequences in HS, has shown to stabi-

lize the aggregated state of acyl phosphatase, a classic

model for the study of amyloidosis [33]. Similarly, HS

highly promoted the capacity of production of amy-

loids by the serum amyloid A (SAA) protein [34].

Indeed, several studies have shown that HS can be

involved in the protein aggregation process by favoring

a faster unfolding and induction of a fibrillogenic par-

allel path [32]. Accordingly, the analysis of tissues

affected by amyloid disorders in brain and in periph-

eral organs, including Alzheimer’s disease, type II dia-

betes, light chain amyloidosis, and prion diseases,

among others, has revealed the presence of a signifi-

cant amount of HS in the amyloid fibril deposits

[35–38]. Besides, numerous other evidences indicate

that these polysaccharides play an active role favoring

the formation and stabilization of amyloid fibers in

brain [11,39], and that they could act through a mech-

anism substantially different from that occurring in

solution [40,41]. Available data suggest that HS can:

(a) promote the folding of proteins or peptides to con-

formations allowing the formation of preamyloid

structures [18,19,32,34]; (b) act as molecular platforms

for monomeric protein or peptides self-assembly, thus

increasing the formation and the density of nucleation

seeds [33,40,42]; (c) act as molecular platforms for oli-

gomers assembly, increasing the formation and stabil-

ity of amyloid fibrils [43–45]; and (d) act as platforms

allowing post-translational modifications that can then

support subsequent amyloid formation [5]. In the later
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stages of the amyloidosis, HS could also catalyse the

lateral aggregation of small fibers, promoting their

insolubility and resistance against proteolysis

[19,20,42]. These and other observations suggest that

HS can play a central role in the pathologic amyloido-

genic processes in vivo. The various HS possible roles

in protein aggregation are summarized in Fig. 3.

Moreover, HS could also be protective thanks to their

involvement in the conversion of soluble proteotoxic

particles in less toxic amyloid fibers [10].

Although by definition HS are located in the extra-

cellular space where they exert their known biological

roles, it is important to remark that, in the disease tis-

sues, these polysaccharides are present in amyloid

deposits not only outside [36,39,46], but also inside

cells [5,6,38,47]. This suggests that, in vivo, HS can be

centrally involved in the protein aggregation processes

occurring outside and inside cells. However, further

research is required to investigate whether the presence

of HS in protein aggregates in vivo is the result of pro-

tective or deleterious processes operating during dis-

ease, particularly in pathologies as Alzheimer’s,

Parkinson, and Prion diseases.

Heparan sulfates in Alzheimer’s
disease

Alzheimer’s disease hallmarks

Alzheimer’s disease is a slowly evolving brain disease

recognized as the main cause of dementia in the world

[48]. Alzheimer’s disease is characterized by two types

of brain lesions, extracellular accumulation of amyloid

plaques made of Ab peptides, and intraneuronal accu-

mulation of neurofibrillary tangles made of the abnor-

mally phosphorylated protein tau (P-tau) [48]. Since it

has been recognized that both the accumulation of Ab
peptides in the extracellular matrix and of P-tau inside

neurons are critical events in the development and evo-

lution of Alzheimer’s disease, and because HS have

been found in these protein aggregates in the disease

brain [5,36,45], one can consider that HS could play a

critical role in the mechanisms leading to protein

aggregation in Alzheimer’s disease.

Heparan sulfates and Ab pathology in

Alzheimer’s disease

The implication of HS in the formation of Ab deposits

in Alzheimer’s disease was originally suggested by

Snow et al. [47], who found the sulfated polysaccha-

ride in amyloid plaques of Alzheimer’s disease brains.

It has been largely reported that HS can efficiently

interact with Ab peptides, inducing their aggregation

[43,45]. Ab peptides are 40 (Ab40) or 42 (Ab42) amino

acids fragments derived from the sequential cleavage

of amyloid precursor protein (APP) by b- and c-secre-
tases, enzymatic complexes that contain presenilins 1

(PSN1) and 2 (PSN2). The presence of autosomal

dominant mutations in the genes coding for APP,

PSN1, or PSN2 are known to cause hereditary Alzhei-

mer’s disease (<5% of cases). Interestingly, the Ab42

Fig. 2. Schematic representation of the kinetics of an amyloid fiber formation involving HS favored nucleation. This model involves the initial

formation of oligomeric complexes that slowly evolve into fibrils followed by amyloid formation. HS chains can participate in both the

nucleation or latency phase (‘lag phase’), and in the polymerization phase (growth phase). In the first stage, they allow the formation of a

nucleus of monomers, and in the second phase they promote a rapid extension of protofibrils and formation of amyloid fibrils [15,42,89].
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peptide shows higher aggregation kinetics and higher

toxicity than Ab40 [49]. Accordingly, an increased

Ab42/Ab40 ratio in Alzheimer’s disease brain was

associated with genetic forms of the disease [50]. The

importance of HS in the formation of Ab amyloids

in vivo and in vitro has been highlighted by several

studies. For instance, transgenic mice overexpressing

heparanase showed a decreased number of Ab amyloid

plaques, without alteration on the production and pro-

portion of Ab40 and Ab42 peptides [51]. Although

residues 12–18 (VHHQKLV) in Ab40 and Ab42 are

reported as the site of interaction with HS [52], the

anionic bridge between lysine 28 and alanine 42, only

present in the Ab42, was broken by HS [44]. In the

absence of HS, this bridge stabilizes an S-shaped struc-

ture formed by three folded b sheets. Upon interac-

tions with HS, this S-shaped structure is altered,

causing the acceleration of the aggregation process

[53]. This would not occur with the Ab40 peptide,

whose loop-like structure is stabilized only by two

folded b sheets, thus less susceptible to the aggregation

process induced by HS. This can justify the different

aggregation kinetics of the two peptides. Likewise, it

has been shown that highly sulfated HS accumulate in

both Ab40 and Ab42 amyloids, while lowly sulfated

HS only accumulate in Ab40 amyloids [53]. This sug-

gests that high sulfation of HS could be required for

prompting the aggregation of the Ab42 peptide in the

Alzheimer’s brain. Accordingly, the interaction of HS

with Ab amyloid fibrils essentially requires N- and 2-

O-sulfation, while the interaction of HS with the Ab
monomers additionally requires 6-O-sulfate groups

[54]. Moreover, it has been shown that the content

and position of the sulfate groups, as well as the

length of the sulfated sequences in the HS chain, can

directly affect the secondary structure of Ab peptides

[55], comforting the hypothesis that HS could be

involved in the Ab aggregation process in the disease

brain. Although the exact mechanism by which HS

could drive the Ab aggregation in vivo remains to be

established, some possibilities proposed in Fig. 3 could

be considered. Interestingly, the neuroprotective effect

of HS and of HS analogues against Ab oligomers toxi-

city in neuronal cell cultures has been demonstrated

Fig. 3. Putative mechanisms involving HS in the in vivo formation of amyloid fibrils. HS can induce misfolding of the native protein (a)

resulting in its nucleation and aggregation (b). HS can function as platforms for protein conformational changes allowing attack by kinases,

as those responsible for abnormal phosphorylation (c), and promote the phosphorylated protein aggregation (d). HS could directly favor the

nucleation process of already conveniently conformed proteins or peptides (e) resulting in the formation of preamyloid structures and thus

increasing the number of nucleation seeds that can act as structural platforms for self-assembly.
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[56–58]. However, any effect with this kind of mole-

cules has been observed in the clinical evolution of the

pathology. Indeed, this is also true for any other strat-

egy aiming to inhibit the formation and accumulation

of Ab oligomers and/or fibrils in the disease brain [59],

questioning the hypothesis of the central role of Ab in

Alzheimer’s disease pathogenesis. Thus, other events,

as those involving tau protein aggregation and spread-

ing are currently being considered as critical factors in

the disease.

Heparan sulfates and tau pathology

The microtubule associated protein tau (MAPT), or

tau, is a protein that participates in microtubule and

neuronal cytoskeleton stabilization and in axonal

transport [60]. Under physiological conditions, tau is a

highly soluble protein that shows no tendency to

aggregate. However, in the brain of patients affected

by Alzheimer’s disease, this protein is found aggre-

gated in an abnormally phosphorylated form (P-tau)

prone to aggregate. In the pathological brain, P-tau

forms paired helical filaments that accumulate inside

neurons and grow into neurofibrillary tangles, charac-

teristic of Alzheimer’s disease and other tauopathies

[61,62]. Interestingly, in vitro, the tau aggregation is

not possible without the incorporation of polyanionic

molecules, such as heparin or HS, suggesting that HS

might be involved in the mechanism leading to tau

protein aggregation in vivo. This assumption is rein-

forced by the study of Snow et al., showing that highly

sulfated HS accumulate with neurofibrillary tangles in

the affected neurons of the disease brain [47]. More-

over, the kinetic constants characterizing the formation

of tau fibrils in the presence or absence of heparin

agrees with a central role of HS in the tau amyloido-

genic process. Accordingly, in vitro, heparin can inter-

act with two tau molecules forming a dimer able to

form fine short fibrils [63]. However, an excess of hep-

arin can also delay the tau aggregation lag phase, sug-

gesting a modulatory role during the nucleation phase

[64]. Interestingly, protein aggregates in the Alzhei-

mer’s brain principally contains P-tau, rather than nor-

mal tau, suggesting that in vivo the aggregation

process mainly implicates the phosphorylated protein.

This should be considered in current and future mod-

els and hypothesis considering tau aggregation mecha-

nisms in vivo. In the disease brain, abnormal

phosphorylation of tau results from the action of sev-

eral kinases, which generate the characteristic Alzhei-

mer’s disease P-tau epitopes [65]. Interestingly, these

P-tau epitopes cannot be obtained in vitro unless hep-

arin is added to the kinase phosphorylation reaction

mixture [5,66]. This suggests that in the Alzheimer’s

brain, HS can participate not only to the tau aggrega-

tion processes, but also to its abnormal phosphoryla-

tion, which might precede or concomitantly occurs

with its aggregation (Fig. 3; pathway a-c). Moreover,

beyond the potential role that HS seems to play in the

processes of tau phosphorylation and aggregation,

these polysaccharides have also shown to play a cen-

tral role in the propagation of tau proteopathic parti-

cles (or proteopathic seeds) from one cell to another, a

phenomenon known as spreading [67]. Indeed, in early

Alzheimer’s disease, tauopathy is detected in certain

brain regions while, as the disease progresses, tauopa-

thy appears in other regions [68]. Although it is not

yet known how the transfer of proteopathic seeds

occurs between cells and brain regions, the hypothesis

according to which the propagation mechanism would

be comparable to the one operating during the propa-

gation of prions has been proposed [69]. Interestingly,

the tau proteopathic seeds uptake by healthy neurons

has been shown to be mediated by the interaction of

these particles with cell membrane-associated HSPG

[67]. Altogether, these works suggest that HS are

involved in the cellular mechanisms leading to tau mis-

folding, phosphorylation, aggregation, and spreading

in the Alzheimer’s brain.

Recent studies aiming to better understand the

importance of HS structures in Alzheimer’s disease are

currently advancing. For instance, we recently pro-

posed the central implication of HS, and more partic-

ularly of 3-O-sulfated HS sequences, in the

development of Alzheimer’s disease-related tauopathy

[5]. Moreover, more recent works have additionally

shown that 6-O-sulfate groups in HS are centrally

required to establish the interaction of HS with tau

[70]. Interestingly, while 6-O-sulfation stands as one of

the main modifications in the HS chains, 3-O-sulfation

remains rare [71]. Thus, this is not surprising that

avoiding 6-O-sulfation result in the highest loss of HS

interactions with tau. Although these studies are

already giving important insights into the complex

structure of the HS sequences required for their inter-

actions with tau in the Alzheimer’s brain, it must be

considered that the HS domain can carry sulfate at

the different sugar positions, and that the sulfation

pattern, rather than one unique sulfation position, can

be of central importance in the HS interaction with

tau. Moreover, the interaction domain in HS result

from complex biosynthetic pathways involving several

not only sulfotransferases, but also glycosyl trans-

ferases (EXTs and EXTLs), epimerase, heparanase

and sulfatases (Sulfs), some of them could then play

important roles in the production of the HS sequences
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involved in tauopathy development and progression in

the disease brain.

Glycosaminoglycans and Parkinson’s
disease

Parkinson’s disease is a movement disorder in which

dopaminergic neurons fail to produce dopamine due

to their entry into a neuronal death process [72]. Some

cases are genetic, but most are considered sporadic.

Pathologically, Parkinson’s disease is characterized by

the accumulation of protein aggregates, called Lewy

bodies, in neuronal cells. Lewy bodies are mainly

formed by the fibrillated protein a-synuclein [73], char-

acteristic of a-synucleinopathies. Although the physio-

logical role of this protein has not yet been clarified,

its central implication in the pathophysiology of

Parkinson’s disease is well-accepted [73,74]. Accord-

ingly, Lewy bodies are observed in transgenic animals

in which a mutation in the a-synuclein gene repro-

duces the dominant autosomal form observed in

hereditary Parkinson’s disease [73]. However, a-synu-
clein aggregates also accumulate in sporadic forms of

the disease, in which no mutation has been identified.

To date, the origin of the a-synuclein aggregation

remains undetermined. Structurally, a-synuclein is a

highly conserved 14 kDa protein abundant in distinct

neurons and in the presynaptic compartment. In

humans, three isoforms (112, 126, or 140 amino acids)

produced by alternative splicing are known [75,76].

The central region of this protein, formed by residues

61–95, comprises an area highly prone to aggregation,

while the C-terminal domain (residues 96–140) protects
the protein from aggregation [75]. The great structural

plasticity of a-synuclein allows it to adopt various con-

formations and gives to the protein an important ten-

dency to unfold and to form profibrillar oligomers and

amyloid fibrils [76]. Interestingly, although the main

constituent of Lewy bodies is a-synuclein [73], other

molecules such as HS are present in the protein aggre-

gates, suggesting that the sulfated polysaccharides can

play roles in the aggregation process [77]. Depending

on their level of sulfation and on the position of the

sulfate groups in the polysaccharidic chain, HS have

shown to differentially stimulate the formation of a-
synuclein fibrils through interactions with the N-term-

inal domain of the protein [77], which can possibly

promote the protein aggregation by different pathways

(Fig. 3). However, this is still controversial [78,79],

possibly because of the current lack of widely available

tools allowing the study of HS in biological contexts.

In the other hand, indirect interactions between HS

and proteins that are not directly involved in the

neurodegenerative process, but that can indirectly

influence it, have been reported. For instance, the

interaction of a-synuclein with glyceraldehyde 3-phos-

phate dehydrogenase (GAPDH) oligomers formed in

contact with heparin has been proposed as a protective

mechanism against a-synuclein oligomers toxicity [80].

Moreover, as other GAGs, HS can readily potentiate

the aggregation kinetics of a-synuclein in vitro.

Although these observations suggest the possible par-

ticipation of HS in the process of intracellular aggrega-

tion of a-synuclein in Parkinson’s disease, research in

this area is still limited and the number of groups able

to combine glycobiologic approaches to the study of

the general mechanisms that operate in the disease

remains scarce. Advances in this direction will further

improve our understanding of the role of these sul-

fated polysaccharides in this pathology.

Heparan sulfates and prion diseases

The cellular prion protein (PrPC) is a GPI-cell mem-

brane anchored glycoprotein, which can acquire an

abnormal conformation responsible of transmissible

spongiform encephalopathies (TSE), known as prion

diseases [81]. These fatal neurodegenerative diseases

include scrapie, bovine spongiform encephalopathy,

Gerstmann-Str€aussler-Scheinker syndrome, Creutzfeldt-

Jakob disease, and its humans variant, among others.

The key event in prion diseases is the conversion of PrPC

into the abnormally conformed form called PrPSC. The

change in conformation of PrPC in PrPSC causes the

aggregation of the misfolded form and its pathological

accumulation as PrPSC amyloid fibrils called ‘prions’

[81]. A number of studies have shown several PrP

strains, multiple states of PrPSC aggregation (oligo-

meric, prefibrillar, and fibrillar), and different capacities

of the aggregates to deposit in different brain regions.

Interestingly, it has been demonstrated that the conver-

sion of PrPC into PrPSC occurs in a cell microenviron-

ment requiring the presence of HSPG at the outer

cellular membrane. HSPG probably act as platforms

allowing the conformational change from PrPC into

PrPSC (Fig. 3; pathway a-b) [40]. In vivo, HS are present

in the prion amyloid plaques [36], in accord with their

putative role in the transformation of PrPC to PrPSC

and with their participation to the subsequent PrPSC

aggregation (Fig. 3; pathway a-b). Accordingly, certain

sulfated polyanions mimicking HS have shown prophy-

lactic effects in TSE cellular and animal models [82,83].

Interestingly, some of these studies have shown a con-

centration dependent contradictory polyanion effect

[84,85], suggesting that the HS effect in amyloid forma-

tion might also be dependent on the polyanion
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concentration present in the biological environment

where protein aggregation takes place. Moreover, since

some studies have shown that the various PrPSC strains

can differently be deposed in the different brain regions

[86,87], further investigations are required to explore the

effect of the particular HS structures, produced at the

different regions, in the formation and accumulation of

the various PrPSC strains. This hypothesis is supported

by the differential expression of the HS biosynthetic

machinery in the different brain regions [88]. This

glycobiology-based domain of research has not yet

been explored and remains an open question in

neurodegeneration.

Heparan sulfates in other
neurodegenerative diseases

The molecular mechanisms leading to protein aggrega-

tion characteristic of proteinopathies are not yet well-

understood. However, HS have been found in most, if

not all, protein inclusions characterizing these diseases.

Although this review has focused on Alzheimer’s,

Parkinson’s, and prion diseases, HS also accumulate

with protein deposits in other neurodegenerative dis-

eases. Further and extensive studies will be necessary

to investigate whether and how HS, or other sulfated

GAGs, can be involved in the molecular mechanisms

responsible of protein aggregation and deposition in

the different neurodegenerative diseases (Table 1), and

how GAGs could selectively be involved in the specific

brain region vulnerability to amyloid deposition in

those diseases.

Conclusion

Sulfated GAGs, and particularly HS, coaccumulate with

protein inclusions characteristic of neurodegenerative

diseases including Alzheimer’s, Parkinson’s, and prion

diseases. Although previous and emerging data suggest

a critical role of HS in the kinetics of aggregation of

most, if not all, amyloidogenic proteins, in the

modulation of their post-translational modifications,

and in the promotion of proteopathic seeds cellular

uptake and toxicity, it is not yet clear whether and how

these complex polysaccharides can influence the path-

ways leading to protein deposition inside and outside

cells. Identification of the HS biosynthetic pathways

producing particular HS structures in each brain

region, and how these structures could differently affect

protein aggregation and deposition in each particular

region, will allow a better understanding of the glycobi-

ology-related mechanisms leading to proteinopathies in

brain.
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