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Abstract
We revisit generalized entropic formulations of the uncertainty principle for an
arbitrary pair of quantum observables in two-dimensional Hilbert space. Rényi
entropy is used as an uncertainty measure associated with the distribution
probabilities corresponding to the outcomes of the observables. We derive a
general expression for the tight lower bound of the sum of Rényi entropies for
any couple of (positive) entropic indices (α, β). Thus, we have overcome the
Hölder conjugacy constraint imposed on the entropic indices by Riesz–Thorin
theorem. In addition, we present an analytical expression for the tight bound
inside the square [0 , 1/2]2 in the α–β plane, and a semi-analytical expression
on the line β = α. It is seen that previous results are included as particular
cases. Moreover we present a semi-analytical, suboptimal bound for any couple
of indices. In all cases, we provide the minimizing states.

PACS numbers: 03.65.Ta, 89.70.Cf, 03.65.Ca, 03.65.Aa

1. Introduction

The uncertainty principle (UP) is a fundamental concept in physics that states the impossibility
of predicting with absolute certainty and simultaneously the outcomes of measurements for
pairs of noncommuting quantum observables. In its primary quantitative formulation, the
principle is described by the existence of a nontrivial lower bound for the product of the
variances of the operators [1–3]. However, such formulations are not always adequate due
to various reasons. As an example, there exist variables with infinite variance [4], so that
the second-order moment is not always convenient for describing the dispersion of a random
variable. Moreover, in the case of discrete-spectrum observables, there is no universal nontrivial
lower bound, and thus Heisenberg-like inequalities do not quantify the UP [5–7].

In order to overcome the potential inadequacy of the variance-based expression of the UP,
many formulations based on other measures of dispersion have been proposed, for instance
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issuing from information theory [8–10]. The pioneering works of Hirschman [11], Bialynicki-
Birula and Mycielski [12] based on important results from Beckner [13], Deutsch [14] or
Maassen and Uffink [15] who proved a result conjectured by Kraus [16], have given rise to
many versions based on generalized information entropies (or entropic moments) [17–25],
on Fisher information [26–28], or on moments of various orders [29]. Recently, generalized
versions of entropic and support inequalities in the context of variables described by frames
instead of bases, have been proposed [30].

In this paper, we focus on the Rényi entropy formulation of UP in the case of discrete-
spectrum operators. Specifically, we search for (tight) lower bounds for the sum of Rényi
entropies associated with the outcomes of a pair of observables. In the majority of previous
related studies, the entropic indices corresponding to both observables are considered to be
conjugated in the sense of Hölder, since the proofs make use of Riesz–Thorin or Young–
Hausdorff theorems. Extensions for nonconjugated indices exist, based on the decreasing
property of Rényi entropy versus its index, leading then to suboptimal bounds [22, 30]. These
bounds have been refined in the case of two-level systems (or qubits) when the entropic
indices coincide and have the value 1/2 [31] or 2 [32, 33]. Here we extend these results
beyond the scope of Riesz’s theorem, allowing for arbitrary couples of indices. We provide
a semi-analytical treatment of the problem and we find significant, nontrivial inequalities
expressing UP for qubits. Moreover, we supply the minimizing states for the uncertainty
relations established.

The paper is organized as follows. In section 2, we begin with basic definitions and
notation, and summarize the known results concerning generalized entropic uncertainty
relations for N-level systems. In section 3 we state the problem for qubits and present our
major results. A discussion is provided in section 4. The proofs of our results are given in the
appendices.

2. Statement of the problem: notation and previous results

We consider pairs of quantum observables, say A and B, with discrete spectra on an
N-dimensional Hilbert space H. Pure states |�〉 ∈ H can be expanded onto the corresponding
orthonormal eigenbases {|ak〉}N

k=1 and {|bl〉}N
l=1. In order to fix the notation, we write

|�〉 = ∑N
k=1 ψk|ak〉 = ∑N

l=1 ψ̃l |bl〉 where the ψk and ψ̃l are complex coefficients, which we
arrange in column vectors: ψ = [ψ1 · · · ψN]t and ψ̃ = [ψ̃1 · · · ψ̃N]t . From orthonormality of
the bases, one has

ψ̃ = Tψ where Tlk = 〈bl |ak〉, (1)

being T an N × N unitary matrix.
Vectors ψ and ψ̃ are such that ‖ψ‖2

2 = ∑
k |ψk|2 = 1 and similarly ‖ψ̃‖2

2 = 1. A vector
with components |ψk|2 = |〈ak|�〉|2 is interpreted as a probability vector (for brevity, we denote
this vector as |ψ |2), where |ψk|2 represents the probability of measuring eigenvalue ak as the
outcome for observable A when the quantum system is in the state |�〉 (resp. |ψ̃l|2 = |〈bl |�〉|2
for measurement of B).

We are interested in uncertainty relations concerning the simultaneous observations of two
magnitudes, particularly their statement through the use of information-theoretic quantities
[10]. The measure of ignorance or lack of information that we employ is the Rényi entropy
[9] of a probability vector p = [p1 · · · pN]t (with pk � 0 and

∑N
k=1 pk = 1):

Hλ(p) = 1

1 − λ
log ‖p‖λ

λ = 1

1 − λ
log

(∑
k

pλ
k

)
(2)

2
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where λ � 0 is the entropic index and ‘log’ stands for natural logarithm. The limiting
case λ → 1 is well defined and gives Shannon entropy H1(p) ≡ H(p) = −∑k pk log pk.
The index λ plays the role of a magnifying glass in the following sense: when λ < 1,
the contribution of the different terms in sum (2) becomes more uniform with respect to
the case λ = 1; conversely, when λ > 1, the leading probabilities of the distribution are
stressed in the summation. Indeed, in the extreme case λ = 0, H0 is simply the number of
nonzero components of the probability vector, regardless of the values of the probabilities;
this measure is closely linked to the L0 norm which is relevant in signal processing [30, 34,
35]. In contrast, H∞ = − log(maxk pk) only takes into account the maximum component of
the probability vector, and is known as min-entropy due to the nonincreasing property of Hλ

versus λ for a given probability distribution. Another relevant property is that Rényi entropy
Hλ is concave for λ ∈ [0 , 1], or even when λ ∈ [0 , λ∗(N)] where the upper limit depends on
the dimension of the probability vector [e.g. λ∗(2) = 2] [36, p 57]. Rényi entropies appear
naturally in several contexts, as signal processing (Chernoff bound, Panter–Dite formula)
[10, 37–39 and references therein], multifractal analysis [40–42], or quantum physics (collision
entropy, purity, informational energy, Gini–Simpson index, index of coincidence, repeat rate)
[25, 42–45 and references therein].

One can easily verify that Rényi entropies are positive and that in the N-states case they
are upper-bounded by log N: 0 � Hλ(p) � log N. The lower bound is achieved when the
probability distribution is a Kronecker-delta, pk = δk,i for certain i, and the upper bound
corresponds to the uniform distribution, pk = 1/N.

In this contribution we will consider the Rényi entropies of the probability vectors |ψ |2
and |ψ̃ |2, associated with the measurement of observables A and B, respectively. The fact that
the sum of both entropies is lower bounded has given rise to the so-called entropic uncertainty
relations, which are of the type

Hα(|ψ |2) + Hβ (|ψ̃ |2) � Bα,β;N (3)

for any couple of (positive) entropic indices (α, β), where the bound Bα,β;N is nontrivial,
i.e. nonzero, and universal in the sense of being independent of the state |�〉 of the quantum
system. The ultimate goal is to find the tightest bound, which by definition is obtained by
minimization of the left-hand side, thus

Bα,β;N ≡ min
|�〉

(Hα(|ψ |2) + Hβ (|ψ̃ |2)) � Bα,β;N . (4)

It turns out that the tight bound Bα,β;N only depends on the transformation matrix T in which
an important characteristic is the so-called overlap (or coherence) between the eigenbases,
given by

c = max
k,l

|〈bl|ak〉|.

From the unitarity property of matrix T , the overlap is in the range c ∈ [1/
√

N , 1]. The case
c = 1/

√
N corresponds to observables A and B being complementary meaning that maximum

certainty in the measure of one of them implies maximum ignorance about the other. In contrast
c = 1 corresponds to the observables A and B share (at least) an eigenvector; this situation
happens, for example, when the observables commute.

The problem has been addressed in various contexts, and in some cases numerical and/or
analytical bounds have been found. Several results correspond to conjugated indices (in the
sense of Hölder3, i.e. 1

2α
+ 1

2β
= 1) as they are based on the Riesz–Thorin theorem [46];

3 More rigorously, 2α and 2β are Hölder-conjugated. Here we employ this terminology for α and β, by misuse of
language.

3
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however there exist few results for nonconjugated indices. Before summarizing the known
results in the literature, let us define the following regions in the α–β plane:

C =
{
(α, β) : β = α

2α − 1
with α > 1/2, β > 1/2

}
C = {(α, β) : 0 � α � 1/2, β � 0} ∪

{
(α, β) : α > 1/2, 0 � β <

α

2α − 1

}
C =

{
(α, β) : α > 1/2, β >

α

2α − 1

}
(5)

C is called the conjugacy curve, while C and C are referred to as ‘below the conjugacy curve’
and ‘above the conjugacy curve’, respectively. Now a summary of results available in the
literature follows:

• For (α, β) ∈ C (conjugacy curve), N-level systems and any overlap c: the bound
Bα,β;N = −2 log c can be deduced from the paper by Maassen and Uffink [15]. In general,
this bound is not tight. Particular cases have been studied.

* c = 1/
√

N (complementary observables): the bound Bα,β;N = log N is tight [20, 22].

* α = β = 1 (Shannon entropies): Deutsch [14] found the bound B1,1;N = −2 log( 1+c
2 ),

which has been improved by Maassen and Uffink [15, 16]. A further improvement
has been given by de Vicente and Sanchez-Ruiz [47, 48] in the range c ∈ [c∗, 1] with
c∗ � 0.834, by using Landau–Pollak inequality linking maxk |ψk|2 and maxl |ψ̃l|2.
These bounds are not tight, except for complementary observables (see also [20, 22])
or for N = 2 (qubits) [49]. The Shannon entropic uncertainty relation in the case of
the qubit has been treated by Garret and Gull [50] and by Sánchez-Ruiz [51].

• For (α, β) ∈ C (below the conjugacy curve), N-level systems, and for any c: the Deutsch
and Maassen–Uffink bounds remain to be valid due to the decreasing property of the Rényi
entropy versus the entropic index [46]. For c = 1/

√
N, the bound Bα,β;N = log N is tight

[20, 22].

• For (α, β) ∈ C (above the conjugacy curve), N-level systems, and for any c: Maaseen
and Uffink obtained a suboptimal relation minimizing the sum of min-entropies restricted
to the Landau–Pollak inequality, where the bound is the same as given by Deutsch. For
c = 1/

√
N, a known bound is Bα,β;N = 2 log

(
2
√

N
1+√

N

)
[15]. However, this bound is not

tight; indeed for the particular case α = β = 2 it has been improved by Luis [52] to the
value 2 log

(
2N

N+1

)
.

• For β = α, N-level systems, and any overlap c, using Schur convexity arguments Puchała
et al derived recently the bound Bα,α;N = 1

1−α
log{( 1+c

2 )2α + [1 − ( 1+c
2 )2]α} [53]. In

general, this bound is not tight.

• For α = β = 1/2, N = 2, and arbitrary c: the optimal bound B 1
2 , 1

2 ;2 = log[1 +√
4c2(1 − c2)] was obtained by Rastegin [31].

• For α = β = 2 (collision entropies), N = 2, and arbitrary c: the tight bound was found by
Bosyk et al [32], with B2,2;2 = −2 log( 1+c2

2 ).

• For α = β ∈ (0, 2], N = 2 and c = 1/
√

2, the optimal bound was analyzed in the context
of the Mach–Zehnder interferometric setting [33] with Bα,α;2 = log 2 if α � α† ≈ 1.43
and Bα,α;2 = 2

1−α
log[( 1+1/

√
2

2 )2 + (
1−1/

√
2

2 )2] otherwise.

4
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3. General Rényi entropic uncertainty relations for qubits

In this contribution we deal with the problem of generalizing the last three developments
summarized in the preceding section and those by Sánchez-Ruiz [51] and Ghirardi et al [49]
as well, i.e. for qubits (N = 2) and any overlap c, to the case of arbitrary Rényi entropy indices
(α, β) to measure uncertainty. We seek the minimum of the entropies’ sum in this general
situation and also study those states that saturate the bound. Our major results are given by the
following propositions.

Proposition 1. Let us consider a pair of quantum observables A and B acting on a two-
dimensional Hilbert space, and the corresponding eigenbases {|a1〉, |a2〉} and {|b1〉, |b2〉}.
Consider a quantum system in the qubit pure state |�〉 described by the projections
ψ = [ψ1 ψ2]t or ψ̃ = [ψ̃1 ψ̃2]t = Tψ on those bases respectively, where Tlk = 〈bl |ak〉
for k, l = 1, 2. Then, for any couple of Rényi entropic indices (α, β) ∈ R

2
+, the following

uncertainty relation holds:

Hα(|ψ |2) + Hβ (|ψ̃ |2) � Bα,β;2(c) (6)

where the tight lower bound for the sum of Rényi entropies is obtained as

Bα,β;2(c) = min
θ∈[0 , γ ]

(
logDα(θ )

1 − α
+ logDβ (γ − θ )

1 − β

)
(7)

with

c ≡ max
k,l=1,2

|Tlk| ∈
[

1√
2

, 1

]
, γ = arccos c (8)

and

Dλ(θ ) ≡ (cos2 θ )λ + (sin2 θ )λ. (9)

Furthermore, for any pair of two-dimensional observables we advance the minimizing
solution.

Proposition 2. Under the conditions of proposition 1, let us parameterize the matrix T in the
form [54, 55]

T = 
(u)V (γT )
(v) (10)

where


(·) = exp(ı diag(·)) and V (γT ) =
[

cos γT sin γT

− sin γT cos γT

]
, (11)

in terms of γT ∈ [0 , π
2 ] and the 2D real vectors u, v. Denote by {θ (i)

opt}i∈I the set of arguments
that minimize the expression in equation (7), where I lists all the different possible solutions.
Then the bound is achieved for the qubits whose projections onto the A-eigenbasis are

ψ
(i,n,ϕ)
opt = eıϕ
(−v)

⎡⎢⎣cos
(
εT θ

(i)
opt + nπ

2

)
sin
(
εT θ

(i)
opt + nπ

2

)
⎤⎥⎦ (12)

with

ϕ ∈ [0 , 2π), εT = sign
(π

4
− γT

)
and n = 0, 1. (13)

5
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Figure 1. Relative difference
Bα,β;2(c)−Bα,β;2(c)

Bα,β;2(c)
between our bound Bα,β;2(c), equation (7) and:

(left) the Maassen–Uffink bound Bα,β;2(c) = −2 log c for conjugated entropic indices β = α
2α−1 ;

(right) the Puchała et al bound Bα,α;2(c) = 1
1−α

log
{(

1+c
2

)2α +
[
1 −

(
1+c

2

)2]α}
for equal

entropic indices β = α.

We now concentrate on discussing some derivations of our approach, and postpone the
proofs of the propositions to the appendices. To begin with, we make a connection with the
so-called Landau–Pollak uncertainty inequality [56]. Although our proofs do not rely on this
uncertainty relation, we can link a posteriori both results when the inequalities are saturated.
For that purpose, let us introduce the probability vectors PA and PB respectively issued from
the optimal states ψ

(i,n,ϕ)
opt and ψ̃

(i,n,ϕ)
opt = Tψ

(i,n,ϕ)
opt , namely

PA =
⎡⎣cos2

(
εT θ

(i)
opt + nπ

2

)
sin2

(
εT θ

(i)
opt + nπ

2

)
⎤⎦ and PB =

⎡⎣cos2
(
γT − εT θ

(i)
opt − nπ

2

)
sin2

(
γT − εT θ

(i)
opt − nπ

2

)
⎤⎦ .

A rapid inspection of the different cases for γT and n allows us to obtain

arccos
√

max
k=1,2

PA
k + arccos

√
max
l=1,2

PB
l = arccos c (14)

where arccos c = γ = min(γT , π
2 −γT ) = π

4 −|π
4 −γT | ∈ [0 , π

4 ]. This corresponds precisely
to the equality in the Landau–Pollak relation. This relation is explicitly used by Maassen and
Uffink [15] when recovering the bound of Deutsch [14], and by de Vicente and Sanchez-Ruiz
[47] to obtain their inequality.

Our bound (7) is better than (or at least equal to) all bounds that can be found in the
literature dealing with the qubit, which is obvious since we are solving the optimization
problem here for any couple of indices (α, β). Moreover, we stress that here we do obtain
wavevectors (12) that saturate the inequality. As an illustration of the improvement provided
in this contribution, we show the relative difference between our bound (7) and the Maassen–
Uffink (figure 1 (left)) and Puchała et al (figure 1 (right)) bounds in some particular situations.
It can be seen from these density plots that the differences are always positive and, in the cases
shown, they can grow up to 77% or 28%, respectively.

We mention also that in the general case of arbitrary Rényi entropy indices to measure
uncertainty, the bound Bα,β;2, equation (7), has to be sought numerically. However, for indices
in some regions of the α–β plane, we are able to obtain analytical or semi-analytical results.
These are presented in the following corollaries.

Corollary 1. In the context of propositions 1 and 2, if the entropic indices lie within the square

(α, β) ∈ [0 , 1/2]2, (15)

there exists an analytical expression for the bound in the form

Bα,β;2(c) = log[(c2)λ + (1 − c2)λ]

1 − λ
where λ = max(α, β). (16)

6
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Figure 2. α�(c) versus c ∈
[

1√
2

, 1
)

.

Moreover, the wavevectors that saturate the inequality correspond to: θopt = 0 if α < β,
θopt = γ if α > β, and both solutions if α = β.

First, one can observe a transition in terms of entropic indices at α = β, since only in
this situation do both angles lead to wavefunctions that saturate the inequality. We notice that
corollary 1 includes some of the situations discussed at the end of section 2 as particular cases.
On the one hand, when c is fixed to 1/

√
2, the optimal bound of [20, 22] is recovered, and if

α = β this bound coincides with that given in [33]. On the other hand, when c is unrestricted
and if α = β = 1/2, one recovers the bound obtained in [31]. We stress that these results have
been proven analytically and extended the scope for any c and for any couple (α, β) in the
square [0 , 1

2 ]2.
On the line β = α, we obtain a semi-analytical result as follows:

Corollary 2. In the context of propositions 1 and 2, if the entropic indices are equal (β = α),
the bound can be expressed as

Bα,α;2(c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
log[(c2 )α+(1−c2 )α]

1−α
if α ∈

[
0 , 1

2

(
1 − δc, 1√

2

)
+ α† δc, 1√

2

)
min

θ∈(0 ,
γ

2 ]
log Dα (θ )+log Dα (γ−θ )

1−α
if α ∈

[
1
2

(
1 − δc, 1√

2

)
+ α† δc, 1√

2
, α�(c)

]
2 log

[
( 1+c

2 )
α+( 1−c

2 )
α
]

1−α
if α ∈ (α�(c),+∞)

(17)

where γ = arccos c, α† ≈ 1.43 is the unique solution of 2
1−α

log[( 2+√
2

4 )α + ( 2−√
2

4 )α] = log 2,
α�(c) is shown in figure 2 for c ∈ [ 1√

2
, 1), and δc, 1√

2
= 1 when c = 1/

√
2, otherwise it is 0.

Moreover, the bound is achieved for θ
(i)
opt = γ

2 + i( γ

2 − θopt) with i ∈ I = {−1, 1} and θopt = 0
in the first interval, θopt is the (unique, numerical) solution of the minimization in the second
interval, and θopt = γ /2 in the third interval (thus the two solutions reduce to only one).

From this corollary one can observe the following facts.

• When c = 1/
√

2, one has α�( 1√
2
) = α†. Thus, the second interval in (17) reduces to

one point and the bound there takes the value log 2; this is also the value acquired in the
first interval. There is a transition in the behavior of the bound with α at α†. This can
be seen from the minimizers, since optimal values are θopt = 0, or 0 and γ /2, or γ /2,
depending on whether α is smaller than, equal to, or larger than α† respectively. These
observations agree with the results in [33]. Besides, the transition value α† has already
been shown graphically in [6] as the index that vanishes the second derivative versus θ of
logDα (θ )+logDα (γ−θ )

1−α
at θ = γ /2.

7
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Figure 3. Optimal angle θopt as a function of α > 1/2 for some given values of c. As an illustrative
example, we specify the situation when c = 0.75.

• For any c ∈ (1/
√

2, 1), the situation corresponding to the first interval in (17) is included
in corollary 1; the lengths of the second and third intervals depend on c, as α�(c) decreases
from α† to 1/2 (see figure 2). Above α = 1/2, the optimal angle θopt increases with α

continuously from 0 to γ /2, as shown in figure 3. There is no transition in the value of the
bound.

• When c = 1, then γ = 0 and one obtains the trivial bound Bα,α;2(1) = 0.

The case β = α is precisely that treated by Puchała et al in [53], for N-level systems.
However, as already pointed out, in the two-dimensional case their bound is not optimal (recall
figure 1 (right)). Notice that some situations discussed at the end of section 2 are included
in corollary 2 as particular cases. For instance, the de Vicente–Sanchez-Ruiz bound [47] is
recovered by taking α → 1; the bound is optimal for qubit systems, although in [47] it has
been calculated treating separately ψ and ψ̃ without taking into account the relation between
them, except through the Landau–Pollak inequality. Furthermore, the tight bound obtained in
[33] is recovered for α = 2. We stress that here we extend previous results along all the line
β = α, giving a semi-analytical expression for the bound.

Finally, using the fact that Rényi entropy Hλ decreases with λ [10, 46], one obtains the
suboptimal result.

Corollary 3. In the context of proposition 1, for any couple (α, β) ∈ R
2
+, the entropies’ sum

is lower-bounded in the form

Hα(|ψ |2) + Hβ (|ψ̃ |2) � Bλ,λ;2(c) with λ = max(α, β) (18)

where Bλ,λ;2(c) is given in (17).

Notice that taking arbitrarily large entropic indices in corollaries 2 and 3, we recover the
Deutsch bound and obtain the Maassen–Uffink suboptimal relation

Hα(|ψ |2) + Hβ (|ψ̃ |2) � H∞(|ψ |2) + H∞(|ψ̃ |2) = −2 log

(
1 + c

2

)
(19)

for any couple of indices.

4. Discussion

In this contribution we deal with the most general entropic formulation of the uncertainty
principle in terms of the sum of Rényi entropies associated with any given pair of 2D quantum
observables, in the case of pure states of the qubit system. In this context, the UP is expressed

8
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0.5 1 2

0.5

1

2

α

β

C

C

C

Figure 4. Sketch in the α–β plane of the uncertainty relation obtained for the entropies’ sum. The
tight bound is analytically known within the square [0 , 1/2]2 (dark gray region, corresponding to
corollary 1) and semi-analytically on the line β = α (solid line, corollary 2); otherwise the optimal
bound we obtained is only calculable numerically while suboptimal bound are analytically known
(light gray region, proposition 1 and corollary 3). Previous results in the literature correspond
to the points (α, β) = (1/2, 1/2),(1, 1) and (2, 2) (dots), as well as those on the conjugacy
curve C (dashed line). The regions ‘above’ (C) and ‘below’ (C) the conjugacy curve, as defined in
equation (5), are also indicated.

by means of inequalities of the form Hα(|ψ |2) + Hβ (|ψ̃ |2) � Bα,β;2(c) where c is the overlap
of the transformation between the eigenspaces of the observables. We search for the tightest
lower bound of the entropies’ sum as well as for the minimizing states. In contrast to many
results in the literature, for that purpose we do not make use of Riesz–Thorin theorem, thus
avoiding the Hölder conjugacy constraint on indices α and β. The bound obtained here is
valid for any couple of indices, tight, and universal in the sense that it does not depend on
the state of the system. This is the main result of the paper, given in propositions 1 and 2. In
general the bound and minimizers are obtained numerically. Notice that in some domains of
the α–β plane we are able to solve the problem in an analytical or semi-analytical way. In
effect, in corollary 1 we present an analytical expression for the tight bound within the square
(α, β) ∈ [0 , 1/2]2; whereas in corollary 2 we show a semi-analytical expression on the line
β = α. As particular cases, we recover optimal results given in the literature for the points
(α, β) = (1/2, 1/2), (1, 1) and (2, 2). Notice also that in corollary 3 a semi-analytical bound
is given for any couple of entropic indices, although this result is suboptimal. In particular, we
recover a suboptimal relation derived by Maassen and Uffink. Figure 4 is a sketch in the α–β

plane of the kind of result derived in this paper. Extension of these results to N-level systems
is currently under study [57]. We have preliminary results where a reduction to the two-level
case by means of the Landau–Pollak inequality is employed.

It is easy to see that the bounds given in proposition 1 and the corollaries remain valid in the
case of mixed states when (α, β) ∈ [0, 2]2, by using the concavity property of Rényi entropy.
Indeed for N-level systems, if one has a universal relation Hα(|ψ |2) + Hβ (|ψ̃ |2) � Bα,β;N
valid for pure states, then assuming (α, β) ∈ [0 , λ∗(N)]2 one has Hα(

∑
m μm|ψ(m)|2) +

Hβ (
∑

m μm|ψ̃ (m)|2) �
∑

m μm(Hα(|ψ(m)|2) + Hβ (|ψ̃ (m)|2)) �
∑

m μmBα,β;N = Bα,β;N for a
mixture since

∑
m μm = 1. In other words, any entropic uncertainty relation for pure states is

also valid for mixed states in the domain [0 , λ∗(N)]2. The bound for mixed states when the
entropic indices lie outside this square remains to be studied.

9
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Appendix A. Proof of proposition 1 and corollaries 1 and 2

We use an approach similar to that of [50], but starting from the most general unitary
transformation T and state |�〉. Our approach allows us not only to evaluate the optimum
entropic bounds, but also the minimizing states.

A.1. Simplification of the minimization problem

The vector ψ is such that ‖ψ‖2 = 1 and can thus be written under the form

ψ = 
(ϕ) s (A.1)

where s is a unit 2D vector and 
(ϕ) is a diagonal matrix given by


(ϕ) = exp(ı diag(ϕ)) (A.2)

in terms of the 2D phase vector ϕ. We parameterize the unitary matrix T as the product of
three unitary matrices [54, 55]

T = 
(u)V (γT )
(v) , where V (γT ) =
⎡⎣ cos γT sin γT

− sin γT cos γT

⎤⎦ , (A.3)

in terms of γT ∈ [0, π
2 ) and the 2D phase vectors u and v (other possible angles can be taken

into account playing with phases). This parameterization is also known as ‘Z−Y decomposition
for a single qubit’ [58, Th. 4.1]. Notice that the overlap c ≡ maxk,l |Tlk| = maxk,l |Vlk(γT )|
does not depend on the phases. Combining equations (1) and (A.1)–(A.3), we obtain

ψ̃ = 
(u)V (γT )
(v + ϕ) s. (A.4)

Our goal is to solve the minimization problem

Bα,β;2 = min
ϕ,s

(Hα(|
(ϕ) s|2) + Hβ (|
(u)V (γT )
(v + ϕ) s|2)) (A.5)

for given entropic indices α and β, and transformation matrix T . Recall that the argument
of each entropy is a probability vector, and we use the notation |ψ |2 ≡ [|ψ1|2 |ψ2|2]t

(and similarly for |ψ̃ |2).
The problem simplifies due to numerous invariances and symmetries.

• Invariance under phase shifts applied to the wavevectors (multiplication by a matrix 
):

Hα(|
(ϕ)s|2) + Hβ (|
(u)V (γT )
(v + ϕ)s|2) = Hα(|s|2) + Hβ (|V (γT )
(v + ϕ)s|2).
Also, since ϕ → v + ϕ is an isomorphism, the minimization in (A.5) reduces to

Bα,β;2 = min
ϕ,s

(Hα(|s|2) + Hβ (|V (γT )
(ϕ) s|2)) where γT ∈ [0 , π/2) (A.6)

and one can notice that the bound depends only on γT . Note that this fact is mentioned
in [53] and, in a sense, in [51]. We show below that even if phase v has no effect on the
bound, it does appear in the minimizing states.

10
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• Invariance under permutation of the components: playing with the phases one sees that

Hα(|s|2) + Hβ (|V (γT )
(ϕ)s|2) = Hα(|s|2) + Hβ (|V
(π

2
− γT

)

(ϕ − [π 0]t )s|2)

and thus the minimization problem (A.6) reduces a step further,

Bα,β;2 = min
ϕ,s

(Hα(|s|2) + Hβ (|V (γ )
(ϕ) s|2)) (A.7)

where

γ ≡ min
(
γT ,

π

2
− γT

)
∈ [0 , π/4]. (A.8)

This proves that the bound Bα,β;2 = Bα,β;2(c) depends only on the overlap c = cos γ . In
principle, this is not the case for N-level systems with N > 2. Note that the invariance
under permutation of the entropy sum is mentioned in [53], suggesting that one can restrict
the search for the bound to γT ∈ [0 ; π/4]. As we show below, one can again notice that
the full form of T (γT ∈ [0 ; π/2]) has an impact on the minimizing states.

• Symmetries and periodicities on s: we parameterize s(θ ) = [cos θ sin θ ]t . Then

* π -periodicity:

Hα(|s(θ )|2) + Hβ (|V (γ )
(ϕ)s(θ )|2) = Hα(|s(θ + π)|2)
+Hβ (|V (γ )
(ϕ)s(θ + π)|2)

so that one can restrict the search to θ ∈ [−π
2 , π

2 ].
* π

2 -symmetry: playing with the permutations and phases, it can be shown that

Hα(|s(θ )|2) + Hβ (|V (γ )
(ϕ)s(θ )|2) = Hα(|s(θ + π/2)|2)
+Hβ (|V (γ )
(Jϕ)s(θ + π/2)|2)

where J = [ 0
1

1
0

]
, allowing one to restrict a little bit further the interval θ ∈ [−π

4 , π
4 ].

* opposite angle: finally we note that s(−θ ) = 
([0 π ]t )s(θ ) so that

Hα(|s(θ )|2) + Hβ (|V (γ )
(ϕ)s(θ )|2) = Hα(|s(−θ )|2)
+Hβ (|V (γ )
(ϕ + [0 π ]t )s(−θ )|2)

allowing for a further restriction to θ ∈ [0 , π/4].

From these symmetries and invariances, the minimization problem simplifies to

Bα,β;2(c) = min
ϕ,θ∈[0 , π/4]

(Hα(|s(θ )|2) + Hβ (|V (γ )
(ϕ)s(θ )|2)) (A.9)

where

γ = min
(
γT ,

π

2
− γT

)
. (A.10)

A.2. Trivial case c = 1

In this case, γ = 0 and V (0) = I. Clearly choosing s = [1 0]t , one obtains Hα(|s|2) = 0
and Hβ (|V (0)
(ϕ) s|2) = Hβ (|s|2) = 0. Thus, the solution is trivial:

Bα,β;2(1) = 0. (A.11)

A.3. General nontrivial case 1√
2

� c < 1

We proceed in two successive steps: first we fix s (i.e. θ ) and minimize the entropies’ sum
over phase ϕ; second, for the optimal phase that depends (in principle) on θ , we determine the
value of θ that minimizes the entropies’ sum.

11
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convex function

0 ≤ λ ≤ 1

y

x

zλ = λx + (1 − λ)y

Figure A1. Vector z = |V (γ )
(ϕ) s(θ )|2 lives in the segment (the convex set) that links vectors
x = [cos2(γ − θ ) sin2(γ − θ )]t and y = [cos2(γ + θ ) sin2(γ + θ )]t . The typical behavior of
a convex function R

2 → R is represented by the solid line, illustrating that the maximum of this
function is attained at the boundaries of the convex set.

A.3.1. Minimization over phase ϕ. Note that phase ϕ plays a role only in the term
Hβ (|V (γ )
(ϕ)s(θ )|2), which is invariant under multiplication of the argument of the modulus
by the scalar exp(ıϕ′), i.e. by shifting both components of ϕ by the same phase. Without loss
of generality4, we write ϕ = [−ϕ2 ϕ2]t and thus

z ≡ |V (γ )
(ϕ) s(θ )|2 = cos2 ϕ2

[
cos2(γ − θ )

sin2(γ − θ )

]
+ sin2 ϕ2

[
cos2(γ + θ )

sin2(γ + θ )

]
. (A.12)

The mappings ϕ2 �→ −ϕ2 and ϕ2 �→ π − ϕ2 leave the Rényi entropy unchanged so that it is
enough to consider ϕ2 ∈ [0 , π/2] and the solutions are modulo π . Note that⎧⎪⎪⎪⎨⎪⎪⎪⎩

β > 1 ⇒ 1

1 − β
< 0 : arg min

1

1 − β
log ||x||ββ = arg max ||x||ββ = arg max

||x||ββ
β − 1

β < 1 ⇒ 1

1 − β
> 0 : arg min

1

1 − β
log ||x||ββ = arg min ||x||ββ = arg max

||x||ββ
β − 1

.

Thus, minimization over phase ϕ reduces to the maximization problem

max
ϕ2∈[0 , π/2]

‖|V (γ )
(ϕ)s(θ )|2‖β

β

β − 1
. (A.13)

Now notice that (A.12) is a convex combination of the vectors x = [cos2(γ −θ ) sin2(γ −
θ )]t and y = [cos2(γ + θ ) sin2(γ + θ )]t . The mapping z �→ ‖z‖β

β

β−1 is a convex function5 of z
[46, 59], then the maximum in (A.13) is attained at the boundaries of the convex set defined
by {z = μx + (1 − μ)y : μ = cos2 ϕ2, ϕ2 ∈ [0, π/2]} (see figure A1), namely

max
ϕ2∈[0 , π/2]

‖|V (γ )
(ϕ)s(θ )|2‖β

β

β − 1
= max

(Dβ (γ − θ )

β − 1
,
Dβ (γ + θ )

β − 1

)
(A.14)

where

Dλ(θ ) ≡ (cos2 θ )λ + (sin2 θ )λ. (A.15)

The maximum corresponds to ϕ2 = 0 or ϕ2 = π/2.
We now compare Dβ (γ−θ )

β−1 and Dβ (γ+θ )

β−1 , by considering the sign of the difference

�(θ, γ ) = Dβ (γ − θ ) − Dβ (γ + θ )

β − 1
(A.16)

4 In related literature the phase is generally chosen as [0 ϕ]t . Our choice allows us to determine the optimal phase
without calculations.

5 When β > 1, z �→ ‖z‖β
β is convex and β − 1 > 0 ensures the convexity of the mapping z �→ ‖z‖β

β

β−1 ; while when

β < 1, z �→ ‖z‖β
β is concave and β − 1 < 0 ensures the convexity of the mapping z �→ ‖z‖β

β

β−1 as well.

12
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θ0
θ

π
4

π
4

γ

γ = θ0 − θ

Figure A2. Illustration of the symmetries �(θ, γ ) = �(γ , θ ) = �(π/4 − θ, π/4 − γ ) =
�(π/4 − γ , π/4 − θ ). For instance, the point represented by a circle has three symmetric points
(represented by squares) for which � has the same value. Thus, it suffices to study (the sign of)
function � inside the triangle (dashed region) given in (A.17). The solid line represents the segment
γ = θ0 − θ inside this triangle.

where (θ, γ ) ∈ [0 , π/4]2. The arguments that follow justify that �(θ, γ ) � 0, i.e.
Dβ (γ−θ )

β−1 � Dβ (γ+θ )

β−1 .
Making use of the symmetries �(θ, γ ) = �(γ , θ ) = �(π/4 − θ, π/4 − γ ) =

�(π/4 − γ , π/4 − θ ), we restrict the study of sign(�) to the triangle

{(θ, γ ) ∈ [0 , π/4]2 : 0 � θ � min(γ , π/4 − γ )} (A.17)

as illustrated in figure A2. Noticing that �(θ, 0) = 0, we study the variation of � on the
segment γ = θ0 − θ inside the triangle, for each θ0 between 0 and π/4, as shown in the figure.
A simple derivation leads to

∂�(θ, θ0 − θ )

∂θ
= 2β sin(4θ − 2θ0){[sin2(2θ − θ0)]β−1 − [cos2(2θ − θ0)]β−1}

β − 1
. (A.18)

Since θ0/2 � θ � θ0, one has 0 � 2θ − θ0 � π/4; thus sin(4θ − 2θ0) � 0 and
sin2(2θ − θ0) � cos2(2θ − θ0), therefore (A.18) is positive proving that inside the triangle,
�(θ, θ0 − θ ) increases with θ and that it is non-negative.

Finally, minimization over phase ϕ gives

min
ϕ2∈[0 , π/2]

Hβ (|V (γ )
(ϕ)s(θ )|2) = logDβ (γ − θ )

1 − β
(A.19)

which is attained at ϕ2,opt = 0. Note that due to the invariance of the entropies’ sum under the
multiplication of the wavevector by a scalar exp(ıϕ′), in some sense there exists a ‘unique’
phase ϕ minimizing the entropies’ sum when s is fixed. Moreover, ‘this’ phase does not depend
on s.

A.3.2. Minimization over the angle θ . Now the minimization problem (A.10) has been
reduced to

Bα,β;2(c) = min
θ∈[0 , π/4]

(
logDα(θ )

1 − α
+ logDβ (γ − θ )

1 − β

)
. (A.20)

We have
∂

∂θ

(
logDα(θ )

1 − α
+ logDβ (γ − θ )

1 − β

)
= D′

α(θ )

(1 − α)Dα(θ )
− D′

β (γ − θ )

(1 − β)Dβ (γ − θ )
(A.21)

where

D′
λ(θ ) ≡ ∂Dλ

∂θ
= λ sin(2θ ) [(sin2 θ )λ−1 − (cos2 θ )λ−1]. (A.22)

13
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Since θ ∈ [0 , π/4], one has both sin(2θ ) � 0 and sin2 θ � cos2 θ ; thus the first term in the
right-hand side of (A.21) is positive. Moreover, γ − θ ∈ [−π/4 , π/4] and thus by the same
reasoning the second term in (A.21) has the same sign as the factor sin[2(γ − θ )]. Therefore,
for θ ∈ (γ , π/4] the entropies’ sum is increasing. Necessarily the minimum of the entropies’
sum corresponds to 0 � θ � γ , reducing the interval where θ has to be sought, i.e.

Bα,β;2(c) = min
θ∈[0 , γ ]

(
logDα(θ )

1 − α
+ logDβ (γ − θ )

1 − β

)
. (A.23)

At this step, the minimum of (A.23) has to be sought numerically. We have proved proposition 1
for the general case (α, β). In the sequel we go a step further for special cases.

A.4. Analytical result when (α, β) ∈ [0 , 1/2]2

The second derivative with respect to θ of the function to be minimized is
∂2

∂θ2

(
logDα(θ )

1 − α
+ logDβ (γ − θ )

1 − β

)
= Kα(θ )

[Dα(θ )]2
+ Kβ (γ − θ )

[Dβ (γ − θ )]2
(A.24)

where Kλ ≡ (D′′
λ Dλ − D′ 2

λ )/(1 − λ) is given by

Kλ(θ ) = 2λ

1 − λ

⎡⎣(2λ − 1)

(
sin2(2θ )

4

)λ−1

− (cos2 θ )2λ−1− (sin2 θ )2λ−1

⎤⎦ . (A.25)

This expression is strictly negative when λ � 1/2, so that the function logDα (θ )

1−α
+ logDβ (γ−θ )

1−β

is concave with respect to θ ∈ [0 , γ ]. Thus, the minimum is attained at the borders of the
segment, i.e. either for θ = 0 or θ = γ , or both if α = β. The function at these extremal points
takes the value logDβ (γ )

1−β
or logDα (γ )

1−α
. Comparing these values by using that Rényi entropy Hλ

is decreasing with λ and recalling that c = cos γ , we prove corollary 1.

A.5. Semi-analytical results when α = β

The function to be minimized in (A.23) is

Fα(θ ) ≡ logDα(θ ) + logDα(γ − θ )

1 − α
. (A.26)

Noting the symmetry Fα(θ ) = Fα(γ − θ ), the minimization problem reduces to find

Bα,α;2(c) = min
θ∈[0 , γ /2]

Fα(θ ) (A.27)

The case α = β ∈ [0 , 1/2] has been treated in the preceding subsection, thus we
concentrate in the case α = β > 1/2. The derivative of Fα with respect to θ is given by

F ′
α(θ ) ≡ ∂

∂θ
Fα(θ ) = 1

1 − α

(D′
α(θ )

Dα(θ )
− D′

α(γ − θ )

Dα(γ − θ )

)
. (A.28)

This expression clearly vanishes at θ = γ

2 , thus giving a possible solution. Other solutions
arise, depending on the value of c, as we show below.

A.5.1. Case c = 1/
√

2. In this case, γ = π/4. As seen, θ = π/8 is a possible solution.
The other one is θ = 0 since D′

α(0) = D′
α( π

4 ) = 0. As already observed in [33], there
are different behaviors below, at or above α† ≈ 1.430, which is the unique solution of
2 log[( 2+√

2
4 )α+( 2−√

2
4 )α]

1−α
= log 2. We summarize the results:

• when α < α†, θ = 0 is the unique solution to minimization problem, leading to the bound
log 2;

• at α = α†, both θ = 0 and θ = π/8 give the bound log 2;

• when α > α†, θ = π/8 is the unique solution, leading to the bound
2 log[( 2+√

2
4 )α+( 2−√

2
4 )α ]

1−α
.
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A.5.2. Case c ∈ (1/
√

2 , 1). In this case, γ ∈ (0 , π/4). It can be seen that θ = 0 does
not solve F ′

α(θ ) = 0, since D′
α(0) = 0 but D′

α (γ )

1−α
> 0. All the possible solutions are then in

θ ∈ (0 ,
γ

2 ]. We observe numerically the following behavior: for any fixed c, there exists a
value α�(c) such that

• when 1/2 < α < α�(c), the optimal angle θopt(α) is to be found numerically within
(0 ,

γ

2 ). We find that θopt(α) increases continuously from 0 to γ /2 (see figure 3). The
bound is then numerically expressed as well.

• when α � α�(c), θ = γ /2 is the unique minimum, leading to the bound
2 log[( 1+c

2 )α+( 1−c
2 )α ]

1−α
.

This subsection, together with the expressions for the minimizers in the last paragraph of
appendix B, completes the proof of corollary 2.

Appendix B. Proof of proposition 2

We denote by {θ (i)
opt}i∈I the set of arguments that minimize the entropies’ sum, where I lists the

different possible solutions. These minimizing angles belong to the interval [0, γ ] as shown
in (A.23), where γ is either γT or π/2 − γT as given in (A.7), being γT ∈ [0, π/2] one of
the parameters that characterizes the unitary matrix T , equation (A.3). The solutions for both
situations are as follows.

• γT = γ ∈ [0 , π/4]: recalling that we have redefined the phase as ϕ → v + ϕ, the
minimizing vectors ψ take the form 
(−v)s(θ (i)

opt). Symmetries θ → −θ , θ + π/2 and
θ + π lead to the final form for the minimizing vectors:

ψ
(i,n)
opt = 
(−v)

⎡⎣cos
(
θ

(i)
opt + nπ

2

)
sin
(
θ

(i)
opt + nπ

2

)⎤⎦ with i ∈ I and n = 0, 1,

up to a global phase factor. In figure B1(a) we present a sketch of all the optimal angles
for a given case (circles).

• γT = π/2 − γ ∈ [π/4 , π/2]: the optimal phase vector changes to −v → −v − [0 π ]t .
Using the same symmetries as above, the minimizing vectors take the form

ψ
(i,n)
opt = 
(−v)

⎡⎣cos
(
−θ

(i)
opt + nπ

2

)
sin
(
−θ

(i)
opt + nπ

2

)⎤⎦ with i ∈ I and n = 0, 1,

up to a global phase factor. In figure B1(a) we present a sketch of all the optimal angles
for a given case (crosses).

Noting that in the last two expressions the sign before the angle θ
(i)
opt is the same as the sign

of π/4−γT , we can unify both situations, thus leading to the expression given in proposition 2.

Case α = β. One has seen numerically the existence of a unique optimal angle θopt ∈ [0, γ /2]
(with γ = arccos c) leading to the lower bound of the entropies’ sum. Moreover, we have
seen that the entropies’ sum is invariant under the transformation θ → γ − θ . This leads
to the possible angles represented in figure B1(b), respectively for γT ∈ [0 , π/4] (circles)
andγT ∈ [π/4 , π/2] (crosses). In conclusion,

θ
(i)
opt = γ

2
+ i
(γ

2
− θopt

)
with i ∈ I = {−1, 1},

leading to the minimizers given in corollary 2.
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γ

(a) (b)

γ − θo p t
θo p t

θo p t

γ

Figure B1. (a) Sketch of all the optimal angles derived from a given θopt, when γT ∈ [0 , π/4]
(circles) and γT ∈ [π/4 , π/2] (crosses). For the illustration, we assume θopt is unique. (b) The
same as in (a), when α = β, taking into account the symmetries in this special case.
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