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Abstract. The well-known hypervirial perturbation method (HPM), based on hypervirial relations and the
Hellmann-Feynman theorem, is suitable for the calculation of perturbation corrections of large order for
the non-relativistic, spinless, two-dimensional hydrogen-like atom in a uniform magnetic field. We show
analytical results in terms of the quantum numbers and large-order corrections for particular states. This
approach appears to be simpler and more efficient than the recently proposed one based on the Green’s
functions for this particular model.

1 Introduction

The two-dimensional hydrogen-like atom in a uniform magnetic field perpendicular to the atomic plane has received
considerable attention as a model for excitons in thin materials, such as nano-scale multilayer semiconductor systems.
The Schrödinger equation is separable in polar coordinates and has been solved approximately in many different
ways [1–13]. Here we are interested in the application of perturbation theory that provides approximate solutions in
terms of power series of the field strength that are suitable in the weak-field limit [3, 8, 10–13].

Several authors have obtained perturbation corrections of low order [3,8,10,11,13] but the most extended calculation
was due to Szmytkowski [13] who solved the perturbation equations of first and second order by means of the Green’s
functions. His analytical results, which are valid for all quantum numbers, suggest that some of the earlier results [10–12]
may be wrong. The Green function method is a powerful approach that requires considerable ingenuity and mastery
of the technique; however, it appears to be unsuitable for the calculation of perturbation corrections of larger order
because it soon becomes rather intractable.

There are other strategies for the calculation of the perturbation corrections for simple quantum-mechanical models
that are more efficient [14] and the purpose of this paper is to discuss one of them. Taking into account the interest in the
two-dimensional hydrogen-like atom in a magnetic field and the discrepancy between earlier perturbation calculations,
the present analysis appears to be fully justified.

In sect. 2 we outline the non-relativistic, spinless model and derive a dimensionless eigenvalue equation for the
radial part of the Schrödinger equation that is suitable for the application of perturbation theory. In sect. 3 we briefly
develop the chosen perturbation technique and apply it to the model mentioned above. Finally, in sect. 4, we summarize
the main results of the paper and draw conclusions.

2 Model

The model consists of a non-relativistic, spinless, two-dimensional hydrogen-like atom in a uniform magnetic field per-
pendicular to the atomic plane. It may also represent the effective-mass equation for an electron-hole pair in the pres-
ence of a uniform magnetic field [1,2]. For concreteness, in what follows we resort to the notation of Szmytkowski [13]
in order to facilitate comparison of the results. In the case of a symmetric gauge the Schrödinger equation is separable
in polar coordinates (0 ≤ r < ∞, 0 ≤ φ < 2π). If we write the eigenfunctions as

ψ(r, φ) =
1√
r
P (r)

1√
2π

eimlφ , ml = 0,±1,±2, . . . , (1)
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the radial part of the Schrödinger equation becomes [13]

[

− h̄2

2m

d2

dr2
+

h̄2(l2 − 1/4)

2mr2
+

eh̄B

2m
ml −

Ze2

4πε0r
+

e2B2r2

8m

]

P (r) = EP (r), (2)

where m and −e are the electron mass and charge, respectively, Ze is the charge of the spinless nucleus (clamped at
the coordinate origin), l = |ml| and B is the field intensity. The bound-state solutions satisfy

lim
r→0

P (r) = 0, lim
r→∞

P (r) = 0. (3)

Straightforward application of perturbation theory to eq. (2) is unnecessarily cumbersome because one has to
carry all the physical constants and model parameters through the whole algebraic process [13]. For this reason it is
preferable to convert eq. (2) into a dimensionless eigenvalue equation. To this end, we define a dimensionless coordinate
q = r/L, where

L =
a0

Z
, a0 =

4πε0h̄
2

me2
, (4)

and eq. (2) becomes

HP (q) = ǫP (q),

H =

[

−1

2

d2

dq2
+

ξ

2q2
− 1

q
+ λq2

]

, (5)

where

ǫ =
mL2

h̄2

(

E − eh̄B

2m
ml

)

,

ξ = l2 − 1

4
, λ =

e2B2L2

8h̄2
. (6)

The unit of energy is
h̄2

mL2
=

Ze2

4πε0L
=

Z2e2

4πε0a0

(7)

and
eh̄B

2m

mL2

h̄2
=

√
2λ. (8)

If we define

B0 =
h̄

ea0

, (9)

then

λ =
1

8Z4

(

B

B0

)2

(10)

enables us to compare the present results with those of Szmytkowski [13]. By means of the perturbation theory we
easily obtain the coefficients of the perturbation series

ǫ(λ) =

∞
∑

p=0

ǫpλ
p. (11)

Note that when we convert the Schrödinger equation into a dimensionless eigenvalue equation, we realize that the
natural perturbation parameter is λ and not B.

When B = 0 (λ = 0) the problem is exactly solvable and the allowed energies are given by [13]

ǫ0 = − 1

2(nr + l + 1/2)2
, (12)

where nr = 0, 1, . . ., is the radial quantum number (number of zeroes of P (r)). Following previous papers we also
define n = nr + l + 1 that resembles the principal quantum number of the three-dimensional hydrogen atom.
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The weak-field series (11) is divergent. If we define the new variable u = λ1/4q then the dimensionless operator H
becomes

H =
√

λ

(

−1

2

d2

du2
+

ξ

2u2
− λ−1/4

u
+ u2

)

, (13)

which clearly shows that we can also expand the eigenvalues in the strong-field series

ǫ =
√

λ

∞
∑

j=0

ejλ
−j/4, (14)

which has a finite radius of convergence.

3 Hypervirial perturbation method

One of the most efficient implementations of perturbation theory for separable problems is the hypervirial perturbation
method (HPM) that combines the hypervirial relations and the Hellmann-Feynman theorem. If O is a linear operator,
then

〈P | [H,O]|P 〉 = 0 (15)

is called a hypervirial relation, where [H,O] = HO − OH is the commutator between such pair of operators [14].
This equation holds if O is chosen so that 〈P |HOP 〉 = 〈HP |OP 〉. Another important ingredient of the method is the
Hellmann-Feynman theorem that states that [14]

∂ǫ

∂λ
=

〈

∂H

∂λ

〉

. (16)

If

H = −1

2

d2

dq2
+

ξ

2q2
− 1

q
+ λqK , K = 1, 2, . . . , (17)

and O = j+1

2
qj − qj+1 d

dq [14] then eq. (15) becomes

2jǫQj−1 + (j − 1)

[

j(j − 2)

4
− ξ

]

Qj−3 + (2j − 1)Qj−2 − (2j + K)λQj+K−1 = 0, j = 1, 2, . . . , (18)

where Qj = 〈qj〉. On expanding the expectation values in a Taylor series

Qj =

∞
∑

p=0

Qj,pλ
p, (19)

we obtain

Qj,i =
1

2(j + 1)ǫ0

{

j

[

ξ − j2 − 1

4

]

Qj−2,i − (2j + 1)Qj−1,i − 2(j + 1)

i
∑

m=1

ǫmQj,i−m + (2j + K + 2)Qj+K,i−1

}

,

j = 1, 2, . . . . (20)

In addition to this equation we also have

Q−1,i = −2ǫi + (K + 2)QK,i−1, (21)

which comes from (18) with j = 1. It is assumed that Q0 = 1, so that Q0,i = δi0 is a starting point for the recurrences.
In order to obtain the perturbation coefficients ǫi and Qj,i we need an additional equation provided by the Hellmann-

Feynman theorem (16)

ǫi =
1

i
QK,i−1, i = 1, 2, . . . . (22)
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The calculation is straightforward and for K = 2 (present case) we obtain

ǫ1 =
(2n − 1)2

8

(

−3 l2 + 3 + 5n2 − 5n
)

, (23)

ǫ2 = − (2n − 1)6

1024

(

−21 l4 − 138 l2 + 159 − 90 l2n2 + 90 l2n + 582n2 − 439n + 143n4 − 286n3
)

, (24)

ǫ3 =
(2n − 1)10

65536

(

17967 − 65495n + 68835n4 − 107070n3 + 115970n2 − 18066 l2 − 35130 l2n2

+29910 l2n + 231 l4 − 132 l6 − 18360n5 + 6120n6 + 10440 l2n3 − 5220 l2n4
)

, (25)

ǫ4 = − (2n − 1)14

16777216

(

15522195 − 67825511n − 4005 l8 + 153888490n4 − 180523168n3 + 145662172n2

− 17506020 l2 − 64292340 l2n2 + 43194060 l2n + 1991850 l4 − 4020 l6 − 80558702n5 + 33863592n6

+ 43836660 l2n3 − 26018580 l2n4 − 1640100 l2n6 + 4920300 l2n5 − 502740 l4n3 + 2563680 l4n2

−2312310 l4n − 3060 l6n2 + 3060 l6n + 251370 l4n4 − 6009164n7 + 1502291n8
)

, (26)

The first two perturbation corrections agree with those of Szmytkowski [13] to which we added ǫ3 and ǫ4 that were
not reported before as far as we know. We can obtain as many perturbation corrections as desired by means of the
recurrence relations (20), (21) and (22) and available computer algebra software. However, the perturbation corrections
in terms of the quantum numbers may probably be too long for any practical use. If one is interested in weak-field
expansions of large order it appears to be preferable to obtain them for particular values of n and l by means of those
recurrence relations. For example, when n = 1 and l = 0, we have

ǫ1 = 3/8, ǫ2 = − 159

1024
, ǫ3 =

17967

65536
, ǫ4 = −15522195

16777216
, ǫ5 =

5189052801

1073741824

ǫ6 = −4896676641339

137438953472
, ǫ7 =

3094900497137871

8796093022208
, ǫ8 = −20233178231139761499

4503599627370496
,

ǫ9 =
20808558827825859998445

288230376151711744
, ǫ10 = −52693485465369543566065089

36893488147419103232
,

ǫ11 =
80639435078901048406195920633

2361183241434822606848
, ǫ12 = −587353055515797037508553136130823

604462909807314587353088
,

ǫ13 =
1255613239147236284205667622925365349

38685626227668133590597632

ǫ14 = −6229668057619980010555555519950165544755

4951760157141521099596496896

ǫ15 =
17753264589549239693872523415436400485638255

316912650057057350374175801344

ǫ16 = −921721759137179716887942948086717222595277533675

324518553658426726783156020576256

ǫ17 =
3379056665253674076167201632469154672196055608756005

20769187434139310514121985316880384

ǫ18 = −27797116247667972439940810526714208588100705850127986405

2658455991569831745807614120560689152

ǫ19 =
127484555261829518463134910686385252583016203699835125715445

170141183460469231731687303715884105728

ǫ20 = −2593203450314371618931792865686398116783507010792581025252777725

43556142965880123323311949751266331066368
. (27)

The only purpose of showing these expressions here is just to provide a benchmark for anybody interested in the
application of present approach. All the perturbation corrections can be easily and straightforwardly calculated by
means of the recurrence relations (20), (21) and (22) [14].

It is worth noting that the HPM cannot be applied to the operator (13) for the calculation of the strong-field
series (14). The reason is that the unperturbed operator H0 = limλ→∞ λ−1/2H is an even function of the coordinate
u and therefore the recurrence relations do not yield the expectation values Uj = 〈uj〉 for odd and even j necessary
for the application of the technique and the calculation of U−1.
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4 Conclusions

The calculation of perturbation corrections of large order by means of the Green’s functions does not appear to
be practicable. On the other hand, the HPM yields simple straightforward recurrence relations for the systematic
calculation of the perturbation corrections to the energy and expectation values of powers of the coordinate. These
recurrence relations are suitable for programming in available computer algebra systems which greatly facilitates
the systematic calculation of those perturbation corrections to any desired order. It is worth mentioning that the
HPM applies to the Schrödinger equation that is suitable for deriving the necessary hypervirial relations. It is not, at
present, clear whether this approach (or a suitable variant) can be successfully applied to the relativistic Dirac equation
recently treated by means of perturbation theory [15]. In this case the author resorted to the Sturmian expansion of
the two-dimensional generalized radial Dirac-Coulomb Green function.

Present results agree with those of Szmytkowski [13] and not with those derived by other authors by means of
the Levi-Civita transformation of the coordinates and the expression of the resulting two-dimensional Hamiltonian
operator in terms of suitable creation-annihilation operators [10–12]. We have no doubt that their weak-field expansions
do not agree with the actual ones. For example, the weak-field expansions derived by Hoang et al. [12] are not correct
because they come from approximate variational expressions for the energies. However, it is worth mentioning that for
sufficiently large field intensities they fit the actual eigenvalues more accurately than the exact weak-field expansions
that are strongly divergent.
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