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Generalized conditional entropy optimization for qudit-qubit states
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We derive a general approximate solution to the problem of minimizing the conditional entropy of a qudit-
qubit system resulting from a local measurement on the qubit, which is valid for general entropic forms and
becomes exact in the limit of weak correlations. This entropy measures the average conditional mixedness of
the postmeasurement state of the qudit, and its minimum among all local measurements represents a generalized
entanglement of formation. In the case of the von Neumann entropy, it is directly related to the quantum discord.
It is shown that at the lowest nontrivial order, the problem reduces to the minimization of a quadratic form
determined by the correlation tensor of the system, the Bloch vector of the qubit and the local concavity of
the entropy, requiring just the diagonalization of a 3 × 3 matrix. A simple geometrical picture in terms of an
associated correlation ellipsoid is also derived, which illustrates the link between entropy optimization and
correlation access and which is exact for a quadratic entropy. The approach enables a simple estimation of the
quantum discord. Illustrative results for two-qubit states are discussed.
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I. INTRODUCTION

Quantification of quantum correlations in composite quan-
tum systems is a topic of great current interest [1]. For pure
states, such correlations can be identified with entanglement,
which can be measured by the entropy of entanglement [2].
Entanglement has been shown to be useful as a resource
for quantum teleportation [3] and pure-state-based quantum
computation [4,5]. For mixed states, however, the situation
becomes more complex and different measures have been
introduced, such as the entanglement of formation and the
entanglement of distillation [6]. Moreover, it has recently
become clear that entanglement is not the only type of
nonclassical correlation that a mixed quantum state can exhibit
[1]. Most separable mixed states, defined as convex mixtures
of product states [7], can still possess a nonzero value of the
quantum discord [8–10], defined as the minimum difference
between two quantum versions of the classical mutual infor-
mation, or, equivalently, the classical conditional entropy [8].
A finite discord has been shown to be present [11] in the
mixed-state-based algorithm of Knill and Laflamme [12], able
to achieve an exponential speed up over the classical algorithm
with vanishing entanglement [13]. Since then, several other
measures of nonclassical correlations for mixed states, sharing
common basic properties with the quantum discord, were
introduced [1,14–23], and various operational implications of
discordant states have been provided [1,17,22–25].

Entropy optimization is a central feature in many of
these measures. In particular, the quantum discord for a
bipartite system requires the minimization of the von Neumann
conditional entropy obtained as a result of a local measurement
on one of its components, over all such measurements, which
turns its evaluation difficult (recently shown to be NP-complete
[26]) in the general case. This conditional entropy is also
interesting by itself, since it measures the average conditional
mixedness of the unmeasured component after a measurement
on the other. For pure states, this conditional entropy vanishes
for any local measurement based on rank 1 projectors, as
the postmeasurement state will be pure and separable. The
optimization problem arises then only for mixed states, for

which the degree of mixedness of the unmeasured side
depends on the measurement performed on the other side.
In addition, its minimum represents the entanglement of
formation between the unmeasured component and a third
partner purifying the whole system [27].

In a previous work [28] we analyzed the general proper-
ties of this measurement-dependent conditional entropy for
general entropic forms. This allows, in particular, to consider
simple entropies like the so-called linear entropy (a quadratic
form in the state ρ), which is directly related to the purity and
whose minimization in a qudit-qubit system for measurements
on the qubit can be exactly determined [28]. In this work
we first provide a clear geometric picture of the optimization
problem in a qudit-qubit system in terms of the correlation
ellipsoid, which represents the set of postmeasurement states
of the unmeasured side and depends on the correlation tensor C

of the system and the reduced state of the qubit. It is shown that
the exact optimization of the quadratic entropy directly follows
the largest semiaxis of this ellipsoid, maximizing correlation
access.

We then extend this approach to a general entropic form,
deriving a quadratic (in C) approximation to the conditional
entropy valid for a sufficiently small correlation ellipsoid.
The optimization problem becomes then equivalent to the
minimization of a 3 × 3 quadratic form, being thus exactly
solvable and similar to that for the quadratic entropy with
an effective correlation tensor which takes into account the
local concavity of the entropy. The formalism is then applied
to derive a quadratic (in C) approximation to the quantum
discord, exact in the limit of weak correlations. Illustrative
results for two-qubit X states are provided, which show the
validity of the present approach even beyond the very weak
correlation limit.

II. FORMALISM

A. Generalized conditional entropy after a local measurement

We consider a bipartite quantum state ρAB with
marginal states ρA(B) = TrB(A)ρAB . We assume a measurement
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is performed on system B, defined by a set of operators Mj =
IA ⊗ MB

j , such that the operators �j = M
†
jMj = IA ⊗ �B

j

satisfy
∑

j �j = IA ⊗ IB . We then introduce the generalized
conditional entropy [28],

Sf (A|B{�j }) =
∑

j

pjSf (ρA/�j
), (1)

where pj = Tr ρAB �j is the probability of outcome j ,
ρA/�j

= (TrB ρAB�j )/pj is the reduced state of A after such
outcome and

Sf (ρ) = Trf (ρ) (2)

is a generalized entropic form [29]. Here f : [0,1] → R is a
smooth strictly concave function satisfying f (0) = f (1) = 0,
such that Sf (ρ) � 0, vanishing just for pure states. More-
over, Eq. (2) is then also strictly concave: Sf (

∑
α qαρα) �∑

α qαSf (ρα) if qα > 0,
∑

α qα = 1, with equality if and only
if all ρα are equal [30,31]. This implies Sf (ρ) � Sf (ρ ′) if
ρ ≺ ρ ′, i.e., if ρ is more mixed than ρ ′ [29,31], entailing that
Sf (ρ) is maximum for ρ maximally mixed (ρ = I/Tr I ). We
set the normalization 2f (1/2) = 1 such that Sf (ρ) = 1 for a
maximally mixed single-qubit state and assume f ′′(p) < 0 ∀
p ∈ (0,1).

Equation (1) is then a measure of the average conditional
mixedness of the state of A after a measurement at B, and
is non-negative. For f (p) = −p log2 p, Sf (ρ) is the von
Neumann entropy S(ρ) and Eq. (1) becomes the conditional
entropy introduced in the definition of quantum discord [8]
(Sec. III A). Generalizations of the measurement-independent
von Neumann conditional entropy S(ρAB) − S(ρB) (which is
negative for pure entangled states) have also been recently
considered [32–34].

The concavity of Sf (ρ) leads to general properties of Eq. (1)
[28]. First, Eq. (1) cannot be greater than the entropy of
the marginal state of A: Since

∑
j pjρA/�j

= ρA, Sf (ρA) =
Sf (

∑
j pjρA/�j

) �
∑

j pjSf (ρA/�j
), i.e.,

Sf (A) � Sf (A|B{�j }), (3)

with equality if and only if all ρA/�j
with pj > 0 are equal [30]

(as occurs for ρAB = ρA ⊗ ρB). A measurement at B cannot
then increase, on average, the mixedness of the state of A, for
any choice of measure Sf used to quantify it.

Second, Eq. (1) is also concave: If ρAB = ∑
α qαρα

AB , with
qα > 0,

∑
α qα = 1, then [28]

Sf (A|B{�j }) �
∑

α

qαSf

(
Aα

∣∣Bα
{�j }

)
, (4)

where Sf (Aα|Bα
{�j }) = ∑

j pα
j Sf (ρα

A/�j
) and pα

j =
Tr ρα

AB�j . Uncertainty about A cannot then decrease
with state mixing. Furthermore, Eq. (1) cannot increase
if a more detailed measurement is performed: If
�j = ∑

k rk
j �̃k , where rk

j � 0 and �̃k = IA ⊗ �̃B
k are

positive operators representing a more detailed measurement
(
∑

k �̃B
k = IB ,

∑
j rk

j = 1), ρA/�j
= ∑

k p−1
j rk

j qkρA/�̃k
, with

qk = TrρAB�̃k , pj = ∑
k rk

j qk , and

Sf

(
A|B{�j }

)
�

∑
k

qkSf

(
ρA/�̃k

) = Sf

(
A

∣∣B{�̃k}
)
. (5)

Conditional entropy minimization is therefore achieved with
measurements based on rank 1 projectors �̃B

k . In the case of
pure states ρ2

AB = ρAB , the conditional entropy (1) vanishes,
in fact, for any measurement based on rank 1 projectors, as
ρA/�̃k

will be pure [28].
If C is a system purifying A + B, such that ρAB =

TrC |�ABC〉〈�ABC |, the minimum conditional entropy among
all local measurements at B is the generalized entanglement
of formation between A and C [27,28,35],

min
{�j }

Sf

(
A

∣∣B{�j }
) = Ef (A,C), (6)

where Ef (A,C) is the convex roof extension of the generalized
entanglement entropy of pure states [Ef (A,C) = Sf (ρA) =
Sf (ρC) if ρAC = ρ2

AC]. It is an entanglement monotone [36].

B. The qudit-qubit case and its geometrical picture

1. General expressions

Let us now assume that B is a single qubit, with A a system
with Hilbert space dimension dA (qudit). We can describe a
general state of this system in terms of the Pauli operators σB =
(σx,σy,σz) for system B and an analogous set of DA = d2

A − 1
orthogonal Hermitian operators σA for system A, satisfying
(for μ,μ′ = 1, . . . ,DA)

TrσAμ = 0, TrσAμσAμ′ = dAδμμ′ . (7)

In the generalized Fano-Bloch representation [37], an
arbitrary state of this system can be written as

ρAB = ρA ⊗ ρB + 1

2dA

∑
μ,ν

Cμν σAμ ⊗ σBν, (8)

where ρA(B) are the reduced states

ρA = 1

dA

(IA + rA · σA), ρB = 1

2
(IB + rB · σB), (9)

with rA(B) = 〈σA(B)〉 ≡ TrρA(B)σA(B), and

Cμν = 〈σAμ ⊗ σBν〉 − 〈σAμ〉〈σBν〉 (10)

are the elements of the correlation tensor C of the system,
which form a real DA × 3 matrix. C may be seen as an object
analogous to an inertia tensor, in the sense that for a unit
vector k in R3, the number |Ck| is a measure of the amount
of correlations for spin direction k at B. Through its singular
value decomposition

C = UDV T , Dμν = δμνCμ, (11)

where U , V are real orthonormal DA × DA and 3 × 3
matrices (UT = U−1, V T = V −1, T indicating transpose)
and C2

μ represents the eigenvalues of the 3 × 3 matrix
CT C (identical with the nonzero eigenvalues of CCT ), we
may always select orthogonal operators σ̃Aμ = ∑

μ′ Uμ′μσAμ′ ,
σ̃Bν = ∑

ν ′ Vν ′νσBν ′ satisfying Eqs. (7), such that just three
operators in A will be connected through C with those of B:

∑
μ,ν

Cμν σAμ ⊗ σBν =
3∑

μ=1

Cμσ̃Aμ ⊗ σ̃Bμ. (12)

A projective measurement on qubit B is characterized by
the measurement operators �B

±k = 1
2 (I ± k · σB), where k is
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a unit vector in R3. After this measurement is performed, the
reduced state of A and its probability are

ρA/�±k = ρA ± 1

dA

(
Ck

1 ± rB · k

)
· σA, (13)

p±k = 1

2
(1 ± rB · k), (14)

implying that the Bloch vector characterizing the postmea-
surement state of A is

rA/±k = rA ± Ck
1 ± rB · k

. (15)

The ensuing conditional entropy Sf (A|Bk) ≡ Sf (A|B{�k,�−k})
becomes

Sf (A|Bk) =
∑
ν=±1

pνkSf (ρA/�νk ), (16)

with Sf (ρA/�νk ) = ∑dA

i=1 f (pA
i/νk) and pA

i/±k the eigenvalues
of ρA/±�k . For a general positive operator-valued measure
(POVM) measurement MB based on a set of rank 1 operators√

rk �B
k , with

∑
k rk�

B
k = IB , we should just replace (16)

with

Sf

(
A

∣∣B{rk�k}
) =

∑
k

rkpkSf

(
ρA/�k

)
. (17)

2. Geometrical picture

The set of all postmeasurement vectors (15) will form in
general a three-dimensional ellipsoid, which we will denote as
correlation ellipsoid (Fig. 1). If rB = 0 (ρB maximally mixed),
δrA = rA/k − rA = Ck, and the ellipsoid will be centered at
rA. Its principal axes will lie along the principal directions
associated with the operators σ̃Aμ in (12), and their lengths
will be the singular values Cμ.

For general values of rB , defining first k̃ = k
1+rB ·k , such

that 1 − rB · k̃ = 1
1+rB ·k , the unit sphere k · k = 1 is seen to

rA
− Cr̃B

rA

z

y

x

Ck1+rB ·k
−Ck1−rB ·k

FIG. 1. (Color online) Schematic representation of the correla-
tion ellipsoid (20) depicting the possible Bloch vectors rA/k of
the postmeasurement state of A. It is centered at rA − C r̃B , with
r̃B = rB/(1 − r2

B ). For a given direction k on the unit sphere of B,
the vectors rA/±k in A are the end points of a chord running through
rA. If rB = 0, the ellipsoid becomes centered at rA.

map into the shifted ellipsoid k̃ · k̃ = (1 − rB · k̃)2, which can
be written explicitly as

(k̃ + r̃B)T
(
1 − r2

B

)
NB(k̃ + r̃B) = 1, (18)

NB = I − rB rT
B, (19)

where rB = |rB |, r̃B = rB/(1 − r2
B), and NB is a 3 × 3 matrix

(positive definite if rB < 1). This ellipsoid has eccentricity
rB , with the origin as one of its foci. Next, C in (15) will map
Eq. (19) into a shifted ellipsoid centered at rA − C r̃B ,

(δrA + C r̃B)T
(
1 − r2

B

)(
CN−1

B CT
)−1

(δrA + C r̃B) = 1, (20)

where CN−1
B CT is a positive semidefinite matrix [its inverse in

(20) is taken within the subspace associated with the operators
σ̃Aμ in (12)]. The principal axes of this ellipsoid are determined
by its eigenvectors kA

μ , i.e.,

CN−1
B CT kA

μ = λμkA
μ, (21)

associated with the nonzero eigenvalues λμ, with the semiaxes
lengths given by

√
λμ/(1 − r2

B).
For pure states ρ2

AB = ρAB , ρA/�k is pure ∀ k, so that
|rA/k|2 = dA − 1 ∀ k. For instance, in a two-qubit system,
by suitably choosing the local x,y,z axes, the Schmidt decom-
position makes it possible to write any pure state as |�AB〉 =√

p|00〉 + √
1 − p|11〉. This leads to Cμν = δμνCμ and rAμ =

rBμ = δμzrB , with Cx = −Cy = 2
√

p(1 − p), rB = 2p − 1,
and Cz = 1 − r2

B = C2
x . It is then verified that for p ∈ (0,1),

the ellipsoid (20) becomes the Bloch sphere of A [CN−1
B CT =

(1 − r2
B)I , C r̃B = rA].

C. The case of the quadratic entropy

1. Explicit expressions and minimum conditional entropy

The evaluation of Sf (ρA) for a general f requires the
eigenvalues of rA · σA. However, in the case of the quadratic
entropy

S2(ρ) = 2(1 − Trρ2), (22)

obtained for f (p) = p(1 − p) (also denoted as linear entropy
as it follows from the approximation − ln p ≈ 1 − p in the
von Neumann entropy), a close evaluation in terms of |rA|
becomes feasible. We obtain, using Eq. (7),

S2(ρA) = 2

(
1 − 1 + |rA|2

dA

)
. (23)

Equation (23) is trivially related to the purity Trρ2
A =

(1 + |rA|2)/dA and to the standard squared distance to the
maximally mixed state, ||ρA − IA/dA||2 = |rA|2/dA, where
||O||2 = TrO†O. Equation (23) shows that |rA|2 � dA − 1,
with |rA|2 = dA − 1 just for pure states ρ2

A = ρA.
Using Eqs. (14), (15), and (23), the conditional entropy (16)

in the quadratic case can be expressed as [28]

S2(A|Bk) = S2(ρA) − 
S2(A|Bk), (24)


S2(A|Bk) = 2

dA

|Ck|2
1 − (rB · k)2

= 2

dA

kT CT Ck
kT NB k

, (25)
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rA
− Cr̃B

Ck

1+
rB

·k

−Ck

1−rB
·k

rA

z

y

x

rA

z

y

x

Ck

−Ck

FIG. 2. (Color online) Bloch vectors of the postmeasurement states of A that minimize the quadratic conditional entropy (24). The left
panel depicts the general case, whereas the right panel depicts the case rB = 0. The increase δrA = rA/k − rA is parallel to the largest semiaxis
of the correlation ellipsoid and coincides with it when rB = 0.

where CT C and NB [Eq. (19)] are 3 × 3 positive semidefinite
matrices. The entropy decrease (25) is then non-negative and
represents the average conditional purity gain due to the
measurement on B. It is independent of rA.

Since Eq. (25) is a ratio of quadratic forms, the direction k
leading to the maximum entropy decrease can be obtained by
solving the weighted eigenvalue problem [28]

CT Ck = λNB k, (26)

which implies det[CT C − λNB] = 0, and selecting the eigen-
vector k associated with the largest eigenvalue λmax. This leads
to 
S2(A|Bk) � 2λmax/dA ∀ k, i.e.,

min
k

S2(A|Bk) = S2(ρA) − 2

dA

λmax. (27)

We may also express (25) as the quadratic form


S2(A|Bk) = 2

dA

kT
NCT

NCN kN, CN = CN
−1/2
B , (28)

where kN = N
1/2
B k/|N1/2

B k| is a unit vector. Equation (26) is,
in fact, equivalent to CT

NCN kN = λkN , showing that
√

λmax is
the maximum singular value of CN .

An important final remark is that for this entropy, general-
ized (POVM) measurements on qubit B cannot decrease the
projective minimum (27).

Proof. For a measurement based on rank 1 operators√
rk �B

k , �B
k = 1

2 (IB + k · σB), with
∑

k rk�
B
k = IB , Eq. (17)

leads, for 
S2(A|BM ) ≡ S2(ρA) − S2(A|BM ), to


S2
(
A

∣∣B{rk�k}
)

= 1

dA

∑
k

rk
|Ck|2

1 + rB · k

= 1

dA

∑
k

rk(1 − rB · k)
|Ck|2

1 − (rB · k)2

� λmax

dA

∑
k

rk(1 − rB · k) = 2

dA

λmax, (29)

where we used Eq. (27). This ensures that the lowest
conditional entropy [maximum 
S2(A|BM )] is reached for
the projective measurement determined by Eq. (26). �

2. Geometrical picture of optimum measurement

Equation (26) is also the counterpart at B of the eigenvalue
Eq. (21) (equivalent to CNCT

N kA = λkA), which determined
the correlation ellipsoid axes, having both the same nonzero
eigenvalues λμ, with related eigenvectors (CT Ck = λNB k
⇒ CN−1

B CT kA = λkA for kA ∝ Ck). Hence, the optimizing
measurement of the quadratic entropy is precisely that leading
to δrA ∝ Ck parallel to the major semiaxis of the correlation
ellipsoid (Fig. 2).

If rB = 0, the Bloch vector of postmeasurement state of
A is just rA/±k = rA ± Ck, with equal probabilities for k and
−k, and the correlation ellipsoid becomes centered at rA (right
panel in Fig. 2). Hence, for a given direction k, the two possible
postmeasurement Bloch vectors are located diametrically
oppositely on this ellipsoid. The vector k optimizing the
quadratic entropy leads then to δrA = ±Ck directly coincident
with the major semiaxis, with λmax = maxμ{C2

μ}, representing
its squared length. Note that in this case NB = I and Eq. (26)
becomes just CT Ck = λk. Hence, the optimizing k leads
to maximum correlation: |Ck| =

√
kT CT Ck = √

λmax, with
|Ck′| � |Ck| for any other direction k′.

Since the conditional entropy is a measure of the average
uncertainty about A as a result of a measurement on B, its
minimization implies making use of the maximum amount of
correlations available by a measurement on B. If the corre-
lation tensor measures the spatial distribution of correlations,
the measurement that maximizes correlation access should
be, in principle, that leading to a maximum length of Ck,
which is precisely the measurement minimizing the quadratic
conditional entropy.

For rB �= 0, the effect of N−1
B in Eq. (20) is to deform

the rB = 0 correlation ellipsoid, expanding it along the
direction of CrB . Accordingly, in Eqs. (25)–(28) NB will
favor measurements with k along or close to rB , i.e., in the
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basis of ρB’s eigenstates. In order to understand this result,
note that for rB �= 0, C in Eq. (15) acts on vectors k̃± =
±k/(1 ± rB · k), which have a direction-dependent norm
and lie on the surface of the shifted ellipsoid (18), making
correlation access dependent not only on C but also on rB .
Nonetheless, it is seen from Eq. (18) that vectors N

1/2
B k̃± lie

on a shifted sphere, forming a chord that passes through the
origin. The origin will divide this chord in two segments whose
length’s product is |N1/2

B k̃+||N1/2
B k̃−| = kT NB k

1−(rB ·k)2 = 1.

Since C k̃± = CNN
1/2
B k̃± [Eq. (28)], the ellipsoid (20) may

be seen as the image of the previous sphere under the linear
transformation CN . As before, if CN measures the effective
spatial distribution of correlations, the product

∣∣CN

(
N

1/2
B k̃+

)∣∣∣∣CN

(
N

1/2
B k̃−

)∣∣ = |Ck|2
1 − (rB · k)2

,

which is just proportional to 
S2(A|Bk) [Eq. (25)], is a
measure of correlations along direction k at B. The direction
k that minimizes S2(A|Bk) is then precisely that which
maximizes this product.

D. Conditional entropy and optimal measurement in the weakly
correlated limit

We now discuss the main general result of this paper. We
extend the previous results to a general entropy Sf , within the
weakly correlated regime. This regime refers to the case where
the correlation ellipsoid (Fig. 1) is sufficiently small:|δrA| =
| Ck

1±rB ·k | � 1 ∀ k in (15). In this situation, we may consider
an expansion of the conditional entropy (16) around ρA, up to
second order in δρA = δrA · σA/dA. The result is

Sf (A|Bk) ≈ Sf (ρA) − 2

dA

kT CT �f (ρA)Ck
kT NB k

, (30)

where NB is the 3 × 3 matrix (19) and �f (ρA) denotes a scaled
DA × DA Hessian matrix of elements

[�f (ρA)]μμ′ = 1

4dA

∑
i,j

Rij 〈i|σAμ|j 〉〈j |σAμ′ |i〉, (31)

Rij = (1 − δij )
f ′(pA

i

) − f ′(pA
j

)
pA

j − pA
i

− δijf
′′(pA

i

)
, (32)

where ρA|i〉 = pA
i |i〉. Actually, just the 3 × 3 submatrix

of �f (ρA) corresponding to the three principal directions
selected by C in Eq. (12) is actually required in (30).

Proof. We start from the second-order expansion of the
eigenvalues pA

i/k of the postmeasurement state (13),

pA
i/k ≈ pA

i + 〈i|δρA|i〉 +
∑
j �=i

|〈j |δρA|i〉|2
pA

i − pA
j

, (33)

where pA
i are those of ρA and δρA = 1

dA

±Ck
1±rB ·k · σA. The

ensuing second-order expansion of the entropy in (16),

Sf

(
ρA/�k

) ≈ Sf (ρA) +
∑

i

[
f ′(pA

i

)
δpA

i + 1

2
f ′′(pA

i

)
δpA 2

i

]
,

(34)

where δpA
i = pA

i/k − pA
i , leads then to Eqs. (30)–(32) after

using (33) and neglecting higher-order terms. Note that Rij =
−f ′′(p∗

ij ), with p∗
ij between pA

i and pA
j , entailing Rij > 0 ∀

i,j , with Rij → −f ′′(pi) if pj → pi . If pA
i > 0 ∀ i, Rij is

finite ∀ i,j for any f of the form considered. �
The positivity of Rij ∀ i,j implies that �f (ρA) is positive

definite and hence that CT 
f (ρA)C is positive semidefinite.
The entropy decrease


Sf (A|Bk) = Sf (A) − Sf (A|Bk) ≈ 2

dA

kT CT �f (ρA)Ck
kT NB k

(35)

then remains non-negative in the present approximation.
In the case of the quadratic entropy, Rij = 4 ∀ i,j , and

Eqs. (7) and (31) lead to �2(ρA) = I , reducing Eq. (30) to
Eqs. (24) and (25). On the other hand, for rA → 0 (maximally
mixed ρA), pA

i = 1/dA∀ i and Rij → −f ′′(1/dA) ∀ i,j ,
implying that Eq. (31) becomes again proportional to the
identity matrix ∀ Sf :

�f (IA/dA) = 1
4 |f ′′(1/dA)| I. (36)

Hence, Eqs. (35) and (36) lead to 
Sf (A|Bk) ∝ 
2(A|Bk)
∀ Sf . In this limit the measurement minimizing Sf (A|Bk) is
then universal, i.e., the same as that optimizing the quadratic
entropy ∀ Sf .

In the general case, the matrix (31) will introduce an
additional “anisotropy,” which will depend on ρA and the
choice of f , and which represents the effect of the “con-
cavity excess” of Sf at ρA in comparison with that of
the quadratic entropy. Nonetheless, Eq. (30) shows that in the
weakly correlated regime, Sf (A|Bk) becomes equivalent to the
quadratic conditional entropy (24) for an effective “deformed”
correlation tensor

Cf = √
�f (ρA)C. (37)

Minimization of Eq. (30) over k then leads again to a 3 × 3
weighted eigenvalue problem,

CT �f (ρA)Ck = λf NB k, (38)

implying det[CT �f (ρA)C − λNB] = 0. The minimum is ob-
tained for k along the direction of the eigenvector associated
with the largest eigenvalue λf max of (38):

min
k

Sf (A|Bk) ≈ Sf (ρA) − 2

dA

λf max. (39)

Moreover, Eq. (35) can be rewritten as


Sf (A|Bk) ≈ 2

dA

kT
NCT

N�f (ρA)CN kN, (40)

with CN and kN defined as in (28).
The geometric picture of these results is, therefore, similar

to that for the quadratic entropy, after replacing C with the
deformed correlation tensor (37). As in the quadratic case,
in the approximation (30) POVM measurements will not
decrease the projective minimum (39). The argument is the
same as that of Eq. (29), after replacing C with Cf .
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E. The two-qubit case

Let us now examine the case dA = 2. The entropy Sf (ρA) of
a general single-qubit state ρA = 1

2 (IA + rA · σ ) will depend
just on the length of the Bloch vector rA,

Sf (ρA) =
∑
ν=±1

f

(
1 + ν|rA|

2

)
= hf (|rA|), (41)

where hf (r) is a concave strictly decreasing function of r for
any strictly concave f . The conditional entropy (16) can then
be written as

Sf (A|Bk) =
∑
ν=±1

pνk hf

(∣∣∣∣rA + ν
Ck

1 + νrB · k

∣∣∣∣
)

, (42)

where C is now a 3 × 3 matrix.
If rA = rB = 0 (maximally mixed marginals), Eq. (42)

reduces to

Sf (A|Bk) = hf (|Ck|) (rA = rB = 0). (43)

Hence, in this case its minimum is reached, for any Sf , for that
k which maximizes |Ck|, i.e.,

min
k

Sf (A|Bk) = hf (
√

λmax) (rA = rB = 0), (44)

where λmax is the largest eigenvalue of CT C and k the
associated eigenvector (

√
λmax = Cmax is the largest singular

value of C). Nonprojective measurements will not decrease
this value, since hf (|Ck|) � hf (

√
λmax) ∀ k. Hence, there

is, in this case, an exact universal optimizing measurement,
determined by the largest semiaxis of the correlation ellipsoid.

Let us now consider the weakly correlated regime. In the
two-qubit case, Eqs. (30) and (41) lead to

Sf (A|Bk) ≈ hf (|rA|) − kT CT �f (rA)Ck
kT NB k

, (45)

where the Hessian matrix (31) becomes now a 3 × 3 matrix
that depends just on rA and can be expressed as

�f (rA) = −h′
f (rA)

2rA

{
I + [ηf (rA) − 1]

rArT
A

r2
A

}
, (46)

ηf (r) = rh′′
f (r)/h′

f (r), (47)

where rA = |rA|. It is then verified that for f concave, �f (rA)
is a positive definite 3 × 3 matrix, since ηf (r) > 0.

For the quadratic entropy, hf (r) = 1−r2

2 and ηf (r) = 1,
implying �f (rA) = I . It is also verified that for rA → 0
and arbitrary Sf , h′

f (rA) → 0, with h′
f (rA)/rA → h′′

f (0) and

ηf (rA) → 1, implying �f (0) = 1
2 |h′′

f (0)|I , in agreement with

(36). In this limit 
Sf (A|Bk) ≈ 1
2 |h′′

f (0)|
S2(A|Bk) ∀ Sf in
the approximation (45).

However, for a general rA, �f (rA) will introduce an
anisotropy in the direction of rA whenever ηf (rA) �= 1. This
factor is a local measure of the concavity of hf in the direction
of rA, taking as reference the quadratic entropy, and will favor
the rA direction if ηf (rA) > 1. This occurs in the Von Neumann
case (Fig. 3), where hf (r) = h(r) = −∑

ν=±1
1+νr

2 log2
1+νr

2

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.2

1.4

1.6

1.8

2.0

rA

Η

FIG. 3. (Color online) Plot of the factor η(rA) = rAh′′(rA)
h′(rA) in

Eq. (46) for the von Neumann entropy. Since it is an increasing
function, differences with the quadratic entropy results [for which
η(rA) = 1 ∀ rA] will increase as rA = |〈σA〉| increases. Quantities
plotted are dimensionless.

and ηf (r) = η(r), with

η(r) = 2r

(1 − r2) ln 1+r
1−r

> 1, (48)

for r > 0 [η(r) ≈ 1 + 2r2/3 for r → 0]. However, ηf (r) < 1
is also possible for a general concave f . For instance, for
the Tsallis entropies [38] Sq(ρ) = (1 − Tr ρq)/cq , obtained
for f (p) = (p − pq)/cq , with cq = 1 − 21−q and q > 0,

ηq(r) = (q − 1)r

1 + r

1 + γ q−2

1 − γ q−1
,

where γ = 1−r
1+r

. This leads to ηq(r) > 1 for q ∈ (0,2) or
q > 3 but ηq(r) < 1 for q ∈ (2,3), with ηq(r) = 1 for q = 2
or q = 3 [ηq(r) ≈ 1 + (q−2)(q−3)

3 r2 for r → 0]. Note that
Sq(ρ) becomes the von Neumann entropy for q → 1 and the
quadratic entropy (22) for q = 2, coinciding again with S2(ρ)
for q = 3 in the single-qubit case [16].

We can now easily understand the main features of the
projective measurement minimizing Sf (A|Bk) for a general
Sf . For maximally mixed marginal states, correlation access
depends solely on the correlation tensor, and the maximum
correlation direction, i.e., the major axis of the correlation
ellipsoid, is preferred ∀ Sf . This preference is affected by
a nonzero value of rB , which introduces an anisotropic
normalization on the measurement vectors and entails the
replacement of C with CN = CN

−1/2
B , which will favor the

direction of rB . Finally, for rA �= 0 the local concavity induces
an additional f -dependent anisotropy around the direction of
rA, which in the weakly correlated regime amounts to replace
CN by

√
�f (rA)CN . For rB → 1 or in the pure state limit,

the approximation (45) will normally break down, since the
correlation ellipsoid will typically become large.

Measurement equivalent. In a two-qubit system, the condi-
tional entropy decrease at A due to a measurement on B can
be characterized by an effective Bloch vector length increase

f at A, which we denote as measurement equivalent. For a
projective measurement, it is defined by (Fig. 4)

hf (|rA| + 
f ) = Sf (A|Bk). (49)
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FIG. 4. (Color online) A measurement is performed in the direc-
tion of vector k on qubit B and the entropy of the postmeasurement
state of A as measured by Sf is hf (|rA/±k|). The measurement
equivalent 
f is defined as the increase in the norm of vector rA

that satisfies hf (rA + 
f ) = pkhf (|rA/k|) + p−khf (|rA/−k|) (h and
r dimensionless).

Since Sf (A|Bk) � Sf (A), 
f � 0 for f concave, increasing
as k approaches the optimal direction.

In the weakly correlated regime, 
f will be small. If
rA �= 0, we then have hf (rA + 
f ) ≈ hf (rA) + h′

f (rA)
f ,
and Eq. (45) leads to 
f of order ||CN ||2:


f ≈ 1

|h′
f (rA)|

kT CT �f (rA)Ck
kT NB k

(rA > 0). (50)

On the other hand, if rA → 0, h′
f (0) = 0 and we

have instead hf (
f ) ≈ hf (0) + 1
2h′′

f (0)
2
f . Since �f (0) =

1
2 |h′′

f (0)|I , Eq. (45) leads in this case to


f ≈
√

kT CT Ck
kT NB k

= |Ck|√
1 − (rB · k)2

(rA = 0). (51)

Thus, for rA → 0, 
f becomes independent of f (universal
limit) and of order ||CN ||.

III. APPLICATION

A. Quantum discord estimation

Given a bipartite quantum state ρAB with marginal states
ρA(B), the quantum discord for a local measurement on B can
be written as [8]

D(A|B) = min
{�j }

D
(
A|B{�j }

)
, (52)

D
(
A|B{�j }]

) = S
(
A

∣∣B{�j }
) − [S(ρAB) − S(ρB)], (53)

where S(A|B{�j }) is the conditional entropy (1) in the von
Neumann case, with the minimum in (52) taken over all
possible measurements on B, while the bracket in (53) is the
measurement-independent quantum conditional entropy. We
may also rewrite (53) as

D
(
A|B{�j }

) = I (A,B) − 
S
(
A|B{�j }

)
, (54)

where 
S(A|B{�j }) = S(A) − S(A|B{�j }) and

I (A,B) = S(ρA) + S(ρB) − S(ρAB), (55)

is the quantum mutual information.
For qudit-qubit systems, the results of previous section can

be applied to estimate Eqs. (52)–(54) in the weakly correlated
regime. For a projective measurement along direction k at B,
Eq. (35) leads to

D(A|Bk) ≈ I (A,B) − 2

dA

kT CT �(ρA)Ck
kT NB k

, (56)

where �(ρA) is the Hessian matrix (31) in the von Neumann
case. The minimization in (52) leads then to the eigenvalue
problem (38), and the minimum reads

D(A|B) ≈ I (A,B) − 2

dA

λmax, (57)

with λmax the largest root of det[CT �(ρA)C − λNB] = 0.
While I (A,B) is a measure of the total correlation between
A and B, the second term in (57) represents the maximum
classical-like mutual information obtained after a local mea-
surement on B, in the present regime.

In this regime we may also apply a quadratic approximation
to (55) using the representation (8) of ρAB . An expansion
of S(ρAB) up to second order in the correlation tensor C,
extending Eqs. (33) and (34) to this case (|i〉 → |iAjB〉, pA

i →
pA

i pB
j , δρA → δρAB = ρAB − ρA ⊗ ρB , with ρA(B)|iA(B)〉 =

p
A(B)
i |iA(B)〉), leads to

I (A,B) ≈ 1
2 CT �(ρA,ρB)C, (58)

where C denotes a vector of elements Cμν and � is here the
3DA × 3DA matrix

�μ′ν ′
μν (ρA,ρB ) = 1

4d2
A

∑
i,j,k,l

R
jl

ik 〈iA|σAμ′ |jA〉〈jA|σAμ|iA〉

×〈kB |σBν ′ |lB〉〈lB |σBν |kB〉, (59)

R
jl

ik = 1

ln 2

{(
1 − δ

j

i δ
l
k

) ln
[
pA

i pB
k

/(
pA

j pB
l

)]
pA

i pB
k − pA

j pB
l

+ δ
j

i δ
l
k

1

pA
i pB

k

}
.

The terms linear in C vanish for the von Neumann entropy.
Equation (56) becomes then a quadratic form in the elements
of the correlation tensor, which is positive semidefinite since
D(A|B) � 0 and the quadratic approximation becomes exact
for sufficiently small C.

The decomposition (12) makes it possible to reduce Eq. (58)
to a quadratic form in the three singular values Cμ. For
instance, for maximally mixed marginals, R

jl

ik = 2dA/ ln 2 ∀
i,j,k,l, implying �

μν

μ′ν ′( IA

dA
, IB

2 ) = 1
ln 2δ

μ

μ′δ
ν
ν ′ . Equation (58) then

reduces to I (A,B) ≈ 1
2 ln 2 TrCT C = 1

2 ln 2

∑3
μ=1 C2

μ.

B. Two-qubit states with r A and r B parallel to
a principal axis of C

In the special two-qubit case where rA and rB are parallel
to one of the principal directions selected by C in the diagonal
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representation (12) (implying that they should be eigenvectors
of CCT and CT C respectively), tensors �f (rA), C, and
NB = I − rB rT

B can be made simultaneously diagonal: We
may choose the local orthogonal x,y,z axes at A and B such
that for μ,ν = x,y,z,

Cμν = δμνCμ , (60)

with Cμ the singular values of C and rA and rB parallel to
one of these axes. Equations (26) and (38) then imply that the
optimal measurement minimizing the conditional entropy in
the weakly correlated regime (and in all cases for the quadratic
entropy) is to be found among these principal axes.

If rA and rB are both directed along z (i.e., rA ∝ CrB),
Eqs. (35), (46), and (60) lead to


Sf (A|Bk) ≈ |h′
f (rA)|
2rA

C2
xk

2
x + C2

yk
2
y + ηf (rA)C2

z k
2
z

1 − r2
Bk2

z

,

(61)
with its maximum then given by

max
k


Sf (A|Bk) ≈ |h′
f (rA)|
2rA

max

[
C2

x ,C
2
y ,

ηf (rA)

1 − r2
B

C2
z

]
. (62)

On the other hand, if rA and rB are along orthogonal
principal axes (rA ⊥ CrB), for instance, rB along z and rA

along x, we obtain instead


Sf (A|Bk) ≈ |h′
f (rA)|
2rA

ηf (rA)C2
xk

2
x + C2

yk
2
y + C2

z k
2
z

1 − r2
Bk2

z

, (63)

with its maximum given by

max
k


Sf (A|Bk) ≈ |h′
f (rA)|
2rA

max

[
ηf (rA)C2

x ,C
2
y ,

C2
z

1 − r2
B

]
.

(64)

For use in the next section, we quote here the explicit
expressions for the case of the von Neumann entropy when
rA and rB are both parallel to z. We obtain


S(A|Bk) ≈
1

2rA
ln 1+rA

1−rA

(
C2

xk
2
x + C2

yk
2
y

) + 1
1−r2

A

C2
z k

2
z

2 ln 2
(
1 − r2

Bk2
z

) , (65)

whereas the quadratic approximation (58) becomes

I (A,B) ≈ 1

2 ln 2

[ ∑
ν=±1

(Cx − νCy)2 ln
( 1+rA

1−rA

1+νrB

1−νrB

)
4(rA + νrB)

+ C2
z

(1 − rA)2(1 − rB)2

]
. (66)

It is verified that within the approximations (65) and (66),
D(A|Bk) = I (A,B) − 
S(A|Bk) becomes a non-negative
quadratic form in the Cμ’s.

C. Optimum measurement for X states

We now apply previous approximations to the set of
two-qubit X states, which arise naturally in many physical

situations [39–41]. Through the singular value decomposition
of the tensor Jμν = 〈σμ ⊗ σν〉, and by suitably choosing the
local bases, these states can be written as

ρAB = 1

4

(
I ⊗ I + rAσz ⊗ I + rBI ⊗ σz +

∑
μ

Jμσμ ⊗ σμ

)

(67)

=

⎛
⎜⎜⎜⎝

p+ 0 0 α−
0 q+ α+ 0

0 α+ q− 0

α− 0 0 p−

⎞
⎟⎟⎟⎠;

p± = 1 ± (rA + rB) + Jz

4
,

q± = 1 ± (rA − rB) − Jz

4
,

α± = Jx ± Jy

4
,

(68)

with (68) the state representation in the standard basis. The
parameters should fulfill the positivity conditions p± � 0,
q± � 0, |α−| � √

p+p−, |α+| � √
q+q−, with p+ + p− +

q+ + q− = 1. Since the correlation tensor C = J − rArT
B will

satisfy Eq. (60), with

Cx = Jx , Cy = Jy, Cz = Jz − rArB,

it is clear that in these states the marginal Bloch vectors rA

and rB lie on the same principal axis (z) of C, implying that
these states correspond to the case of Eq. (61). In the weakly
correlated limit Sf (A|Bk) will then reach its minimum for a
measurement along the direction of one of these principal axes
[Eq. (62)].
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FIG. 5. (Color online) Comparison between the projective mini-
mizing measurements for the von Neumann and quadratic conditional
entropies, for X states [Eq. (67)] with rB = 0.25 and Jz = 0.3 (top
left), 0.15 (top right), −0.25 (bottom left), −0.5 (bottom right).
Yellow (sector A) and green (sector B) disks show the set of states
where the minimizing measurement is the same for both entropies
(along x in A and along z in B), while blue disks (C) show
those states where the minimizing measurements differ (Jx and rA

dimensionless).
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In this regime the minimizing measurement depends not
only on C and rB , but also on the local concavity of the function
hf (r) at r = |rA|. This implies, in general, that different
entropies may reach their minimum value for measurements on
different axes. We now compare the minimizing measurements
of the von Neumann and quadratic conditional entropies for
states with Jx = Jy , for which the minimizing measurement
is either along the z axis or along any vector in the x,y plane,
which we take as x. A transition zone between these two
directions arises, which will depend on the concavity of the
entropy. From Eq. (62) it follows that the transition zone is

C2
x = ηf (rA)C2

z

/(
1 − r2

B

)
, (69)

with ηf (rA) = 1 for the quadratic entropy and ηf (r) = η(r)
[Eq. (48)] for the von Neumann entropy. Since η(rA) > 1 for
rA �= 0, it is seen that in the von Neumann case, the transition
zone is shifted from that of the quadratic entropy whenever
rA �= 0, and this discrepancy will increase as rA increases,
favoring the z direction.

Typical results for the projective minimizing measurement
for these entropies are shown in Fig. 5 as a function of rA

and Jx = Cx for fixed rB and different values of Jz. It is
seen that they are coincident for most states, differing only
in the transition region C (blue disks), where the measurement
minimizing the quadratic entropy has already changed from
z to the x direction, but the von Neumann entropy still
reaches its minimum value for a measurement along z. As
expected, the region of discrepancy becomes greater as rA

increases. We should mention that while the z → x transition
as Jx increases is always sharp for the quadratic conditional
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FIG. 6. (Color online) The entropy decrease 
Sf = S(A) −
S(A|Bk) after a local measurement on B along direction k = (kx,0,kz)
for the quadratic (
S2) and von Neumann (
S) entropies, together
with the quadratic approximation (61)–(65) for the latter (dashed
lines). We have considered an X state with rA = rB = 0.25, Jz =
−0.25, and Jx = 0.1,0.325,0.5, corresponding to states in sectors
B, C, and A, respectively, of the bottom left panel of Fig. 5. The
bottom right panel depicts the quantum discord (54) and its quadratic
approximation (65) and (66) (dashed line) for Jx = 0.1 (quantities
plotted dimensionless).

entropy, as follows from Eq. (25), in the von Neumann case it
may be softened through intermediate measurement directions
in a tiny interval of Jx values, an effect not seen in the
approximation (61)–(65). Actually, in these tiny crossover
intervals nonprojective measurements can be preferred [42,43]
(if a projective measurement optimizes the von Neumann
conditional entropy for an X state, it should be along a principal
axis of C [43]), although differences with the projective
minimum are small.

Figure 6 shows the entropy decrease (“information gain”)

Sf = Sf (A) − Sf (A|Bk) as a function of the direction k =
(kx,0,kz) of the measurement on B, for X states located below,
at and above the transition zone in the bottom left panel
of Fig. 5. Both the quadratic and von Neumann conditional
entropies are depicted, which are seen to exhibit typically the
same profile, together with the second-order approximation
(65) to the latter, which is seen to provide a good estimation.
While there is a clear preference for the z (x) direction for
low (high) Jx , the anisotropy of 
Sf in the transition region
(Jx = 0.325), where the minimizing measurement directions
of the von Neumann and quadratic entropies differ, is very
small, entailing that this difference is not too relevant. We also
depict illustrative results for the discord (54) and its quadratic
estimation obtained with Eqs. (65) and (66), which is quite
accurate in the case considered.

IV. CONCLUSIONS

We have shown that the problem of conditional entropy
optimization in a qudit-qubit system, for a general entropic
form and a measurement on the qubit, can be solved analyt-
ically in the limit of weak correlations. It just requires the
solution of a 3 × 3 eigenvalue problem determined by the
correlation tensor of the system, the Bloch vector of the qubit
and a local concavity term depending on the choice of entropy
[Eqs. (30) and (38)]. In the case of the quadratic entropy, which
is directly related to the purity (and is hence experimentally
accessible without requiring a full state tomography [44]), the
concavity term reduces to an identity matrix and the approach
is exact in all regimes. The optimization problem admits, in
this case, a direct geometrical interpretation in terms of the
correlation ellipsoid representing the set of postmeasurement
states of the qudit, with the minimizing measurement direction
determined by its largest principal axis, i.e., by the direction
which optimizes correlation access.

For a general entropic form, the corrections for a sufficiently
small correlation ellipsoid lead to the effective correlation
tensor (37), which includes the effects of the local “concavity
excess” through a Hessian matrix. This makes it possible first
to identify some universal features of the problem, such as
the common (valid for all entropies) profile and minimizing
measurement in this regime when the marginal state of the
qudit is maximally mixed. When applied to the von Neumann
entropy, the present scheme also leads to a simple direct
estimation of the quantum discord, including a fully quadratic
(in the correlation tensor) approximation after a concomitant
expansion of the mutual information. Illustrative results for
two qubit X states indicate a good agreement of the present
approximations with the exact values beyond the very weak
correlation limit, with similar profiles for the quadratic and
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von Neumann entropy in typical situations. Applications of
the present approach to more complex many body systems
and measures are presently being considered.
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