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Magnetization plateaus and jumps in a frustrated four-leg spin tube under a magnetic field
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We study the ground state phase diagram of a frustrated spin-1/2 four-leg spin tube in an external magnetic
field. We explore the parameter space of this model in the regime of all-antiferromagnetic exchange couplings
by means of three different approaches: analysis of low-energy effective Hamiltonian, a Hartree variational
approach, and density matrix renormalization group for finite clusters. We find that in the limit of weakly
interacting plaquettes, low-energy singlet, triplet, and quintuplet states play an important role in the formation of
fractional magnetization plateaus. We study the transition regions numerically and analytically, and find that they
are described, at first order in a strong-coupling expansion, by an XXZ spin-1/2 chain in a magnetic field; the
second-order terms give corrections to the XXZ model. All techniques provide consistent results which allow
us to predict the existence of fractional plateaus in an important region in the space of parameters of the model.
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I. INTRODUCTION

Frustrated spin systems have been continuously explored
in the past years driven by the role of frustration to induce
unconventional magnetic orders or even disorder, including
spin-liquid states and exotic excitations [1,2]. In particular,
quasi-one-dimensional spin systems, comprising chain, lad-
der, and more involved magnetic structures are an active
field of research thriving on a constant feedback between
material synthesis, experimental investigations, and theoretical
predictions [3–5].

Typically when these systems are placed in a magnetic
field a richer behavior emerges ranging from the existence
of fractional magnetization plateaus or the Bose-Einstein
condensation of magnons to the possible existence of the spin
equivalent of a supersolid phase. Of particular interest are
quasi-one-dimensional systems as ladders and tubes, because
they constitute an interesting and nontrivial step from one
dimension to two dimensions.

As representative of geometrically frustrated homogeneous
spin chains, one can consider the antiferromagnetic spin-1/2
zigzag chain for which compounds such as CuGeO3 [6],
LiV2O5 [7], or SrCuO2 [8] are almost ideal prototypes and
spin tube compounds with an odd number N of sites per
unit cell, such as [(CuCl2tachH)3Cl]Cl2 [9] and CsCrF4 [10]
with N = 3, and Na2V3O7 [11] with N = 9. Note that spin
tubes with an odd number of legs and only nearest neigh-
bor antiferromagnetic (AFM) exchange are geometrically
frustrated.

Recently, Cu2Cl4 · D8C4SO2 has been established as a new
spin-1/2 tube with an even number of legs [12], namely
N = 4. Tubes with N = 4 and only nearest neighbor AFM
exchange are not frustrated. However, substantial next-nearest
neighbor AFM exchange, diagonally coupling adjacent legs,
has been claimed for Cu2Cl4 ·D8C4SO2, rendering also this
ladder system frustrated.

Motivated by this, in this paper we study the geometrically
frustrated four-leg spin tube (FFST) model that has been
introduced in Refs. [13,14], in the presence of a magnetic
field. The Hamiltonian is given by

H = Hplaq + Hint, (1)

where Hplaq contains the interactions between spins in each
plaquette plus the Zeeman term,

Hplaq = J0

∑

n,a

Sn,a · Sn,a+1 − h
∑

n,a

Sz
n,a, (2)

andHint contains the Heisenberg interactions between adjacent
plaquettes

Hint = J1

∑

n,a

Sn,a · Sn+1,a + J2

∑

n,a

Sn,a · Sn+1,a+1, (3)

with the lattice structure and exchange antiferromagnetic
couplings J0,1,2 as shown in Fig. 1. Here a = 1, . . . ,4 (n =
1, . . . ,N) is a site (plaquette) index, J0 is the coupling on each
plaquette, J1,2 the couplings along the chains, and the site (n,5)
is identified with the site (n,1). Note that the FFST model can
be mapped onto an identical one with exchanged J1 ↔ J2 by
a π/2 twist of the plaquettes around the tube.

For J1,2 � J0, the quantum properties of the FFST can be
understood in terms of weakly coupled four-spin plaquettes.
In Ref. [13] a series expansion analysis of the one- and two-
particle excitations has been carried out for the case of zero
magnetic field in this restricted parameter regime. In [14] by a
combined analysis from a variety of complementary methods,
the complete parameter space of the FFST has been explored.
However, a study of the phases of the FFST in the presence of
a magnetic field has not been done.

In this paper we pay particular attention to the behavior
of the model in the limit of weakly coupled plaquettes where
it is possible to obtain an effective description in terms of
degenerate perturbation theory. We find that the effect of
frustrating interactions leads to the appearance of additional
fractional magnetization plateaus, which have already been
shown to exist in several frustrated quasi-1D systems [15,16].
In a combined analysis using perturbative methods, variational
approach, and the density matrix renormalization group
(DMRG), we make quantitative predictions for the existence,
the position, and the sizes of these plateaus induced by
frustration.

The paper is structured as follows. In Sec. II we derive
the low energy effective Hamiltonian of the model given by
Eq. (1). After that, by means of Bethe-ansatz analysis in
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FIG. 1. (Color online) Frustrated four-spin tube. Solid spheres
represent spin-1/2 moments and the labels 1,2,3,4 indicate the four
sites of each unit cell. Plaquettes (bold red lines) are coupled by
nearest (J1) and next nearest (J2) antiferromagnetic exchange, blue
and green lines, respectively. On-plaquette coupling is J0.

Sec. II A, the low-energy dispersion calculation near the ends
of plateaus in Sec. II B and a variational approach in Sec. II C,
we show that for certain values of the frustrating parameters,
the ground state can spontaneously break translation invariance
symmetry leading to additional plateaus at intermediate values
of the magnetization. In Sec. III we present an analysis of the
phase diagram obtained in the range of parameters considered,
and we finish the paper in Sec. IV with a summary of the main
results obtained in the work, its scope, and possible extensions
for future studies.

Let us finally mention that numerical work is not specif-
ically presented in a given section, but rather throughout the
text, to allow a closer comparison between low-energy effec-
tive model predictions and finite size numerical calculations
on the spin tube model using the DMRG technique.

II. LOW-ENERGY EFFECTIVE MODELS

The physics of the model given by Eq. (1) is controlled
by two factors: the level of frustration of the Heisenberg
exchange and the magnetic field. In the limit J1,2 = 0, the
system consists of independent plaquettes. The Hilbert space
of each plaquette contains sixteen states which fall into two
spin-0 singlets (|s(1)〉, |s(2)〉), nine spin-1 triplets (|t (1)

i 〉, |t (2)
i 〉,

and |t (3)
i 〉 with i = 1, . . . ,3), and five spin-2 quintuplets (|qi〉

with i = 1, . . . ,5). These states are listed in Table I where
|S〉ab is a singlet state between sites a and b defined as |S〉ab =
(|+,−〉ab − |− ,+〉ab)/

√
2, |t〉0

ab = (| + ,−〉ab + | − ,+〉ab)/√
2, and |t〉±ab = | ± ,±〉ab.
When an external magnetic field is switched on the

degeneracy in the different multiplets is lifted. As shown in
Fig. 2, there are two ground state level crossings at two values
of the magnetic field, h01 = J0 and h02 = 2J0. At these values,
the ground state is degenerate. For h < h01 = J0, the ground
state is |s(1)〉; for h01 < h < h02 = 2J0 the ground state is |t (1)

1 〉,
while for h > h02 the ground state is |q1〉.

We will now discuss the low-energy effective Hamiltonian
(LEH) approach used to study the properties of the spin tube
given by Eq. (1). There are two possible limits which may be
considered.

One limit is the case J0/J1,2 → 0, which corresponds to
weakly interacting chains, that can be analyzed by means of
bosonization and conformal field theory; this has been done in
detail by other authors [17]. The other limiting case, that we

TABLE I. Plaquette states of the Hamiltonian Hplaq in Eq. (2).

Plaquette states

|s(1)〉 |S〉14|S〉23−|S〉12|S〉34√
3

|s(2)〉 |t〉−12|t〉+34+|t〉+12|t〉−34−|t〉−14|t〉+23−|t〉+14|t〉−23
2∣∣t (1)

1

〉 |S〉12|t〉+34+|t〉+12|S〉34√
2∣∣t (1)

2

〉 |S〉12|t〉0
34+|t〉0

12|S〉34

2∣∣t (1)
3

〉 |S〉12|t〉−34+|t〉−12|S〉34√
2∣∣t (2)

1

〉 |S〉13|t〉+
24∣∣t (2)

2

〉 |t〉−
12|t〉+

34 − |t〉+
12|t〉−

34∣∣t (2)
3

〉 |S〉24|t〉−
13∣∣t (3)

1

〉 |S〉24|t〉+
13∣∣t (3)

2

〉 |t〉−
14|t〉+

23 − |t〉+
14|t〉−

23∣∣t (3)
3

〉 |S〉13|t〉−
24

|q1〉 |t〉+
12|t〉+

24

|q2〉 |t〉0
12|t〉+34+|t〉+12|t〉0

34√
2

|q3〉 |t〉0
12|t〉0

34+|t〉0
14|t〉0

23+|t〉0
13|t〉0

24√
6

|q4〉 |t〉0
12|t〉−34+|t〉−12|t〉0

34√
2

|q5〉 |t〉−
12|t〉−

24

will consider here, is the strong-coupling limit J1,2/J0 � 1
which corresponds to almost decoupled plaquettes, and where
the interplaquette couplings can be treated perturbatively.

We derive the LEH as follows: we first set the interplaquette
couplings J1,2 = 0 and select the states of a single plaquette
which are degenerate in energy in the presence of a magnetic

E/J0

−4

−2

0

2

h/J0

h01 = 1 h02 = 2

|q5 q4

|q3

|q2

|t(2)3 ,|t(3)3

|t(2)2 , |t(3)2 , |s(2)

|t(2)1 ,|t(3)1|s(1)

|t(1)1

|q1

|t(1)3

|t(1)2

FIG. 2. (Color online) Level crossings of a single plaquette of
S = 1/2. The full red line denotes the ground state at different values
of the magnetic field. There are two values of h where the ground
state is degenerate, for h01 = J0 and h02 = 2J0, where the ground
state changes from singlet to triplet and from triplet to quintuplet,
respectively. Note that at these magnetic fields the separation between
the energy levels is J0, defining the energy scale for a perturbative
treatment in the weakly coupled four-spin plaquettes limit.
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field. As mentioned above, there are two such values of the
magnetic field in this case. We will consider each such value of
h0 separately. The degenerate plaquette states will constitute
our low-energy states. Next, using the Hamiltonian of the
total system as H = H′

plaq + H′
int, where H′

plaq = Hplaq −
h0

∑
j,a Sz

j,a and H′
int = Hint − (h − h0)

∑
j,a Sz

j,a contain the
small interactions J1,2 and the residual magnetic field h − h0

which are both assumed to be much smaller than J0. Let us
now denote the degenerate and low-energy states of the system
as vi and the high-energy states as wα . The low-energy states
all have energy ε0, while the high-energy states have energies
εα according to the exactly solvable Hamiltonian H′

plaq. With
this we construct an effective Hamiltonian [16]

Heff = H(1)
eff + H(2)

eff + · · · , (4)

where H(i)
eff is the ith order of the perturbation expansion. The

first-order term is

H(1)
eff =

∑

ij

|vi〉〈vi |H′
int|vj 〉〈vj |. (5)

The second-order LEH is given by

H(2)
eff =

∑

ij

∑

α

|vi〉 〈vi |H′
int|wα〉〈wα|H′

int|vj 〉
ε0 − εα

〈vj |. (6)

Finally, we introduce pseudospin operators representing
the states [around each magnetic field (h01 and h02)] of
each plaquette to rewrite the effective Hamiltonian in a more
transparent form amenable for further analysis. The effective
Hamiltonian up to second order obtained according to the
procedure described above is as follows.

(i) For h01 = J0, the two states to be considered are |s(1)〉
and |t (1)

1 〉 with energies −2J0 and −J0 − h, respectively. The
corresponding operators are

Sz
n = 1

2

(∣∣t (1)
1

〉〈
t

(1)
1

∣∣ − |s(1)〉〈s(1)|),
S+

n = |s(1)〉〈t (1)
1

∣∣, S−
n = ∣∣t (1)

1

〉〈s(1)|. (7)

(ii) In the case of h02 = 2J0 the relevant two states of the
plaquette to take into account are |t (1)

1 〉 and |q1〉 with energies
−J0 − h and J0 − 2h, respectively, with operators

Sz
n = 1

2

(|q1〉〈q1| − ∣∣t (1)
1

〉〈
t

(1)
1

∣∣),

S+
n = ∣∣t (1)

1

〉〈q1|, S−
n = |q1〉

〈
t

(1)
1

∣∣. (8)

In both cases, the form of the effective Hamiltonian is the same
but the values of the effective couplings change. Therefore,
Eq. (4) becomes

Heff = ε0 +
N∑

j=1

Jxy

(
Sx

j Sx
j+1 + S

y

j S
y

j+1

) + JzzS
z
jS

z
j+1

+
N∑

j=1

Kxy

(
Sx

j Sx
j+2 + S

y

j S
y

j+2

) − heff
N∑

j=1

Sz
j

+
N∑

j=1

Jxyz

(
Sx

j Sx
j+2 + S

y

j S
y

j+2

)
Sz

j+1, (9)

where around the first magnetic field h01 effective couplings
and field are given by

ε0

N
= −2J0 + J1 + J2

16

− 31

6912

109
(
J 2

1 + J 2
2

) − 194J1J2

J0
,

heff = h − J0 − J1 + J2

4
+ 11

(
J 2

1 + J 2
2

) − 14J1J2

192
,

Jxy = 4(J1 − J2)

3
+

(
J 2

1 − J 2
2

)

9J0
,

Jzz = (J1 + J2)

4
− 1715

(
J 2

1 + J 2
2

) − 3454J1J2

1728J0
,

Kxy = −31(J1 − J2)2

54J0
,

Jxyz = −7(J1 − J2)2

27J0
, (10)

whereas around the second one h02 they are given by

ε0

N
= J0 + 9(J1 + J2)

16

− 1

256

49
(
J 2

1 + J 2
2

) − 90J1J2

J0
,

heff = h − 2J0 − 3(J1 + J2)

4
− 49

(
J 2

1 + J 2
2

) − 90J1J2

64J0
,

Jxy = J1 − J2,

Jzz = J1 + J2

4
− 49

(
J 2

1 + J 2
2

) − 90J1J2

64J0
,

Kxy = −11(J1 − J2)2

32J0
,

Jxyz = 11(J1 − J2)2

16J0
. (11)

In both cases, the first order effective Hamiltonian becomes
an XXZ model, where the Bethe-ansatz solution can be used
to obtain information about the system. In the special case
where both interplaquette couplings are equal J1 = J2, the
effective couplings Jxy , Kxy , and Jxyz become zero, and the
model reduces to an effective Ising Hamiltonian. Furthermore,
from the expressions (10) and (11) we see that in both cases the
constants Kxy and Jxyz are order (J1 − J2)2 while Jxy , Jzz, and
heff contains a term proportional to (J1 − J2). So, we expect
that close to the line J1 = J2 the second order corrections will
be more important in the effective XXZ model that in Kxy and
Jxyz. This will be discussed in the following sections.

A. Bethe-ansatz solution of effective model

As mentioned previously, the effective models obtained
around h01 and h02 reduce to an XXZ effective spin-1/2 model
at first order, O(J1,J2), since in both cases Kxy and Jxyz are
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second order terms, i.e.,

Heff =
N∑

j=1

Jxy

(
Sx

j Sx
j+1 + S

y

j S
y

j+1

) + JzzS
z
jS

z
j+1

−heff
N∑

j=1

Sz
j . (12)

As it is known this model has an exact solution via the Bethe
ansatz, which will allow us to predict main physical features
of the tube model (at least in the range of weakly coupled
plaquettes) [18]. To this end let us first briefly review the
main characteristics of XXZ the chain. In the absence of a
magnetic field heff = 0 and for −1 � � � 1 (� = Jzz/|Jxy |)
the system is in a gapless Luttinger liquid phase. For � < −1
the ground state is ferromagnetic with a gap to effective spin-1
magnon excitations. On the other hand, for � > 1, the system
exhibits a Néel ordered phase with a gap to effective spin-1/2
domain-wall spinon excitations. Elementary magnon (spinon)
excitation condense at the boundary � = −1(1).

In the presence of a field heff, in the plane � − heff, there
are two critical lines heff

L-F and heff
L-N confining Luttinger liquid

phase between ferromagnetic and Néel phases, which are given
by [18]

± heff
L-F = |Jxy | + Jzz,

±heff
L-N = |Jxy | sinh g

∞∑

n=−∞

(−1)n

cosh(ng)
, (13)

where cosh g = �. The gapped phases translate into plateaus
in magnetization curves, at M = 0 for Néel and trivially at
M = ± 1

2 (normalized per site) for ferromagnetic phase. On the
other hand, in the gapless Luttinger liquid phase magnetization
increases continuously with the applied field.

This simple structure of magnetization curve, connecting
a central integer plateau with half-integer plateaus at each
side, via Luttinger liquid phases, is the main feature that
describes qualitatively the magnetization curve of the tube
model in the strong coupling regime. Specifically for the
field sector around h01, the effective Sz = − 1

2 (+ 1
2 ) represents

the plaquette Sz = 0(1), corresponding to the singlet(triplet)
involved in the low field crossing. Therefore, the plateaus in
the curve of magnetization (per site) vs heff in the effective
model at M = − 1

2 , 0, and 1
2 translate into plateaus at M = 0,

1
2 , and 1 in the curve of magnetization (per plaquette) vs
h � 0. The same idea applies to the field sector around h02,
where effective Sz = − 1

2 (+ 1
2 ) represents plaquette Sz = 1(2),

corresponding to triplet(quintet) at the high field crossing. In
this case, plateaus at M = 0, 1

2 , and 1 in the effective model
translates into M = 1, 3

2 , and 2 in the plaquette model.
The critical lines, limiting integer plateaus, Luttinger liquid,

and half-integer plateaus phases are determined by solving
numerically Eqs. (13) corresponding to the effective models
around h01 and h02. This calculation, together with the
comparison with the other techniques (see Fig. 6) is discussed
in Sec. III.

Along the line of maximum frustration J1 = J2, the system
reduces to an effective Ising model, with a single transition
between Néel and ferromagnetic phase, and absence of

0 1 2 3

0 1 2 3

0 1 2 3

0 2 4 6

1
2

1

3
2

2

1
2

1

3
2

2

hc1

hc2

hc3

hc4

hc5

hc6

hc7

hc8

J1

J0
= 0.5

J2

J0
= 0.5

J1

J0
= 0.4

J2

J0
= 0.6

J1

J0
= 0.48

J2

J0
= 0.52

J1

J0
= 2

J2

J0
= 0.5

h
J0

h
J0

(a) (b)

(c) (d)

FIG. 3. (Color online) Magnetization by plaquette vs magnetic
field obtained by DMRG simulations with open boundary conditions
(OBC) for N = 4 × L with L = 20.

Luttinger liquid phase, since Jxy = 0 for both Eqs. (10) and
Eqs. (11). This is reflected in the magnetization curve by means
of a stepwise structure with jumps between plateaus at integer
and half-integer values of M per plaquette, corresponding to
ferromagnetic and Néel phases, respectively.

By applying the previous condition Jxy = 0 to the first of
Eq. (13) and using the corresponding Jzz from Eqs. (10) and
Eqs. (11), respectively, we obtain, at O(J1,J2) the following
expressions for the critical lines, in units of J0 [see Fig. 3(b)]:

hc1 = 1, hc3 = 1 + J1, hc5 = 2 + J1, hc7 = 2 + 2J1,

(14)

and hc2 = hc1, hc4 = hc3, hc6 = hc5, and hc8 = hc7.
One aspect which is important to recall is the role of

frustration on the plateaus’ structure of the tube model.
There is a crucial difference between both types of plateaus
regarding the influence of frustration. Integer-type of plateaus
are inherent of each plaquette, i.e., they exist independently
of the interplaquette coupling (although they are renormalized
by them). On the other hand, half-integer plateaus are induced
by frustration and are widest along J1 = J2. Around that line,
frustration-induced plateaus start to narrow (as well as integer
plateaus), leaving space to a growing Luttinger liquid phase
which is the only one that survives in the limit of decoupled
chains.

To check low-energy results obtained by Bethe ansatz
we have performed extensive DMRG computations [19] on
the model Hamiltonian given by Eqs. (1)–(3). We calcu-
late the magnetization per plaquette M = Sz

total/L, with L

being the number of plaquettes in the spin tube. In our DMRG
calculations we have employed periodic boundary conditions
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(PBC), and keep up to 500 states, which has shown to be
enough to ensure the expected accuracy.

In Fig. 3 we show numerical DMRG results for magneti-
zation curves for spin tubes composed by L = 20 plaquettes
and PBC. The J1,2 (in units of J0) values have been selected in
order to illustrate the emergence of different plateaus structures
discussed previously. The left-upper panel shows the predicted
Ising-like behavior along the line of maximum frustration
for the case J1/J0 = J2/J0 = 0.5, with plateau boundaries
satisfying Eqs. (14). Small deviations from J1 = J2 line
induce a reduction of half-integer plateaus and the transitions
from jumps to smooth curves between plateaus, characteristic
of Luttinger liquid phases. This behavior is shown in the
right-upper panel of Fig. 3, for the cases J1/J0 = 0.48 and
J2/J0 = 0.52.

The presence of half-integer plateaus is very sensitive
to frustration. This is illustrated in the left-lower panel
of Fig. 3, which shows that already for J1/J0 = 0.4 and
J2/J0 = 0.6 half-integer plateaus are not present, with only
an integer plateaus structure connected by Luttinger liquid
phases remaining. Finally, far from the J1 = J2 line and near
to J1/J0 = 0 or J2/J0 = 0 lines, the magnetization shows only
a gapless Luttinger liquid phase, which is a signature that the
system is adiabatically connected with the limit of decoupled
spin-1/2 chains. This behavior is shown in the right-lower
panel of Fig. 3, for the values J1/J0 = 2 and J2/J0 = 0.5.

B. Magnon and spinon dispersion

We will now use the effective Hamiltonian given by
Eq. (9) to compute the values of the critical fields hc1 . . . hc8

[see Fig. 3(b)] by means of the analysis of the gap in
the spectrum of low-energy excitations at the ends of the
plateaus [15,16]. To start we compute the critical field hc4

at the beginning of the M = 1 plateau where the state
with all plaquettes equal to |t (1)

1 〉 becomes the ground state.
The elementary excitations correspond to a superposition
of individual singlets |s(1)〉 carrying spin �Sz = −1 in a
background of triplets [see Fig. 4(a)]. To compute the field
hc4 , we compare the energy ε0 of the state with all plaquettes
in |t (1)

1 〉 with the minimum energy of a spin-wave state in which
one plaquette is in |s(1)〉 and all the other plaquettes in |t (1)

1 〉. A
spin wave with momentum k is given by [16]

|k〉 = 1√
L

∑

n

eikn|s(1)〉n, (15)

where |s(1)〉n denotes a state with a singlet |s(1)〉 on plaquette
at site n, and triplets |t (1)

1 〉 on the other sites. The spin-wave
dispersion, i.e., w(k) = ε(k) − ε0, is obtained by applying an
effective Hamiltonian [Eq. (9)] to Eq. (15), i.e., Heff|k〉 =
[w(k) + ε0]|k〉; in this case we get

w4(k) = C+
0 + C1 cos(k) + C+

2 cos(2k), (16)

with

C±
0 = ±heff − Jzz, C1 = Jxy, C±

2 = Kxy ± Jxyz

2
. (17)

By setting w4(k∗) = 0 at k∗ where the spin-wave dispersion
w4(k) has a minimum, we obtain the critical field hc4 in terms

(a)

(b1)

(b2)

FIG. 4. (Color online) Sketch of the low-energy excitations for
(a) integer plateaus: all of the plaquettes are in one state and
the excitations out of this state correspond to magnons carrying
spin �Sz = ±1; (b) half-integer plateau: elementary excitations are
domain walls (two plaquettes in the same state) carrying �Sz = +1/2
for the low-field end of the plateau (b1) and �Sz = −1/2 for the
low-field beginning of the plateau (b2).

of J0,J1,J2. Similarly, we compute the fields hc1,hc5, and
hc8, delimiting integer plateaus by comparing the energy ε0

of the state with all plaquettes are in the state composed by
|s(1)〉, |t (1)

1 〉, and |q1〉 on all plaquettes, respectively, with the
minimum energy εmin(k) of a spin wave in which one state is
replaced by a |t (1)

1 〉, |q1〉, and |t (1)
1 〉, respectively. The spin-wave

dispersions w1(k), w5(k), w8(k) that we obtain are

w1(k) = C−
0 + C1 cos(k) + C−

2 cos(2k),

w5(k) = C−
0 + C1 cos(k) + C−

2 cos(2k),

w8(k) = C+
0 + C1 cos(k) + C+

2 cos(2k). (18)

Note that in the previous expressions the coefficients
involved [see Eq. (17)] depend on the critical field considered.
For w1(k) and w4(k) the coefficients Jxy , Jzz, heff, Kxy , and
Jxyz are given by Eqs. (10), whereas for w5(k) and w8(k) by
Eqs. (11).

In the case of the fractional plateaus at M = 1/2 and 3/2
the low-energy excitations (near the ends of the plateaus) are
no longer magnons, but are domain walls with spin Sz = ±1/2
[see Figs. 4(b1) and 4(b2)]. The critical fields can be obtained
by considering the dispersion of the corresponding elementary
excitation on the adequate background, following a similar
procedure that was employed for the case of integer-plateaus
presented before. The spin-wave dispersions for half-integer
plateaus are

w2(k) = Jzz

2
+ heff

2
+ Jxy cos(2k),

w3(k) = Jzz

2
− heff

2
+ Jxy cos(2k),

w6(k) = Jzz

2
+ heff

2
+ Jxy cos(2k),

w7(k) = Jzz

2
− heff

2
+ Jxy cos(2k), (19)
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where heff, Jzz, and Jxy are given by Eqs. (10) for w2(k) and
w3(k), and by Eqs. (11) for w6(k) and w7(k).

It is simple to see that along the line J1 = J2 the dispersion
relations are flat because the amplitudes of the cosines are
canceled. This will be reflected in the stepwise structure of
magnetization curve along that line.

The critical lines, limiting integer plateaus, Luttinger
liquid, and half-integer plateau phases, obtained by analyzing
previously calculated dispersions, together with a comparison
with the other techniques (Fig. 6), are presented in Sec. III.

C. Variational approach

An alternative way to study the low energy properties of
the spin tube in the presence of a magnetic field is by means
of a variational approach [20]. To this end we consider a
Hartree variational function consisting of a linear combination
of eigenstates of the plaquette per plaquette, i.e., the wave
function will be of the form [20]

|ψ〉 =
L∏

n=1

|νn〉, (20)

where |νn〉 = ∑Ne
i=1 αi

n|i〉; |i〉 are the eigenstates of the pla-
quette and αi

n are complex variational constants of the nth
plaquette which satisfy

∑
i |αi

n|2 = 1 and are determined by
minimizing the energy E = 〈ψ |H|ψ〉.

Replacing Eq. (20) in Eq. (1) we obtain

E = J0

∑

n

�α†
n · Md · �αn − h

∑

n,a

�α†
n · Mz

a · �αn

+J1

∑

n,γ,a

(�α†
n · Mγ

a · �αn

)(�α†
n+1 · Mγ

a · �αn+1
)

+J2

∑

n,γ,a

(�α†
n · Mγ

a · �αn

)(�α†
n+1 · M

γ

a+1 · �αn+1
)
, (21)

where Md = is a diagonal matrix with elements given by the
eigenvalues of the plaquette and M

γ
a is the component γ =

x,y,z of original spin Sn,a of site a in the basis of eigenvectors
of Hplaq.

We propose that the wave function is a linear combination
of the three different ground states that a single plaquette has
depending on the applied magnetic field (|s(1)〉, |t (1)

1 〉, and
|q1〉). Although this is a minimal starting point, expected to
be valid in the weak interplaquette regime, it however predicts
the emergence of the different plateau structures, as we show
below.

The ground state is obtained using simulated annealing on
lattices with PBC and choosing the state with lowest energy
per site. Simulations were done by an exponential annealing
schedule and the whole process was repeated enough times to
ensure stability of results.

In Fig. 5 we show typical magnetization curves obtained
for some values of J1/J0 and J2/J0. These J1,2/J0 values
have been chosen in order to illustrate the consistency of HVA
with the other low-energy methods and the DMRG results: that
is the emergence of different plateau structures. The left-upper
panel shows a typical Ising-like behavior along the line of
maximum frustration for the case J1/J0 = J2/J0 = 0.5. We
find a structure of plateaus separated by jumps, where there

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

1
2
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J0
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J0
= 0.9

J2

J0
= 0.1

h
J0
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J0

(a) (b)

(c) (d)

FIG. 5. (Color online) Magnetization curves obtained from the
variational approach. On the left, both interplaquette couplings are
equal: J1 = J2 = 0.2J0. On the right, the couplings are slightly
different: J1 = 0.2J0,J2 = 0.17J0.

are integer plateaus at M = 0, 1, and 2, and two half integer
plateaus at M = 1/2 and M = 3/2. Checking the values of the
αi parameters, we see that the M = 1/2 plateau corresponds to
a wave function made of the singlet state |s(1)〉 in one plaquette
and the triplet |t (1)

1 〉 in the other one, and M = 3/2 corresponds
to the triplet in one and a quintuplet |q1〉 in the other one. As we
slightly move in the J1,2/J0 space off the diagonal J1 = J2, the
effect of frustration starts to decrease. This is reflected in the
magnetization curves in a reduction of the half-integer plateaus
and the change from jumps to continuous curves between
plateaus. This is shown in the right-upper panel of Fig. 5, for
the case J1/J0 = 0.45 and J2/J0 = 0.55. Notice that, when
compared to the DMRG curve in the right-upper panel of
Fig. 3, the width of the plateaus is larger and the curvature
between plateaus is different. In this method, as we are
only using three states, the structure of the plateaus looks
more robust. Indeed, as an example the left-lower panel of
Fig. 5 shows that for J1/J0 = 0.4 and J2/J0 = 0.6, where
no more half-integer plateaus were seen for DMRG, the
M = 1/2 plateau is not present but a small M = 3/2 plateau
survives, along with the integer plateaus’ structure. However,
this method also shows that far from the diagonal, the
plateaus’ structure disappears completely before saturation.
This behavior is illustrated in the left-right panel of Fig. 3, for
J1/J0 = 0.9 and J2/J0 = 0.1.

To summarize, the wave function proposed in the vari-
ational approach captures qualitatively the main features of
the low-energy behavior of the model under a magnetic
field: when J1/J2 = 1 there are jumps between the different
plateaus in the magnetization curve, where two of them are
half integer at M = 1/2 and M = 3/2. As the difference
between the frustrating parameters J1 and J2 increases, first
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these jumps become smoother curves and the half integer
plateaus become smaller until they disappear. As J1/J2 is
further away from 1, the integer plateaus are also washed
away. Therefore, although the algorithm does not guarantee
convergence to the ground state, we nevertheless trust that
an accurate picture emerges since the results capture the
main features of the low-energy physics, compatible with the
analytical calculations and DMRG simulations.

III. DISCUSSION

In this section we present an analysis of the extension
of different phases present in the spin-tube model, around
the strong plaquette limit, focusing in the interplay between
frustration and magnetic field. The aim is to analyze the
consistency of the predictions of different methods employed
in the work, in particular between numerical and low-energy
effective models.

The main results obtained are summarized in the phase dia-
grams depicted in Fig. 6. On the one hand, the top panel shows
magnetic phases along maximum frustration line J1 = J2 vs
magnetic field h. Here, blue areas represent integer plateaus
M = 0, 1, and 2, whereas the green areas half-integer plateaus
M = 1/2 and 3/2 from the bottom up, respectively. Solid pur-
ple lines represent solutions of the second order effective Ising
model, solid blue lines are solutions obtained by analyzing the
closure of magnonlike dispersion of the second order effective
model [Eqs. (16)–(18)], whereas red open circles are critical
points determined numerically by means of DMRG on finite
size tubes, composed by L = 20 plaquettes with PBC and
keeping m = 500 basis states during computation.

As it can be observed, all techniques predict consistently a
linear increase of plateau width with the frustrating parameters,
at least for small values of J2/J0. Second order contributions
are more noticeable for J2/J0 � 0.5, in particular for the
critical lines separating plateaus at M = 0 and 1/2 and M = 1
and 3/2.

It is important to stress that only the effective Ising model
predicts strictly jumps between plateaus, throughout the line
J1 = J2.

In the case of numerical DMRG predictions, the stepwise
structure along J1 = J2 predicted by the effective Ising model
starts losing validity around J1/J0 ≈ 0.8. Beyond that point,
along that line, deviations with respect to effective model
predictions are increasingly more pronounced, as shown by red
circles at the right part of Fig. 6 (top panel). Apart from possible
finite size effects affecting numerical computations, the reason
for such deviations could be intrinsic to the model. In fact, it
is known that at zero magnetic field, the tube model around
J1 = J2 ≈ J0 undergoes a first order quantum phase transition
from the plaquette phase to an tiny spirallike ordered phase
[14]. Therefore, deviations observed around that limiting point
might be an indication of the existence of such a transition,
even though the analysis of the effect of the magnetic field on
this transition is beyond the scope of the present work.

On the other hand, in the lower panel of Fig. 6, we show
the extension of different plateau structures as determined
by the different techniques, as a function of the ratio J2/J1

and magnetic field h, along the line J1 + J2 = J0. Note that
J1 ↔ J2 symmetry is manifest in this figure, as one-half of it

FIG. 6. (Color online) Top: phase diagram h vs J2/J0 along the
line J1 = J2 obtained by (i) the Bethe-ansatz solution of the XXZ

Hamiltonian using coefficients up to second order corrections (purple
solid line); (ii) second order magnon and spinon dispersion Eqs. (16),
(18), and (19) (solid blue line) and DMRG simulations for a tube of
L = 20 plaquettes (red empty circles). Bottom: phase diagram h vs
J2/J1 for J1 + J2 = J0.

can be obtained from the other one. However, we keep both
sides (around J2/J1 = 1) to highlight explicitly the presence
of this symmetry.

As in the upper panel of Fig. 6, blue and green areas
represent integer and half-integer plateaus, respectively. Yel-
low regions represent a phase where magnetization increases
continuously with applied field h and which we identify
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with Luttinger liquidlike phase within the framework of the
effective model.

First of all note that, overall, all techniques predict two
half-integer, frustration induced plateaus, which are widest on
the J2/J1 = 1 line, and clearly tend to decrease and eventually
disappear as we move further from J2/J1 = 1.

Also notice that integer plateaus are larger and more
robust versus frustration. In fact, they even exist for isolated
plaquettes, which is not the case of half-integer plateaus. The
effect of coupling on integer plateaus is a renormalization,
which is well captured by the low-energy effective model, in
the range 0.5 � J2/J1 � 1.5.

Regarding the low-energy model results, in the lower panel
of Fig. 6, solid purple lines indicate critical fields obtained by
solving the Bethe-ansatz Eqs. (13). Although O(J1,J2) results
bring a good description, in order to improve these estimates
around J1 = J2, we have retained the XXZ model parameters
up to terms linear in (J1 − J2). The procedure to obtain these
critical fields consists in replacing Jxy , Jzz, and heff of Eqs. (10)
and (11) into Eqs. (13), retaining O(J1 − J2) terms, and
solving numerically Eqs. (13) for h vs J2/J1 (J1 + J2 = J0).
This gives rise to the critical lines in the lower and upper
half of Fig. 6 (lower panel), corresponding to Eqs. (10) and
Eqs. (11), respectively. In particular, curves bordering integer
plateaus are determined by the first pair (±) of Eqs. (13),
whereas half-integer plateaus by the second pair of Eqs. (13).
Note that this procedure is valid, since the other terms, Kxy

and Jxyz, in effective models of Eqs. (10) and Eqs. (11) are of
O((J1 − J2)2).

Let us now compare Bethe-ansatz results with critical
lines obtained by analyzing the closure of magnon and
spinonlike dispersions, given by Eqs. (16)–(19), for integer and
half-integer plateaus, obtained from the effective O(J 2

1 ,J 2
2 )

Hamiltonian in Eq. (9). These results are shown with bold
blue lines in the lower panel of Fig. 6. Note that although
both Bethe-ansatz and dispersion calculation are in very
good agreement, around the line J1 = J2, dispersion analysis
predicts smaller half-integer plateaus and, more important,
tends to round the critical line at the end points. This could be
due to the fact that Bethe ansatz, even though it is constructed
on a perturbative model, provides a nonperturbative solution,
which is able to predict singularities. In contrast, any finite
order perturbative dispersion calculation will be unable to
reproduce the singular shape at the end points.

For the same reason it is not expected that the variational
approach will be quantitatively precise in the determination of

critical lines. In fact, the variational method (not shown in this
panel), although it predicts qualitatively well the presence of
half-integer plateaus, overestimates its range of existence, and
also tends to round the critical line at the end points.

Finally, DMRG technique, although it provides results
which are susceptible to finite size effects, has the advantage
that it is not perturbative and does not depend on the adiabatic
connection with the phase of isolated plaquettes, as the other
methods. In particular, it is able to describe more precisely
the nonanalyticity of ending points of half-integer plateaus, as
shown with red open circles in the lower panel of Fig. 6, for
L = 20 and m = 500. It is interesting to note that dispersion
calculation is in better agreement with DMRG results, as
compared with Bethe ansatz, regarding integer plateaus far
from the J1 = J2 line.

IV. CONCLUSIONS

In conclusion, we have studied quantum phases of a
frustrated spin-1/2 four-leg tube in an external magnetic field,
around the isolated plaquette limit, by means of low-energy
perturbative and variational methods, complemented with
numerical DMRG simulations.

We observe that frustrating interplaquette couplings induce
the emergence of half-integer plateaus in the magnetization
curves, as well as a renormalization of integer plateaus already
present in the case of decoupled plaquettes.

Low-energy effective models capture the essential features
of the system, and provide physical insight about the nature of
the different phases present in the system. On the other hand,
DMRG numerical simulations allowed us to check the range
of validity of the effective models around the plaquette phase.

Finally, we would like to mention that the exploration
of other regions of parameter space of the model, beyond
plaquette phase, which have not been considered here, remains
as an open issue. In particular, the analysis around the spiral
phase of the model is an interesting topic that clearly deserves
future investigations.
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