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Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice
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We use a combination of analytical and numerical techniques to study the phase diagram of
the frustrated Heisenberg model on the bilayer honeycomb lattice. Using the Schwinger boson
description of the spin operators followed by a mean field decoupling, the magnetic phase diagram
is studied as a function of the frustration coupling J2 and the interlayer coupling J⊥.

The presence of both magnetically ordered and disordered phases is investigated by means of
the evaluation of ground-state energy, spin gap, local magnetization and spin-spin correlations.
We observe a phase with a spin gap and short range Néel correlations that survives for non-zero
next-nearest-neighbor interaction and interlayer coupling. Furthermore, we detect signatures of a
reentrant behavior in the melting of Néel phase and symmetry restoring when the system undergoes
a transition from an on-layer nematic valence bond crystal phase to an interlayer valence bond
crystal phase. We complement our work with exact diagonalization on small clusters and dimer-
series expansion calculations, together with a linear spin wave approach to study the phase diagram
as a function of the spin S, the frustration and the interlayer couplings.

PACS numbers: 75.10.Jm, 75.50.Ee, 75.10.Kt

I. INTRODUCTION

The study of the possible disordered ground states on
the honeycomb lattice has received a great interest in the
last years. The interest is focused mainly on the existence
of quantum spin liquids in quantum antiferromagnets1–5.
Recently, possible quantum disordered phases have been
reported in the phase diagram corresponding to the sin-
gle layer honeycomb Heisenberg model6–23. From the
theoretical point of view, it is interesting to study the
influence of an interlayer coupling in the stabilization of
these disordered phases. In particular in the bilayer mod-
els, the ground state corresponding to very large values of
the interlayer couplings should be a dimer product state.
For unfrustrated models a transition between the Néel
phase and the dimer phase is expected to obtain as the
interlayer coupling is increased. This “melting” of Néel
order can be studied as a function of the frustration in
each layer. By contrast in the frustrated case, the system
might go from a nonmagnetic nematic phase to a dimer
product state as the interlayer coupling is increased.

From the experimental side, a very exciting progress
on the bismuth oxynitrate, Bi3Mn4O12(NO3), was ob-
tained by Smirnova et al.24. The magnetic susceptibility
data indicate two-dimensional magnetism. Despite the
large AF Weiss constant of -257K, no long-range order-
ing was observed down to 0.4K, which suggests a non-
magnetic ground state24–27. In this compound the Mn4+

ions form a honeycomb lattice without any distortion.
Two layers of such honeycomb lattices are separated by
bismuth atoms, forming a bilayer structure with these
bilayers separated by a large distance. Thus, the ap-
propriate geometry to describe its magnetic properties is
the bilayer honeycomb lattice. The magnetic exchange
coupling constants have been calculated using a density
functional theory, which shows that the dominant inter-
actions are the intra-layer nearest-neighbor interaction

J⊥
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FIG. 1. (Color online) Schematic representation of the rel-
evant couplings interactions in Bi3Mn4O12(NO3). Colored
areas correspond to the unit cells. The sites in each unit cell
are labeled from 1 to 4.

J1 and the effective interlayer interaction J⊥
28.

In Ref. 26, Matsuda et. al. have found experimental evi-
dence that J1, J2 and J⊥ are the dominant couplings and
there is competition between them. As a result of this
competition, a disordered ground state has been found.
This observation has raised the interest in the study of
magnetically disordered phases in honeycomb lattice an-
tiferromagnets. Most of the advances have been reached
in the single layer honeycomb lattice6–22,29,30 whereas
less attention has been given to the unfrustrated bilayer
case30–32. Therefore, there are still many open issues,
especially for the frustrated bilayer case.
The aim of this paper is to study the zero temperature

phase diagram of the frustrated Heisenberg model on the
bilayer honeycomb lattice. The dependence on the inter-
layer coupling J⊥ is investigated for different values of
the frustration J2. We focus on the S = 1/2 case, where
quantum fluctuations become more important. The
present study has several motivations. On the one hand,
the phase diagram corresponding to S = 1/2 is a natural
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extension of the recently presented phase diagram for the
single layer honeycomb lattice9. On the other hand, the
substitution of Mn4+ in Bi3Mn4O12(NO3) by V4+ may
lead to the realization of the S = 1/2 Heisenberg model
on the honeycomb lattice.
In this paper, using the Schwinger boson representa-

tion followed by a mean field decoupling, the presence
of both magnetically ordered and disordered phases is
investigated. We observe signatures of a reentrant be-
havior in the melting of Néel phase. The behavior of the
local magnetization as a function of the interlayer cou-
pling J⊥ gives a physical explanation to this effect, since
a small J⊥ makes the system more magnetically ordered.
Another key finding of our work is that the interlayer cou-
pling may restore the lattice rotational symmetry within
layers. Furthermore, the linear spin wave theory (LSWT)
is used to describe the general behavior as a function of
the spin S. To support the mean-field results Lanczos
technique in small systems is used, complemented with
series expansion based on the continuous unitary trans-
formation method to estimate the ground-state energy
and the triplet gap. Last but not least, a comparison
with previous Schwinger boson mean-field results for the
S = 1/2 Heisenberg model9 on the single-layer case is
discussed.
The outline of the paper is as follows: In Sec. II we

introduce the model. In Sec. III we apply the Schwinger
boson mean-field approach for S = 1/2 case, comple-
mented with Lanczos technique. In Sec. IV we apply
LSWT for general spin S. A comparison of the ground-
state energy and the triplet gap obtained by means of
series expansion and Lanczos technique is presented in
Sec. V. We close with a discussion and conclusions in
Sec. VI

II. FRUSTRATED BILAYER HEISENBERG

MODEL

The Heisenberg model on the bilayer honeycomb lat-
tice is described by

H =
∑

~r,~r′,α,β

Jα,β(~r, ~r
′)~Sα(~r) · ~Sβ(~r

′) (1)

where, ~Sα(~r) is the spin operator on site α corresponding
to the unit cell ~r. α takes the values α = 1, 2, 3, 4 corre-
sponding to the four sites on each unit cell as depicted in
Fig. 1. The coupling constants Jα,β(~r, ~r

′) on the bonds
of the bilayer lattice are depicted in Figure 1.
The classical model displays Néel order for J2/J1 <

1/6. The interlayer coupling J⊥ does not introduce frus-
tration in the system and then, at the classical level and
T = 0, does not affect the classical Néel phase. In the
quantum case the situation is much subtle, Néel order
is likely to melt giving rise to a non-magnetic phase. In
the following, except being explicitly specified, we fix the
energy scale by taking J1 = 1 to simplify the notation.
For large values of J⊥ we expect the ground state to be

an interlayer valence bond crystal (IVBC) with corre-
sponding spins from both layers forming dimers. There
are two different ways to destroy the Néel order, by in-
creasing the frustration on each layer or increasing the
coupling between layers. The destruction of the Néel
order in a single layer honeycomb lattice due to the frus-
tration introduced by means of the next-nearest neigh-
bors interactions has been studied by various approaches,
including spin wave theory10,30,33,34, a non-linear σ-
model approach35, Schwinger boson mean-field theory
(SBMFT)6,9,48, bond operator mean-field theory10, exact
diagonalization (ED)11,12,34, a variational Monte Carlo
(VMC) method18,19, series expansion (SE)36, the pseud-
ofermion functional renormalization group (PFFRG)13,
the coupled cluster method (CCM)15–17 and the density
matrix renormalization group (DMRG) method20–22.

For the single layer case the most accepted scenario
is that at a critical value of the frustrating coupling J2
the Néel order is destroyed giving rise to a magneti-
cally disordered phase. The different techniques listed
above have yielded strong evidence supporting the exis-
tence of an intermediate magnetically disordered region
where a spin gap opens and spin-spin correlations decay
exponentially9,12,15,16,19. This disordered region com-
prises two kinds of magnetically disordered phases dis-
tinguished by a rotational symmetry breaking9. In the
range 0.2075 . J2/J1 . 0.3732 there is a gaped spin liq-
uid (GSL) phase, where the ground state is magnetically
disordered and preserves all the lattice symmetries9.

For larger values of J2 the system presents a ground
state that breaks the lattice rotational symmetry, but
preserves lattice translational symmetry. This stag-
gered dimer valence-bond crystal (VBC), which is also
called lattice nematic10 was found by using a variety of
techniques9–12,18,20,21. Finally for J2/J1 & 0.398, the sys-
tem enters into a spiral phase9,10. These phases (except
the spiral one) are depicted in Figure 3-II.

Since the nematic phase present in the single layer case
breaks the discrete rotational symmetry of the lattice, it
is expected that, in the bilayer case, by increasing the in-
terlayer coupling the system should undergo a transition
from the nematic VBC to the IVBC phase, restoring the
Z3 symmetry.

As shown in the following sections, we study the
Hamiltonian (1) using a rotationally invariant decom-
position for the mean field parameters corresponding to
a Schwinger boson representation of the spin operators,
which has proven to be successful in incorporating quan-
tum fluctuations7–9,37–44. We complement this approach
with ED, LSWT and SE.
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FIG. 2. (Color online) The spin gap (blue circles) and sub-
lattice magnetization (red squares) obtained by SBMFT ex-
trapolated to the thermodynamic limit, corresponding to the
dashed line in Fig. 3 (J2 = 0.1). For J⊥ > 4 the gap is pro-
portional to J⊥. Sublattice magnetization shows that Néel
order is enhanced by small interlayer coupling, reaching a
maximum at J⊥ ∼ 1/2, after that it decreases until disap-
pearing at J⊥ ∼ 2.9. The brown shaded region corresponds
to the Néel phase. In the green and light-blue regions, there is
no evidence of any kind of magnetic order, and the light-blue
region presents a gap that depends linearly with J⊥.

III. SCHWINGER BOSON MEAN-FIELD

APPROACH AND EXACT DIAGONALIZATION

In the Schwinger-boson representation, the Heisenberg
interaction can be written as a biquadratic form. The
spin operators are replaced by two species of bosons via
the relation45–47

~Sα(~r) =
1

2
~b†
α(~r) · ~σ · ~bα(~r), (2)

where ~bα(~r)
†=(b†

α,↑(~r),b
†
α,↓(~r)) is a bosonic spinor cor-

responding to the site α in the unit cell sitting at ~r. ~σ is
the vector of Pauli matrices, and there is a boson-number
restriction

∑

σ b
†
α,σ(~r)bα,σ(~r)=2S on each site.

In terms of boson operators we define the SU(2) in-
variants

Aαβ(~x, ~y) =
1

2

∑

σ

σbα,σ(~x)bβ,−σ(~y) (3)

Bαβ(~x, ~y) =
1

2

∑

σ

b
†
α,σ(~x)bβ,σ(~y). (4)

The operator Aαβ(~x, ~y) creates a spin singlet pair be-
tween sites α and β corresponding to unit cells located
at ~x and ~y respectively. The operator Bαβ(~x, ~y) creates a
ferromagnetic bond, which implies the intersite coherent
hopping of the Schwinger bosons.

In this representation, the rotational invariant spin-
spin interaction can be written as

~Sα(~x) · ~Sβ(~y) =: B†
αβ(~x, ~y)Bαβ(~x, ~y) : −A

†
αβ(~x, ~y)Aαβ(~x, ~y)
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FIG. 3. (Color online) I) Phase diagram for S = 1/2 in
the J2−J⊥ plane obtained by means of SBMFT. Gray region
correspond to the Néel phase whereas light-blue region cor-
responds to magnetically disordered phases. Vertical dotted
lines are used as a reference showing the phases corresponding
to the single-layer case and the end of Néel phase re-entrace
in J2 − J⊥ plane. II) Phase diagram of the single layer case
corresponding to Ref. 9.

where : O : indicates the normal ordering of the opera-
tor O. One of the advantages of this rotational invari-
ant decomposition is that it enables to treat ferromag-
netism and antiferromagnetism on equal footing. This
decomposition has been successfully used to describe
quantum disordered phases in two-dimensional frustrated
antiferromagnets7–9,37,39,41,43,44.

In order to generate a mean field theory, we perform
the Hartree-Fock decoupling

(~Sα(~x) · ~Sβ(~y))MF = [B∗
αβ(~x− ~y)Bαβ(~x, ~y)

− A∗
αβ(~x− ~y)Aαβ(~x, ~y)] (5)

− 〈(~Sα(~x) · ~Sβ(~y))MF 〉

where the mean field parameters are given by

A∗
αβ(~x − ~y) = 〈A†

αβ(~x, ~y)〉, (6)

B∗
αβ(~x − ~y) = 〈B†

αβ(~x, ~y)〉, (7)

and the exchange at the mean field level is

〈(~Sα(~x) · ~Sβ(~y))MF 〉 = |Bαβ(~x− ~y)|2 − |Aαβ(~x− ~y)|2.
(8)

The mean field equations (6) and (7) must be solved in a
self-consistent way together with the following constraint
for the number of bosons in the system

Bαα(~R = ~0) = 4NcS, (9)
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FIG. 4. (Color online) Spin-spin correlation between spins belonging to the same layer in the zig-zag direction obtained by
SBMFT for a 10000 sites system. The labels a,b,c,d correspond to the points showed in Fig. 3 (J⊥ = 0.5, 2.5, 3.5, 5). In the
insets we show the same correlations obtained by Lanczos diagonalization of a 24 sites system.

where Nc is the total number of unit cells and S is the
spin strength. We use a self consistent procedure to
find mean field solutions that distinguish Néel phase from
magnetically disordered phases, and in particular possi-
ble phases without translational and rotational symmetry
breaking. Following the lines of Ref. 9, we work with two
sites per unit cell, which is the smallest unit cell compat-
ible with these kind of solutions.

Self consistent solutions in the bilayer honeycomb lat-
tice involve finding the roots of coupled nonlinear equa-
tions for the mean field parameters and solving the con-
straints to determine the values of the Lagrange multi-
pliers λ(α) which fix the number of bosons in the sys-
tem. We perform the calculations for large systems and
extrapolate the results to the thermodynamic limit. De-
tails of the self consistent calculation can be consulted in
the bibliography7,9.

Using SBMFT we study some features of the phase di-
agram in the J2−J⊥ plane. The line J⊥ = 0 corresponds
to the phase diagram for the single layer honeycomb lat-
tice. A description of the phases presented in the single
layer phase diagram was obtained recently using the same
rotational invariant mean-field decoupling9. One of the
advantages of the SBMFT is that allows to study large
systems and perform the extrapolation to the thermo-
dynamic limit. In particular, this is useful to determine
whether the system remains gapless or not. To obtain the
phase boundary between the magnetically ordered and

disordered phases we use the extrapolation of the gap in
the boson spectrum. In the gapless region the excitation

spectrum is zero at ~k = ~0, where the boson condensation
occurs, this is characteristic of the Néel ordered phase.
On the other hand, in the gapped region, the absence
of Bose condensation indicates that the ground state is
magnetically disordered. In Figure 2 the extrapolation
of the spin gap corresponding to J2 = 0.1 (dashed line in
Fig. 3) is presented as a function of the interlayer cou-
pling J⊥. For small values of the interlayer coupling the
system remains gapless. As we increase J⊥ the gap opens
at a given value J∗

⊥(J2). Increasing more the interlayer
coupling, the gap becomes a linear function of J⊥. At the
value J∗

⊥(J2) the Néel order is destroyed leading to the
IVBC ground state. As is known, mean-field techniques
are not the most convenient methods to study the proper-
ties of a system near a phase transition, so it may be dif-
ficult to determine quantitatively the transition between
Néel and disordered phases using only SBMFT. For this
reason, in our case, we would tend to conclude that the
abrupt change of behavior in the gap ∆ at J⊥ = 4, Fig.
2 does not indicate a phase transition, but could be an
indication of the breakdown of the mean field calcula-
tion. Actually physical quantities, as magnetization and
correlations, calculated in green and light-blue shadowed
regions of Fig. 2 do not show qualitative differences.

In Fig. 3 we show the phase diagram in the J2 − J⊥
plane corresponding to S = 1/2. For J⊥ ≫ J2 one can
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expect a IVBC ground state adiabatically connected with
the limit of decoupled dimers, i.e. two singlets per unit
cell, between spins 1(2) and 3(4) (see Fig. 1). In this limit
the ground state energy per dimer is EIV BC = − 3

4J⊥,
with an energy gap ∆ = J⊥ to triplet magnetic excita-
tions.

In order to support the analytical results of the mean-
field approach, we have also performed Lanczos ED cal-
culations on finite systems with 24 spins and periodic
boundary conditions for S = 1/2. The bilayer structure
of the lattice makes particularly difficult to study small
systems because there are four sites per unit cell. In par-
ticular, correlation functions between spins belonging to
the same layer can be studied only for a few neighbors.
Fig. 4 shows the spin-spin correlation between spins be-
longing to the same layer in the zig-zag direction obtained
by SBMFT corresponding to the points (a), (b), (c) and
(d) of Fig. 3 for a 10000 sites system. The insets corre-
spond to the results obtained for the same points with
Lanczos technique on a 24 sites system. Although corre-
lations are calculated only for a few sites with Lanczos,
the absence of antiferromagnetic order in the insets of
Figures 4.c and 4.d is clear. This is consistent with the
SBMFT results corresponding to the main Figures 4.c
and 4.d.

In Fig. 5 we show the energy per dimer in units of
J⊥ calculated with SBMFT (blue circles) and Lanczos
for a system with 24 sites (red squares) for J2 = 0.18.
As it can be observed the energy per dimer gets very
close to the value corresponding to a dimer product state

E

2NJ⊥
= −3/4, as J⊥ is increased.

As showed in Fig. 3, in the region 0.2075 . J2 . 0.289
there is a reentrant effect. In this range, Néel phase sepa-
rates from J2 axis, leaving a tiny space for a magnetically
disordered phase. In this way, Néel phase is here not
only limited by some value J∗

⊥(J2) from above, but also
by a second value J∗∗

⊥ (J2) (See Figure 3) from below. In
Fig. 2, we show the sublattice magnetization9,37,38 along
the line J2 = 0.1. It is clear that a small bilayer coupling
enhances the antiferromagnetic long range order, which
is the reason of the reentrant effect.

On the other hand, in the range 0.3732 . J2 . 0.398
(J⊥ = 0), there is evidence of the existence of an on-layer
nematic VBC phase9 (see Figure 3-II). In this VBC phase
SU(2) spin rotational and lattice translational symme-
tries are preserved. But Z3 symmetry, corresponding to
2π/3 rotations around an axis perpendicular to the plane
and passing through a site, is broken. By increasing the
interlayer coupling J⊥ the system moves to the IVBC
where the Z3 symmetry is recovered. In order to observe
this symmetry restoring we introduce the Z3 directional
symmetry-breaking order parameter ρ10,29
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FIG. 5. (Color online) Ground state energy per dimer (in
units of J⊥) as a function of J⊥ for J2 = 0.18 obtained by
means of SBMFT extrapolated to the thermodynamic limit
(blue circles) and Lanczos for a 24 sites system (red squares).
Horizontal dashed red line indicates to E

2NJ⊥

= −3/4 corre-

sponding to the decoupled dimer product state. Inset: Z3

directional symmetry-breaking order parameter ρ as a func-
tion of J⊥ corresponding to the line J2 = 0.38.

ρ =
4

3
|(〈~S1(~r) · ~S2(~r)〉+ ei2π/3〈~S1(~r) · ~S2(~r + ~e1)〉

+ ei4π/3〈~S1(~r) · ~S2(~r − ~e2)〉)| (10)

This order parameter is zero when the bond energies

κi = 〈~S1(~r) · ~S2(~r + ~ei)〉 are equal, being i = 0, 1, 2

where ~e0 = ~0, ~e1 = 1
2 (
√
3, 3) and ~e2 = 1

2 (
√
3,−3). The

parameter is chosen to be ρ = 1 when only one of the
bond energies is nonzero. In the case J⊥ = 0, this pa-
rameter is nonzero in the region 0.3732 . J2 . 0.398.
For small interlayer coupling, the bond energies satisfy
κi 6= κj = κk. Therefore, the system is still in the
nematic VBC phase. But increasing further the inter-
layer coupling the order parameter tends to zero contin-
uously as shown in the inset of Figure 5 and for large
J⊥ the system enters in the IVBC. Finally, in the re-
gion 0.289 . J2/J1 . 0.3732 the ground state preserves
SU(2), lattice translational and Z3 symmetries and the
spin-spin correlations are short ranged. This agrees with
the evidence of a spin liquid phase in the phase diagram
corresponding to J⊥ = 09,18,19.

IV. LINEAR SPIN WAVE THEORY

In this section we use a linear spin wave approach to
study the stability of Néel order as a function of the spin
strength. The classical spin state corresponding to the
energy minimum of the Hamiltonian (1) for J2 < 1

6J1 is
given by an anti-parallel (Néel) configuration. Incorpo-
rating quantum fluctuation to the classical ground state
is likely to lead to the melting of Néel order.
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FIG. 6. (Color online) Staggered magnetization vs. J⊥ ob-
tained by means of linear spin wave approximation. For small
values of the intralayer coupling the Néel order is enhanced,
in agreement with SBMFT results.

For the spin wave implementation it is convenient to
define new spin operators by rotating in π the spins be-
longing to sublattices 2 and 3 (See Fig. 1) about the
x-axis. After the rotation we have

S̃x
α(~r) = Sx

α(~r) (11)

S̃y
α(~r) = −Sy

α(~r) (12)

S̃z
α(~r) = −Sz

α(~r), (13)

for spin operators belonging to sublattices 2 or 3, while
~̃Sα(~r) = ~Sα(~r) for sublattices 1 and 4. Thereby, the
classical ground state have all spins pointing towards the
new Sz axis.
In order to study spin-wave fluctuations, we write the

spin operators in terms of Holstein-Primakoff bosons as
follows

S̃+
α (~r) =

√
2Saα(~r) (14)

S̃−
α (~r) =

√
2Sa†α(~r) (15)

S̃z
α(~r) = S − nα(~r). (16)

The Hamiltonian can be written in terms of these bo-
son operators as

H = E0 +HSW , (17)

with

E0 = 2NS2(6J2 − 3J1 − J⊥) (18)

HSW = 2NS(6J2 − 3J1 − J⊥)

+

∫

d2~k ~a†(~k)M(~k)~a(~k), (19)

where ~a(~k) is a vector of bosonic operators.

M(~k) =

(

Γ Ω
Ω Γ

)

(20)

with

Γ =









γ2(~k) 0 0 0

0 γ2(~k) 0 0

0 0 γ2(~k) 0

0 0 0 γ2(~k)









(21)

Ω =









0 γ1(−~k) γ⊥ 0

γ1(~k) 0 0 γ⊥
γ⊥ 0 0 γ1(−~k)
0 γ⊥ γ1(~k) 0









(22)

being functions γ1, γ2 and γ⊥ given by

γ1(~k) =
1

2
J1S(1 + ei

~k·~e1 + e−i~k·~e2) (23)

γ2(~k) = J2S(cos(~k · ~e1) + cos(~k · ~e2) + cos(~k · (~e1 + ~e2)))

+
3

2
J1S − 3J2S +

1

2
J⊥S (24)

γ⊥ =
1

2
J⊥S. (25)

Then we use a Bogoliubov transformation to diagonalize
the Hamiltonian HSW and obtain the following eigenval-
ues

ε±β (
~k) =

√

(γ2(~k))2 − (γ⊥ ± |γ1(~k)|)2, (26)

where β = 1, 2 is the layer index. The staggered magne-
tization can be calculated in the linear approximation as
follows

M =
1

4N

∑

~r,α

S̃z
α (~r)

= S − 1

4N

∑

~r,α

a
†
α(~r)aα(~r). (27)

On the one hand, fluctuations around the Néel state in-
crease with the frustration J2, and can destroy the Néel
order. On the other hand, as the value of S is lowered,
quantum fluctuations become more important and we
can expect the Néel state to melt for a given value of
S. The correction to the classical boundary for the Néel
state can be estimated by finding the frustration J2 at
which the sublattice magnetization M given by Eq. (27)
vanishes. In Fig. 6 we present the sublattice magneti-
zation M as a function of the interlayer coupling (J⊥)
corresponding to J2 = 0.1 (dashed line on Figure 3). No-
tice that, for small values of the interlayer coupling, the
magnetization is an increasing function of J⊥, i.e, the an-
tiferromagnetic order is enhanced. But increasing more
the value of J⊥ the sublattice magnetization is reduced
and vanishes for large values of J⊥. This behavior is in
agreement with the SBMFT results and the reentrant ef-
fect observed in Fig. 3. In Fig. 7, we present the melting
curves in the 1/S-J2 plane for different values of J⊥.
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FIG. 7. (Color online) Phase diagram in the 1/S-J2 plane for
different values of J⊥ obtained by means of LSWT.

The case corresponding to J⊥ = 0 agrees with LSWT
results presented in Ref. 48 (Fig. 5) for the single layer
J1 − J2 Heisenberg model. For large values of J⊥ the
stability region for the Néel state is reduced. Notice
that in References 7 and 48 there is a discrepancy be-
tween LSWT and Schwinger bosons mean field deter-
minations of the Néel state boundary. This difference
could be reduced by means of higher order 1/S correc-
tions to the LSWT, which are beyond the scope of the
present work. Finally, in Fig. 8 we show the dispersion
of magnon modes along the path depicted in the inset.
It is clear that as we increase the interlayer coupling, two
of the four magnon modes acquires a nonzero gap at the
Γ point.

V. COMPARISON BETWEEN SERIES

EXPANSION AND EXACT DIAGONALIZATION

As a complement to our analysis, we have performed
series expansion (SE) calculations, starting from the limit
of isolated dimers connecting spins from both layers via
J⊥. This allows us to assess Lanczos results by com-
parison with other non-mean-field technique. To this
end, we have decomposed the Hamiltonian Eq.(1) into
H = H0(J⊥) + V (J1, J2), where H0(J⊥) represents de-
coupled dimers and V (J1, J2) is the part of Hamiltonian
that connects dimers by means of J1, J2 couplings.
Since each dimer has two energy levels (singlet and

triplet), the spectrum of H0(J⊥) is equidistant, allow-
ing to sort the levels structure of H0 in a block-diagonal
form, where each block is labeled by an energy quantum-
number Q. Ground state (vacuum) is in Q=0 sector,
i.e., all dimers are in the singlet state. Q=1 sector is
composed by states obtained by creating (from vacuum
state) one-elementary triplet excitation (particle) on a
given dimer, whereas that Q ≥ 2 is of multiparticle na-
ture.
Perturbation V (J1, J2) does not conserve the block-

diagonal form ofH0(J⊥), i.e., it mixes different Q-sectors.
However, for this type of Hamiltonian, it can be shown49

that it is possible to recover the block-diagonal form
by means of continuous unitary transformations, using
the flow equation method of Wegner50. It essentially
consists in transforming H onto an effective Hamilto-
nian Heff which is block-diagonal in the quantum num-
ber Q. This transformation can be achieved order by
order in a perturbative series in powers of J1,2, lead-
ing to Heff = H0(J⊥) +

∑

n,0≤m≤n J
n−m
1 Jm

2 Cn,m, where
Cn,m are weighted products of Q-conserving terms in
V (J1, J2), determined by recursive differential equations,
see Ref. 49 for details.
Q-number conservation allows the evaluation of sev-

eral observables directly from Heff in terms of a SE in
J1,2. For the present model we have performed O(5) and
O(4) SE in J1,2 for ground state energy (Q = 0) and for
triplet dispersion (Q = 1), respectively. Explicit expres-
sions are too long to be printed explicitly, in particular
triplet dispersion. Upon request they will be made avail-
able electronically. Regarding technical details about the
calculation we refer to Ref. 51.
To illustrate the type of results obtained, in Fig. 9 we

show the ground state energy per site as a function of
J1 and J2 = 0, obtained by O(5) SE (blue circles) and
ED on a finite system of 24 sites (red squares). As it can
be observed, both techniques predict an energy decreas-
ing with the coupling of interlayer-dimers via J1. Fur-
thermore, there is an excellent quantitative agreement
between both methods, up to J1 ≃ 0.25. Beyond this
value, the difference between the two approaches becomes
increasingly noticeable, being attributable to finite size
effects of ED and the order achieved in the SE. When
the frustration J2 is incorporated, the agreement is not
as good as in the unfrustrated case. This might be due to
the stronger effect that the frustration induces on finite
size effects in Lanczos calculation.
On the other hand, triplet gap is shown in the inset of
Fig. 9 for the same set of parameters as the ground
state energy. Here we also observe that both techniques
predict a tendency to a closure of the gap, when J1 is
turned on. While in this case we have achieved a O(4)
SE, we see that the range of agreement between ED and
SE is practically the same as before, being as well reduced
when the frustration is included. Overall, our calcula-
tions shows that ED and SE share a range parameters
where both predict the same behavior. A more detailed
analysis in search of transitions, involving gap closure or
level-crossings from SE point of view, is beyond the scope
of present work.

VI. DISCUSSION AND CONCLUSIONS

We have studied the phase diagram corresponding to
a frustrated Heisenberg model on the bilayer honeycomb
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lattice, by means of Schwinger bosons mean field theory,
complemented with exact diagonalization, linear spin-
wave theory and series expansion.

By analyzing the sublattice magnetization and the spin
gap by SBMFT, we have described the behavior of the
quantum phases as the interlayer coupling is increased.
The absence of Néel order for large values of the interlayer
coupling has also been observed by spin-spin correlation
calculations, where SBMFT and ED techniques predict
the same qualitative behavior.

In particular, in the small frustration region (J2/J1 .
0.2075) the system is Néel ordered for J⊥ = 0, but in-
creasing the interlayer coupling up to a value (J∗

⊥) the
Néel order is destroyed and the system enters in a non
magnetic phase. The spin-spin correlations are consis-
tent with the destruction of the Néel order, given place,
for large values of the interlayer coupling, to a phase with
short range spin-spin correlations and a finite spin gap.

In the region (0.2075 . J2/J1 . 0.289), the phase
diagram shows signatures of a reentrant behavior. At
J⊥ = 0 the system does not present magnetic order,
but increasing the interlayer coupling up to a finite (and
small) value J∗∗(J2), the system becomes Néel ordered.
Increasing even more the interlayer coupling, the Néel
order is destroyed at a given value J∗(J2). The behavior
of the sublattice magnetization as the function of J⊥ also
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support the existence of the reentrant behavior.
For values of the interlayer coupling between (0.289 .

J2/J1 . 0.3732) the Néel order is absent at J⊥ = 0 and
the system presents a nonzero spin gap, whereas in the
region (0.3732 . J2/J1 . 0.398) each layer presents
a nematic disordered phase9. In both cases increasing
the value of J⊥ the system goes to an interlayer valence
bond crystal with a spin gap that is proportional to the
interlayer coupling.
In all the range of values 0 < J2/J1 < 0.398,

for J⊥/J1 > 4 the system presents signatures of
an interlayer-valence bond crystal (IVBC) phase that
evolves adiabatically from the limit of decoupled
interlayer-dimers. This is corroborated by series expan-
sion calculations starting explicitly from the limit of iso-
lated interlayer dimers.
The precise determination of transitions lines between

different quantum phases present in the model is not a
simple task. Among these issues, the important ques-
tion about how are the nematic VBC and IVBC phases
connected still remains open. The mean field character
of SBMFT method does not allow us to draw a defi-
nite conclusion about the real nature of the transition.

From the viewpoint of series expansion (SE), it is pos-
sible to analyze the adiabatic evolution of the nematic
VBC phase, starting appropriately from isolated dimers
on each plane. Thus, the possibility and type of transi-
tions between nematic VBC and IVBC phases could be
estimated by analyzing level crossings and gap closures
between this SE and the dimer SE obtained in Section
V for IVBC phase. While this analysis goes beyond the
scope of this work, it clearly deserves more investigation.
We postpone the detailed study of these transitions for
future work, as we have focused on the general charac-
teristics of each region of the phase diagram.
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