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Abstract
We revisit the connection between the complementarity and uncertainty principles of quantum
mechanics within the framework of Mach–Zehnder interferometry. We focus our attention on
the trade-off relation between complementary path information and fringe visibility. This
relation is equivalent to the uncertainty relation of Schrödinger and Robertson for a suitably
chosen pair of observables. We show that it is equivalent as well to the uncertainty inequality
provided by Landau and Pollak. We also study the relationship of this trade-off relation with a
family of entropic uncertainty relations based on Rényi entropies. There is no equivalence in
this case, but the different values of the entropic parameter do define regimes that provides us
with a tool to discriminate between non-trivial states of minimum uncertainty. The existence
of such regimes agrees with previous results of Luis (2011 Phys. Rev. A 84 034101), although
their meaning was not sufficiently clear. We discuss the origin of these regimes with the
intention of gaining a deeper understanding of entropic measures.

PACS numbers: 03.65.Ca, 03.65.Ta, 89.70.Cf, 03.65.Aa

1. Introduction

The uncertainty principle (UP) [1–3] and the complementarity
principle (CP) [4] lie at the heart of quantum mechanics. The
former principle establishes that the probability distributions
associated with the outcomes of two non-commuting
observables cannot be simultaneously sharp; the latter refers
to the relationship between pairs of descriptions that are
mutually exclusive, but necessary for a complete description
of a quantum system. Many years have passed since the
original formulation of both principles were established but
even today, there is an important debate going on regarding
not only their precise formulations, but also their adequate
interpretations in several contexts.

The CP has been both theoretically and experimentally
studied [5–8], specifically within the framework of
Mach–Zehnder (MZ) interferometry. The MZ setting is

particularly suitable for discussions about wave–particle
duality. In this regard, the wave aspect (related to
the fringe-visibility) and the particle aspect (linked to
the which-way-has-passed question) are represented by
measurable quantities V and P , respectively, which satisfy
the duality relation [5, 6]

P2 + V 261. (1)

This quantitative formulation of CP is expressed in a way
that resembles inequalities typical of the UP. However, the
derivation of equation (1) did not involve any mention
of inherent fluctuations in the measured quantities. The
connection between these two important principles of
quantum mechanics has recently been discussed [7–11].
Specifically, attention is focused on the question: is
equation (1) the expression of an uncertainty relation
(UR)? Answers in both the affirmative and the negative
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have been provided. Our goal here is to shed some light
on this discussion. We first revisit the link between the
duality relation (equation (1)) and the Schrödinger–Robertson
(SR) variance-based uncertainty inequalities. Having at
our disposal other uncertainty relations (URs), such as
the Landau–Pollak (LP) one and those based on Rényi
entropic measures, it is interesting to address the question
of their relationship with (1). We find equivalence in the
former case but not in the latter. Indeed, for entropy-based
uncertainty inequalities, regimes with distinct qualitative
behavior arise according to the different possible values of
the entropic parameter. This can be used for detecting special
minimum-uncertainty states. The origin of these regimes
(already noted in [12]) is not yet clearly understood. Our
present discussion delves deeply into the nature of these
regimes and may contribute to a better understanding of Rényi
entropic measures.

The outline of this paper is as follows. In section 2
we review, for double-slit-like experiments, the derivation
of the duality relation (1) and the discussion on which are
the relevant operators that account for path information and
fringe visibility. In section 3, we address the problem of
linkage between CP and UP. After revisiting the equivalence
of (1) to the uncertainty inequality prescribed by SR (choosing
different pairs of observables), we provide a demonstration
of equivalence for the LP case. Additionally, we introduce
the analysis of entropic uncertainty inequalities showing that
they are not equivalent to the complementarity relation posed
by equation (1). After stating clearly the meaning of this
non-equivalence, in section 4 we show that, due to this
fact, the entropic uncertainty inequalities yield non-trivial
information about the system. This is shown by studying
states that saturate the UR. We discuss the meaning of
the different regimes which appear depending on the value
of the entropic parameter and comment on their potential
applicability for informational purposes. Some conclusions
are drawn in section 5. For self-consistency, we include in the
appendix a summary of various quantitative formulations of
the UP, by employing variances as well as entropic and other
measures.

2. The Mach–Zehnder interferometer scheme and
the complementarity relation

The MZ interferometer (see figure 1) is a device that has been
used in several branches of physics, in particular, for the study
of the CP. In that context, an important quantity is the ‘which
way’ information, which is quantified by the predictability P
defined as P = 2L − 1, where L = max{w+, w−} and w+ and
w− are the probabilities of the particle taking path ‘+’ or path
‘−’, respectively. On the other hand, the fringe visibility is
quantified via a natural extension of the usual measure for
intensity of light, that is, V =

pmax−pmin

pmax+pmin
where p stands for

the probability that the particle be detected in some position
in space, with pmax and pmin denoting, respectively, the
maximum and minimum of this probability. The quantitative
formulation of CP for the MZ-interferometer scheme is the
celebrated duality relation given by equation (1) [5, 6], where
the equals sign holds (only) for pure states. This relation was
also implicitly alluded to in [13, 14].

Figure 1. A source emits a photon which, after passing through the
beam splitter BS1, splits into paths ‘+’ and ‘−’. It reflects in mirrors
M1 and M2 and is finally observed using detectors D1 and D2. A
phase shifter PS and another beam splitter BS2 may be inserted into
the setup in order to produce interference.

The MZ interferometer, having two relevant spatial
modes, can be represented by a two-dimensional Hilbert
space spanned for instance by the set {|0〉, |1〉}, which is
the so-called computational basis. States |0〉 and |1〉 are
eigenstates of the Pauli spin operator σz , representing the two
paths. We use the Bloch representation to describe quantum
density operators, namely

ρ =
I + Es · Eσ

2
, (2)

where Eσ = (σx , σy, σz) denote the Pauli matrices, I is the 2 ×

2 identity matrix and Es = (sx , sy, sz) is the Bloch vector (with
‖Es‖61) that characterizes the state of the system. The action
of a 50 : 50 beam splitter can be described by the unitary
transformation UBS = e−iπσy/4, which implies a rotation of
π/2 of the Bloch vector around the y-axis. A phase shifter
introduces a phase difference φ between the paths, and it is
formally represented by the unitary operator Uφ = e−iφσz/2.

Following [9], a single sharp observable P̂ can be
associated with predictability, while two families of sharp
observables V̂φ and V̂ ⊥

φ can be associated with visibility. It is
possible to express these operators in terms of the Pauli spin
ones as

P̂ = σz, (3)

V̂φ = (cos φ) σx + (sin φ) σy, (4)

V̂ ⊥

φ = − (sin φ) σx + (cos φ) σy (5)

with φ ranging, in principle, between 0 and 2π . Note that P̂ ,
V̂φ and V̂ ⊥

φ are (for each φ) a set of mutually complementary
observables, that is, if one is certain about the value of one
observable, then maximum ignorance reigns concerning the
value of any of the other two. We mention that an alternative
definition for visibility that could be used is the one given
in [11].

For a system in state ρ with Bloch vector Es, equation (2),
the predictability P is given by

P = |〈P̂〉| = |sz|.

The visibility V can be derived either from observable
V̂φ or from V̂ ⊥

φ by properly choosing the parameter φ. Using

an alternative representation for the density ρ as
(

ω+ r e−iθ

r eiθ ω−

)
,
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the auxiliary state variables r ≡
1
2

√
s2

x + s2
y and tan θ ≡

sy

sx

allow us to write

〈V̂φ〉 = 2r cos(θ − φ) and 〈V̂ ⊥

φ 〉 = 2r sin(θ − φ).

Thus the visibility, which is given by the maximum
absolute expectation value of these observables, is equal to
2r and can be obtained using V̂φ if one sets the phase shifter
such that φ = θ , or using V̂ ⊥

φ and setting φ = θ − π/2. Note
that arranging the apparatus PS (see figure 1) with a phase
difference of π with respect to these angles gives also the
same value of visibility. Finally, due to the positivity of the
density matrix, the complementarity relation (1) is directly
obtained:

P2 + V 2
= s2

x + s2
y + s2

z 6 1 (6)

and it is saturated whenever ‖Es‖ = 1, i.e. for any pure state.
Note that the measurements of any two observables (3)
and (4), or (3) and (5), can only be carried out in two
incompatible experimental setups and that joint measurement
is not involved. Therefore the trade-off relation (1) expresses
preparation complementarity [7], that is, the impossibility of
preparing the system in a state in which the two observables
would simultaneously exhibit sharp values.

3. Connections between complementarity and
uncertainty relations

3.1. The P–V duality relation is equivalent to variance-based
uncertainty inequalities

The relationship between the predictability–visibility
inequality (1) and URs based on variances (A.1) can be
readily analyzed using the Bloch representation of the
pertinent operators and the density matrix. First of all, the
variances of the operators given in equations (3)–(5) are
obtained in terms of the predictability P and the visibility V
as [9]

(1P̂)2
= 1 − P2, (7)

(1V̂φ)2
= 1 − V 2 cos2(θ − φ), (8)

(1V̂ ⊥

φ )2
= 1 − V 2 sin2(θ − φ), (9)

where θ is a state variable (recall section 2). Let us remark that
the choice of adequate observables (understood as Hermitian
operators acting on Hilbert space) is a first step in order to
show whether equation (1) is the expression of a UR.

The connection between the CP relation and
variance-based URs has been analyzed in [7, 9, 10].
Some critical comments are in order concerning those
studies. In [10], the equivalence between both principles is
highlighted: indeed, the Heisenberg–Robertson (HR) UR is
computed there for the pair of observables P̂ and V̂ ⊥

θ , and
also for V̂θ and V̂ ⊥

θ (setting the phase shifter to an angle
φ = θ ). By doing so, the following uncertainty inequalities
are obtained:

(1P̂)2(1V̂ ⊥

θ )2
= 1 − P2>V 2, (10)

(1V̂θ )
2(1V̂ ⊥

θ )2
= 1 − V 2>P2 (11)

and it comes out that both are equivalent to (1) (for every θ ).
The main drawback that the authors note in their derivation
is the use of V̂ ⊥

θ , which has no direct interpretation in terms
of either predictability or visibility in connection with the MZ
interferometry experiment, because of the results 〈V̂ ⊥

θ 〉 = 0
and 1V̂ ⊥

θ = 1. Moreover, when dealing with P̂ and V̂θ , the
corresponding HR UR becomes trivial: (1P̂)2(1V̂θ )

2>0.
Independently, Björk et al [9] also dealt with the

problem of connecting CP with UP. The SR UR is deeply
connected with the duality relation (1). The analysis consists
in obtaining expressions (7) and (8) followed by an appeal
to (1V̂φ)2>(1V̂θ )

2 (from basic trigonometry), with the
purpose of linking the two fundamental principles of quantum
mechanics.

A complete proof of the alluded to equivalence dealing
with the appropriate observables P̂ and V̂θ and the full SR UR
is given in [7]. We reproduce it here—although in a slightly
different way—for the sake of completeness. For arbitrary φ,
the UR prescribed by Schrödinger and Robertson reads

(1 − P2)[1 − V 2 cos2(θ − φ)]

> P2 V 2 cos2(θ − φ) + V 2 sin2(θ − φ), (12)

where equality holds for any pure state. It is straightforward
to show that this family of inequalities reduces to the duality
relation (1).

We stress that (12) is valid for any phase φ introduced by
the phase shifter in the MZ interferometer. We then conclude
that, in particular, the appropriate choice φ = θ implies
equivalence with the trade-off relation between predictability
and visibility. This circumvents the drawback pointed out
in [10]. With this simple result, a rather sharp conclusion is
drawn from the discussion about complementarity between P
and V , including the status of (1) as an UR.

Finally, we mention that in [8] a relationship between
wave–particle duality and quantum uncertainty has been
investigated, both theoretically and experimentally, by
recourse to variances of the operators P̂ and V̂ θ . However,
this is done without appealing to Heisenberg-like inequalities.

3.2. The P–V duality relation is equivalent to the
Landau–Pollak uncertainty inequality

We demonstrate now that inequality (1) becomes equivalent to
LP UR [15], a so far uncovered feature, as far as we know. The
maximum probabilities associated with observables P̂ and V̂θ ,
in terms of predictability and visibility, are

M∞(P̂) =
1 + P

2
, (13)

M∞(V̂ θ ) =
1 + V

2
. (14)

Replacing these probabilities in (A.3) and setting c = 1/
√

2,
we attain the situation of complementary operators. Thus, we

3
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Figure 2. The constraint P2 + V 2
= 1 (solid line) and contour plots (dashed lines) of the sum of Rényi q-entropies for two representative

entropic indices: (a) q = 1 (Shannon entropy) and (b) q = 2 (collision entropy). The values chosen for the entropy sum are indicated next to
each contour line: 1, 2H1(1/

√
2) ≈ 0.833 (left inset only), ln 2 ≈ 0.693 and 2H2(1/

√
2) ≈ 0.576 (right inset only).

obtain√(
1 + P

2

)(
1 + V

2

)
−

√(
1 − P

2

)(
1 − V

2

)
6

1
√

2
. (15)

Squaring both sides of this inequality and regrouping terms
conveniently, we immediately arrive at the relation

(1 − P2)(1 − V 2)> (PV )2, (16)

which coincides with (12) for φ = θ and, as mentioned
before, can be easily recast in the fashion P2 + V 2 6 1.
This implies that the duality relation (1) can be deduced
from the LP inequality, and vice versa. As a consequence,
full correspondence between SR and LP URs is obtained,
a remarkable fact that is not valid for general pairs of
observables.

3.3. Non-equivalence between the P–V duality relation and
entropic uncertainty inequalities

Having clarified the above equivalences, we now consider the
problem of elucidating the connection between entropic URs
(EURs) and the duality relation (1). For an arbitrary state ρ,
the expressions for the Rényi q-entropies (A.4) corresponding
to P̂ and V̂θ are

Hq(P) =
1

1 − q
ln

[(
1 + P

2

)q

+

(
1 − P

2

)q]
, (17)

Hq(V ) =
1

1 − q
ln

[(
1 + V

2

)q

+

(
1 − V

2

)q]
, (18)

where, to simplify notation, we have renamed Hq(P̂; ρ) ≡

Hq(P) and Hq(V̂θ ; ρ) ≡ Hq(V ).
For our purposes, we must first find the minimum of the

sum of these Rényi entropies over all available states, that is,
min

ρ
{Hq(P̂; ρ) + Hq(V̂θ ; ρ)}. This constitutes the application

of the UR (A.5) for the P–V case of MZ interferometry.
Appealing to the concavity property of Rényi entropy when

q ∈ (0, 2], we can restrict our calculations to pure states and
then the constrained minimization problem can be recast in
the fashion

min
P2+V 2=1

{Hq(P) + Hq(V )} (19)

for every value of q . The final expressions for the EURs take
the form

Hq(P) + Hq(V )> Bq ≡{
ln 2 if 0<q6q∗,

2
1−q ln

[(
1+1/

√
2

2

)q
+
(

1−1/
√

2
2

)q]
if q∗<q62,

(20)

where q∗
≈ 1.4316 is obtained by solving (numerically) the

equation 2Hq∗(1/
√

2) = ln 2. Concerning the optimal P–V
values, it is seen that three qualitatively different regimes
appear:

(i) for 0 < q < q∗: the minimum sum is attained at V = 0
and P = 1 or V = 1 and P = 0;

(ii) at q = q∗: the minimum value corresponds to the cases
V = 0 and P = 1, V = 1 and P = 0 or V = P = 1/

√
2;

(iii) for q∗ < q 6 2: the minimum sum is attained at V = P =

1/
√

2.

In figure 2 we display, in the V –P plane, the constraint
P2 + V 2

= 1 together with several contour lines for the sum
of Rényi q-entropies corresponding to two representative
values of the entropic parameter, in regimes (i) and (iii)
mentioned above. In both cases the contour lines correspond
to decreasing values toward the origin. In case (i), ln 2 is the
minimum-value contour line that intersects (tangentially) the
constraint, at the points (V, P) = (0, 1) or (V, P) = (1, 0).
In case (iii), the curve P2 + V 2

= 1 is intersected by the
minimum-value contour line Hq(P) + Hq(V ) = 2Hq(1/

√
2)

precisely at (V, P) = (1/
√

2, 1/
√

2).
Let us now show that the duality relation cannot be

deduced, in a way analogous to the case of SR and LP, from
an EUR of the form (20). From the point of view of the values
that P and V can take, equations (1) and (12) are equivalent,
i.e. they represent the same inequality, but written in different
forms. The same can be said about the relationship between

4
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equations (1) and (16) for the LP case. Now, in the comparison
of equations (1) and (20), one can see that there exist pairs
(V, P) in the square [0, 1] × [0, 1] that fulfill the latter but
lie outside the region allowed by CP (then corresponding to
non-physical situations). This originates from the fact that
the curves where the sum of entropies reaches its minimal
value (namely, the curves Hq(P) + Hq(V ) = Bq ) for each q
do not coincide with the curve P2 + V 2

= 1. This fact renders
inequalities (1) and (20) different. As we shall see below,
non-equivalence in this sense has interesting consequences,
and can be used to explain some features of the entropic
measure as an informational quantifier.

4. Minimizing uncertainty states

4.1. Saturation limit of the uncertainty relations

States that saturate an UR are used in several contexts.
An important example has to do with coherent states,
which saturate the position–momentum Heisenberg UR. This
property is one of the reasons why coherent states are usually
interpreted as the most ‘classical’ ones. In this section we
analyze, in the framework of the MZ interferometer, the
properties of those states that correspond to an equality for
the different URs employed, and/or minimize the uncertainty
measure chosen in each distinct treatment. We start by
clarifying the concepts of minimizing states versus saturating
(or the so-called intelligent) states in the MZ scheme. We
use to that effect the operators P̂ and V̂ θ , the appropriate
observables to be accounted for. An interesting study of
the distinction between minimum-uncertainty states and
intelligent states for spin observables has been reported
in [16]; see also [17] for non-canonical operators.

URs based on variances (such as HR and SR UR) are
conceptually different from LP UR and entropy-based ones, in
the following sense: in the former case, one has an inequality
that is fulfilled state-by-state (unless the commutator of
the observables is a c-number, in which case the bound is
universal), while in the latter cases the uncertainty measure
(the sum of arccos functions or of Rényi or other entropies)
is lower bounded by a universal, state-independent quantity.
This crucial difference, which has been essentially the
Deutsch criticism that spurred the study of EURs, leads one to
make the distinction between minimizing and saturating states
in the case of variance-based URs.

Consider variance-based UR for the pair P̂– V̂ θ : the SR
inequality is given by equation (12) with φ = θ and it is seen
to saturate for any pure state. But the left-hand side of that
inequality is a minimum only for eigenstates of the involved
operators, and that minimum is zero, as is the bound on the
right-hand side. These states correspond physically to having
predictability P = 1 and visibility V = 0, or vice versa, in the
interferometry experiment.

Per contra, in the case of LP or entropy-based URs, there
is no such distinction as for variances, due to the fact that one
has a measure of uncertainty (represented by the sum of arccos
functions or entropies) that is always bounded from below by
a quantity that depends merely on the observables and not
on the state of the system. The states that minimize and at
the same time saturate the LP relation are all the pure states;

however, this UR does not distinguish any special state among
the ones that saturate the relation. With reference to the EURs,
since one has the freedom to chose the entropic parameter, one
can classify the different sets of minimal-uncertainty states.
We discuss this in detail in the following subsection.

4.2. Minimizing states for the case of EURs

In section 3.3, we found three different regimes in the
optimization problem (19), depending on the value of the
entropic parameter. This fact can be used to shed some light on
the meaning of the parameter q , at least within the framework
of double-slit-like experiments.

Several generalized entropic uncertainty measures were
considered in [12], in particular the sum of Rényi entropies.
A study of the states that reach extremal joint uncertainty
for pairs of observables A and B is addressed there, finding
that they can be classified in the so-called (a) extreme
states, which are the eigenstates of A or B (so that 1A = 0
or 1B = 0, respectively, with the other variance remaining
finite for discrete, bounded operators), and (b) intermediate
states, those which deal the same variance for both
observables (considered to be dimensionless). The pertinent
analysis leads to an apparently contradictory result, as a
minimum-uncertainty state for given values of q yields
maximum uncertainty for other q-values as well. This
behavior seems to be a consequence of a restriction in the
concomitant state space, as only a given family of pure
states was considered. Recall that the most uncertain states
correspond in fact to an entropy sum equal to 2 ln 2 for any q,
and this is achieved for the completely mixed state, i.e. ρ =

I/2, a fact not mentioned in [12].
Let us now look in further detail at what happens for

different choices of q when EURs of the form (20) are
saturated. In section 3.3, by computing the entropy-sum
minimum over the whole convex set of quantum states, we
obtained the minimizing states for the predictability–visibility
case. Employing the classification of [12], we see that
the optimal states that we find correspond to: (i) extreme
states, (ii) extreme or intermediate states and (iii) intermediate
states, for q smaller than, equal to and larger than q∗,
respectively. Note that the second regime has not been taken
into account in [12].

We consider now the characteristic features of
intermediate states, which make |〈V̂ θ 〉| = |〈P̂〉| =

1
√

2
.

They are the pure states of the form (2) with the four different
unit Bloch vectors: ±

1
√

2
(cos θ, sin θ, ±1). These are

precisely the states that saturate the concomitant EURs in the
most unbiased way (in the sense of simultaneously having
the maximum visibility and maximum predictability that is
possible). These states correspond to an intermediate situation
between the extremal cases of wave behavior (V = 1 and
P = 0) and particle behavior (V = 0 and P = 1).

As we have seen, the existence of the regimes mentioned
above allows one to select special states. These states are
‘invisible’ for the variance-based or LP formulations of the
UP. If the EURs and the duality relation were equivalent, these
states could never have been detected. Thus, in a certain sense,
the capability of the EUR for detecting these states and the
existence of the regimes investigated in [12] are due to the
non-equivalence to the duality relation.

5
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Finally, regarding the obtention of the case with joint
maximum values for predictability and visibility, note that if
one takes into account the restriction given by the CP, P2 +
V 2 6 1, one directly obtains P = V = 1/

√
2 from simple

geometric arguments in the V –P plane. However, one might
deal with a special situation in which not the whole set of
states is available, but only a fraction of them, and one still
wants to select the ‘best’ intermediate states between purely
wave and particle aspects. For instance, this situation may
appear if the source in figure 1 has limitations for producing
certain states. Other interesting situations appear either when
the second beam splitter is a Schrödinger cat (as in [18–20])
or in the presence of a noisy environment. In both situations,
the kind of states of the system which pass through the
interferometer is limited by the state of the environment
(even more, in the second case they cannot be controlled).
One would like to be endowed with an adequate criterion to
deal with this sort of situations. Our proposal is, specifically,
to consider the uncertainty measure Hq(P) + Hq(V ) with
an entropic parameter q > q∗ and perform its minimization,
constrained to the available set of states. We argue that, in this
respect, one obtains a useful selection criterion.

5. Concluding remarks

We have studied here connections between the
complementarity and uncertainty principles in the MZ
interferometer scheme. Following [9] and related work, we
have employed quantum-mechanical operators P̂ and V̂ φ to
give an account of the particle and wave aspects of a quantum
system, respectively.

The link between the CP inequality (1) and
variance-based URs of the form (A.1) has already been
considered in [7, 9, 10]. We have thoroughly analyzed
some drawbacks of these approaches, and we revised the
equivalence between the SR UR and the duality relation
in the relevant case, i.e. for observables which adequately
represent predictability and visibility according to [7].

In the present effort, we have addressed the problem from
different viewpoints. Our main findings are the following:

• We have proved the equivalence between the duality
relation (1) and the LP UR (15) (derived from (A.2)),
which is an alternative quantification of the UP.

• We have studied the connection between (1) and a family
of EURs (20), which are based on equation (A.5) using
Rényi q-entropies (A.4). We have found that these EURs,
for the relevant pair of observables P̂– V̂ θ , are not
equivalent to the duality relation.

• We have seen that, when the Rényi uncertainty measures
are applied to the MZ scheme, different regimes emerge,
depending on the value of the entropic parameter q .
We have ascertained that this agrees with previous
results [12] showing that the value chosen for q affects
the qualitative behavior of the URs.

• Looking at the states which saturate the EURs, we
have found non-trivial minimizing states for entropic
parameters equal to or above a certain value q∗. We
have in this vein established a procedure for solving the
problem of finding a state having minimum uncertainty
for the observables P̂ and V̂ θ in the most unbiased
fashion.

• Finally, we have also discussed the usefulness of
such a procedure for information-theoretical purposes,
depending on the nature of the source and the beam
splitters in the interferometer. The fact that different
regimes are found in the canonical example of MZ
interferometry seems to provide support to the assertion
there is no preferred value for q . Indeed, different
q-values render the concomitant entropic measures
useful for different purposes. We have shown that for
the particular example of the MZ interferometer, the
non-equivalence between the EURs and the duality
relation is, in some sense, the source of these facts.

It is worth stressing then that in the present context the
three inequalities (1), (12) and (15) are on an equal footing
(which may not be the case for other pairs of observables) in
contrast to (20).
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Appendix. Uncertainty relations

Quantitative formulations of the UP are known as URs, and
there is now a collection of inequalities that express this
principle (see, for instance, the recent review papers [21,
22]). For the sake of self-consistency, in this appendix we
summarize the URs employed along the paper.

A.1. Variance-based uncertainty relations

Heisenberg [1] was the first to propose an UR for position
and momentum observables in terms of their variances.
A generalization of the Heisenberg inequality for an
arbitrary pair of Hermitian operators A and B is due to
Robertson [2]. A further tighter relation was derived by
Schrödinger [3]:

(1A)2(1B)2

>

(
1

2
〈{A, B}〉 − 〈A〉〈B〉

)2

+

(
1

2i
〈[A, B]〉

)2

(A.1)

with (1O)2
= 〈O2

〉 − 〈O〉
2 being the variance of

observable O . If one does not consider the first squared
term on the right-hand side of (A.1), one deals with the usual
HR UR.

Variance-based UP formulations have been doubly
criticized. On the one hand, the lower bound to the product of
variances depends, in general, on the state of the system via
the expectation values and thus lacks a universal character [23,
24]. Moreover, it can be easily seen [25] that for discrete,
bounded operators the lower bound is trivially zero, yielding
no valuable information. On the other hand, the use of the
variance as a measure of uncertainty (spreading) of a given
probability distribution exhibits some limitations (it might be
the case, for instance, that the variance is not well defined
[22, 26]).
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A.2. The Landau–Pollak uncertainty relation

An alternative UP formulation was introduced by Landau
and Pollak in the context of time–frequency analysis [15]
and adapted to the quantum framework by Maassen and
Uffink [24]. Using the notation M∞(A; ρ) = maxi pi (A) for
the maximum probability of the outcomes of observable A,
the LP UR reads

arccos
√

M∞(A; |9〉〈9|)

+ arccos
√

M∞(B; |9〉〈9|)> arccos c, (A.2)

where c = maxi, j |〈ai |b j 〉| is the overlap between the
N -dimensional eigenbases of A and B, and lies between 1

√
N

and 1. The LP relation captures the essence of the UP for pure
states; indeed, the right-hand side is state independent. For
two-dimensional systems it can be shown that the LP relation
remains valid for mixed states.

For our purposes, we express the LP inequality (A.2) as√
M∞(A)M∞(B) −

√
[1 − M∞(A)][1 − M∞(B)]6 c,

(A.3)
where we have used trigonometric identities.

A.3. Entropy-based uncertainty relations

Information-theory tools have shown their usefulness for
the study of URs [27–33]. Consider now, as a measure of
uncertainty (ignorance), the one-parameter generalization of
Shannon entropy given by Rényi [34] that in the case of an
N -dimensional, discrete probability distribution reads

Hq({pi }) =
1

1 − q
ln

(
N∑

i=1

p q
i

)
, (A.4)

where 06 pi 6 1,
∑N

i=1 pi = 1 and the real parameter q > 0
with q 6= 1. If we let q → 1; then this definition includes by
continuity the Shannon case: H1({pi }) = −

∑N
i=1 pi ln pi .

Given a system in a quantum state ρ, the probability
distribution associated with an observable A is provided
by Born’s rule. The corresponding q-entropy is a measure
of the degree of uncertainty in the following sense: when
one is certain about the observable’s value, i.e. {p(A)} is a
Kronecker delta, the entropy takes its minimum value Hq = 0.
Contrariwise, for total ignorance concerning the value of A,
i.e. {p(A)} is the uniform distribution, the entropy is maximal
and equal to Hq = ln N (irrespective of q). For our purposes,
let us comment that when N = 2, Rényi entropy is a concave
function in ρ for 0 < q 6 2 [35, 36].

An EUR has the form

H(A; ρ) + H(B; ρ)> B(A, B), (A.5)

where H is an entropic measure like the ones described above,
while B is a function of the observables. More precisely,

the bound depends on the overlap between the eigenbases
of both operators and it is state-independent (i.e. it is not a
function of the state ρ) and also a positive quantity. Entropic
inequalities based on Shannon and Rènyi entropies have been
applied for the determination of classicality (or quantumness)
of states [37, 38].
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