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Abstract
We analyze, for a general concave entropic form, the associated conditional
entropy of a quantum system A+B, obtained as a result of a local measurement
on one of the systems (B). This quantity is a measure of the average mixedness
of A after such measurement, and its minimum over all local measurements
is shown to be the associated entanglement of formation between A and a
purifying third systemC. In the case of the von Neumann entropy, this minimum
determines also the quantum discord. For classically correlated states and
mixtures of a pure state with the maximally mixed state, we show that the
minimizing measurement can be determined analytically and is universal, i.e.,
the same for all concave forms. While these properties no longer hold for
general states, we also show that in the special case of the linear entropy,
an explicit expression for the associated conditional entropy can be obtained,
whose minimum among projective measurements in a general qudit–qubit state
can be determined analytically, in terms of the largest eigenvalue of a simple
3 × 3 correlation matrix. Such minimum determines the maximum conditional
purity of A, and the associated minimizing measurement is shown to be also
universal in the vicinity of maximal mixedness. Results for X states, including
typical reduced states of spin pairs in XY chains at weak and strong transverse
fields, are also provided and indicate that the measurements minimizing the
von Neumann and linear conditional entropies are typically coincident in these
states, being determined essentially by the main correlation. They can differ,
however, substantially from that minimizing the geometric discord.
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1. Introduction

There is currently a great interest in the investigation of quantum correlations in mixed
states of composite quantum systems. While for pure states such correlations can be iden-
tified with entanglement, the situation in mixed states is more complex, as separable (non
entangled) mixed states, defined as convex mixtures of product states [1] (i.e., states which
can be generated by local operations and classical communication), can still exhibit signa-
tures of quantum-like correlations, manifested for instance in a non-zero quantum discord
[2–4]. Interest on this quantity has been enhanced by the existence of mixed-state-based quan-
tum algorithms [5] able to achieve an exponential speed-up over the corresponding classical
algorithm with vanishing entanglement [6] yet finite discord [7]. Various operational interpre-
tations and implications of states with non-zero discord have been recently provided [8–11].

The quantum discord for a bipartite system A + B can be written [2] as the minimum
difference between two distinct quantum extensions of the classical Shannon based conditional
entropy S(A|B) [12], one involving a local measurement MB on one of the systems (B), over
which the minimization is to be performed, and the other the direct quantum version of the
classically equivalent expression S(A, B) − S(B) (which becomes negative in pure entangled
states). While other measures of quantum correlations with similar properties (like reducing
to an entanglement measure for pure states and vanishing just for classically correlated states)
have been introduced [4, 8, 9, 11, 13–22], the quantum discord has the special feature, due
to its definition through a conditional entropy, of being directly related with the entanglement
of formation between the unmeasured system and a third system which purifies the whole
system [23–26]. Accordingly, the measurement minimizing the quantum discord can differ
substantially from those minimizing other measures such as the geometric discord [8, 16],
which can be much more easily determined. The complex minimization involved in the
quantum discord has in fact limited its evaluation to simple systems or special states and
measurements [7, 8, 27–34].

The aim of this work is first to extend the concept of measurement dependent conditional
entropy to a general entropic form (or uncertainty measure) S f depending on an arbitrary
concave function f [12, 35]. The ensuing quantity S f (A|BMB ) provides a measure of the average
conditional mixedness of A after a measurement at B, and allows us to define an associated
generalized ‘information gain’ or uncertainty reduction I f (A|BMB ) = S f (A) − S f (A|BMB ),
which is non-negative for any concave f and reduces to the associated entanglement entropy
S f (A) in the case of pure states. Such extension differs then from other treatments [36–38]
dealing with the generalization of the measurement independent von Neumann conditional
entropy S(A, B)−S(B). The minimum of the present S f (A|BMB ) among all local measurements
coincides with the associated entanglement of formation (convex roof extension of the S f

entanglement entropy) between A and a purifying third system C, as will be shown.
Such general formulation allows, first, to recognize some universal features of the

measurement dependent conditional entropy which do not depend on the choice of entropic
function f and rely just on concavity. It also opens the way to use simple entropic forms
like the linear entropy S2(ρ) = 1 − Tr ρ2, trivially related with the purity P(ρ) = Tr ρ2

and lower bound to the von Neumann entropy, which can be more easily evaluated (it does
not require the eigenvalues of ρ) and can therefore help to determine and understand the
minimizing measurement of the von Neumann conditional entropy and hence the quantum
discord. Moreover, we will show that this entropy determines the behavior of all entropies in
the vicinity of the maximally mixed state. The purity, and hence S2(ρ), is also more easily
accessible from the experimental side, since it can be determined efficiently without requiring
a full state tomography [39].
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We first derive in section 2 the fundamental properties of S f (A|BMB ), including its
minimum in general classically correlated states and mixtures of a pure state with the
maximally mixed state, where the minimizing measurement is shown to be universal, i.e.,
the same for any entropic form. The formalism is then applied in section 3 to derive a closed
expression for the conditional S2 entropy and discuss its fundamental properties, including
its minimum over projective measurements for a general A+qubit system, which is shown
to be determined by the largest eigenvalue of a simple 3 × 3 contracted correlation matrix.
This permits us to easily recognize the minimizing measurement and understand its behavior.
Applications to general parity preserving two-qubit states (X states), including mixtures of
aligned states and weakly correlated states, relevant for the description of pair states in
interacting XY spin chains at weak and strong transverse fields, are presented in section 4.
These examples indicate a similar behavior (and coincidence of the minimizing measurement)
of the S2 and von Neumann conditional entropies for these states, even well beyond the vicinity
of maximal mixedness. Conclusions are finally given in section 5.

2. Formalism

2.1. Generalized conditional entropy after a local measurement

We consider a bipartite quantum system A + B in an initial state ρ ≡ ρAB, with reduced states
ρA = TrB ρ, ρB = TrA ρ. We assume a general positive operator valued local measurement [40]
MB on system B is performed, defined by a set of operators Mj = IA ⊗MB

j , j = 1, . . . , jm, such
that the state after outcome j is proportional to MjρM†

j . The positive semidefinite operators

� j = M†
j Mj = IA ⊗ �B

j (1)

should then satisfy
∑

j � j = I ≡ IA ⊗ IB.
The reduced state of A after outcome j depends just on � j and is given by

ρA/� j = p−1
j TrB ρ� j, p j = Tr ρ � j, (2)

where p j > 0 is the probability of such outcome. In order to quantify the average uncertainty
or mixedness of the state of A after such measurement, we will consider here the generalized
conditional entropy

S f (A|B{� j}) =
∑

j

p jS f (ρA/� j ), (3)

where

S f (ρ) = Tr f (ρ) (4)

represents a generalized entropic form or uncertainty measure [12, 35] (see appendix A).
Here f : [0, 1] → � is a smooth strictly concave function satisfying f (0) = f (1) = 0.
For f (ρ) = −ρ loga ρ (we use here a = 2 or e), S f (ρ) becomes the von Neumann entropy
S(ρ) = −Tr ρ loga ρ, and equation (3) the measurement dependent von Neumann conditional
entropy, introduced in [2] for the definition of the quantum discord.

The concavity of these forms, i.e.,

S f

(∑
α

qαρα

)
�

∑
α

qαS f (ρα), (5)

if {qα} is a probability distribution (qα � 0,
∑

α qα = 1) and all ρα ’s are quantum
states, directly follows from the concavity of f , and implies fundamental properties of the
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generalized conditional entropy (3). First, since ρA = ∑
j p j ρA/� j , equation (5) implies

S f (A) ≡ S f (ρA) �
∑

j p jS f (ρA/� j ), i.e.,

S f (A) � S f (A|B{� j}), (6)

indicating that the average conditional mixedness of A after a measurement at B, will not exceed
the original mixedness, for any choice of S f . Moreover, if f is strictly concave, equality in
(5) holds iff all ρα’s with qα > 0 are identical. Hence, equality in (6) for all MB holds just if
ρ = ρA ⊗ ρB, since only in this case ρA/� j = ρA ∀ � j. The quantity

I f (A|B{� j}) = S f (A) − S f (A|B{� j}), (7)

is then non-negative for any S f , vanishing for all MB just for product states. It represents the
average reduction in the quantum uncertainty of A (or generalized information gain about A)
as measured by S f , after a measurement at B.

Equation (5) also implies concavity of the conditional entropy: if ρ = ∑
α qαρα , then

ρA/� j = ∑
α p−1

j qα pα
j ρα

A/� j
, with pα

j = Trρα� j, p j = ∑
α qα pα

j . Hence, S f (ρA/� j ) �∑
α p−1

j qα pα
j S f (ρ

α
A/� j

), entailing

S f (A|B{� j}) �
∑

α

qαS f
(
Aα|Bα

{� j}
)
, (8)

where S f (Aα|Bα
{� j}) = ∑

j pα
j S f (ρ

α
A/� j

). Average uncertainty about A after state mixing cannot
be smaller than the average of the original average uncertainties. In addition, if

� j =
∑

k

rk
j�̃k, rk

j � 0, (9)

where �̃k = IA ⊗ �̃B
k , with

∑
k �̃k = I, are positive operators representing a more detailed

local measurement (i.e., all �̃B
k of rank 1) and

∑
j rk

j = 1, then ρA/� j = ∑
k p−1

j rk
jqkρA/�̃k

,
with qk = Tr ρ�̃k,

∑
k rk

jqk = p j. Hence, S f (ρA/� j ) �
∑

k p−1
j rk

jqkS f (ρA/�̃k
) and

S f (A|B{� j}) �
∑

k

qkS f (ρA/�̃k
) = S f (A|B{�̃k}), (10)

i.e., the generalized conditional entropy will not increase (and will in general decrease) if
a more detailed local measurement is performed. In fact, S f (A) can be considered as the
conditional entropy S f (A|BI ) of A after a trivial measurement of the identity IB in B, so that
equation (6) is a particular case of (10).

Minimum uncertainty about the state of A will then be obtained for measurements based
on rank one operators

�B
j = r j| jB〉〈 jB|, r j > 0, (11)

where | jB〉 are normalized states, such that
∑

j �
B
j = IB. Standard complete projective

measurements (von Neumann measurements) correspond to r j = 1 and {| jB〉} an orthonormal
basis (� j� j′ = δ j j′� j). In particular, for pure states ρ2 = ρ, i.e.,

ρ = |�〉〈�|, |�〉 =
∑

k

√
qk |k̃Ak̃B〉, (12)

where the last expression denotes the Schmidt decomposition [40] ({|kA〉}, {|kB〉} orthonormal
sets), ρA/� j is pure ∀ j with p j > 0, for any local measurement based on the operators (11):

ρA/� j = | jA〉〈 jA|, | jA〉 = (r j/p j)
1/2

∑
k

√
qk〈 jB|k̃B〉|k̃A〉, (13)

where p j = r j
∑

k qk|〈 jB|k̃B〉|2. Hence, in the pure case S f (A|B{� j}) = 0, and equation (7)
becomes the generalized entanglement entropy [17]:

I f (A|B{� j}) = S f (A) = S f (B) =
∑

k

f (qk). (14)
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2.2. Minimum conditional entropy and generalized entanglement of formation

Let us now consider the minimum of equation (3) among all local measurements MB for a
general state ρ,

S f (A|B) ≡ Min
{� j}

S f (A|B{� j}). (15)

From equation (10) it follows that just rank one operators of the form (11) need to be considered
in the minimization. Equation (15) leads to the maximum generalized information gain (i.e.,
maximum uncertainty reduction)

I f (A|B) = Max
{� j}

I f (A|B{� j}) = S f (A) − S f (A|B). (16)

If the system A + B is purified [40] by adding a third system C, equation (15) has the
important meaning of being the associated entanglement of formation E f (A,C) [17] between
A and C in the reduced state ρAC [23]:

S f (A|B) = E f (A,C) = Min∑
j p jρ

j
AC=ρAC

∑
j

p jS f
(
ρ

j
A

)
, (17)

where the minimization is over all representations of ρAC as convex combination (p j > 0) of
pure states ρ

j
AC = | jAC〉〈 jAC|, and S f (ρ

j
A) = S f (ρ

j
C) is the S f entanglement entropy between

A and C in | jAC〉 (ρ j
A = TrC ρ

j
AC). Equation (17) is the convex roof extension [41] of the pure

state entanglement entropy (14) and is an entanglement monotone [42]. The identity (17)
was derived for the von Neumann entropy (see [23] and [24–26]), where E f (A,C) becomes
the standard entanglement of formation E(A,C) [43], but the arguments remain valid in the
present general case (see appendix B).

Equation (17) entails that the equation (16) can be also expressed as

I f (A|B) = E f (A, BC) − E f (A,C), (18)

where E f (A, BC) = S f (ρA) = S f (ρBC) is the entanglement entropy between A and BC in the
purified state.

The quantum discord [2–4, 8] D(A|B), as obtained by a measurement in B, is directly
related to the present von Neumann conditional entropy S(A|B{� j}) through

D(A|B) = Min
{� j}

S(A|B{� j}) − [S(A, B) − S(B)], (19)

where the last bracket is the standard (measurement independent) quantum extension of the
von Neumann conditional entropy (which can be negative in entangled states). It can be also
expressed as the difference between the standard mutual information S(A) + S(B) − S(A, B)

and the maximum von Neumann information gain I(A|B) = S(A) − Min{� j}S(A|B{� j}). A
generalization of the quantum discord based on the Renyi entropy of order 2 was considered in
[22] for Gaussian states, whereas extensions based on the Tsallis entropy [44] were discussed
in [45].

2.3. Classically correlated states

There are important classes of mixed states where the local measurement minimizing
S f (A|B{� j}) is universal, i.e., the same for all entropies S f , and can be generally determined.
One is that of classically correlated states with respect to B [2–4],

ρ =
∑

k

qkρA/k ⊗ �̃B
k , (20)

5
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where qk � 0 and {�̃B
k = |k̃B〉〈k̃B|} is a complete set of orthogonal rank one local projectors,

such that after a local measurement in this basis, ρA/�̃k
= ρA/k (and

∑
k �̃kρ�̃k = ρ

if �̃k = IA ⊗ �̃B
k , implying that the states (20) remain unchanged after an unread local

measurement in this basis). It is easy to prove that the lowest conditional entropy (15) is
obtained for such measurement, for any S f :

S f (A|B) = S f (A|B{�̃k}) =
∑

k

qkS f (ρA/k). (21)

Proof. for any MB based on the operators (11), we have

ρA/� j =
∑

k

r j p
−1
j qk|〈 jB|k̃B〉|2 ρA/k (22)

with p j = r j
∑

k qk|〈 jB|k̃B〉|2. Concavity plus completeness (
∑

j r j|〈 jB|k̃B〉|2 = 1) imply

S f (A|B{� j}) �
∑
k, j

r jqk|〈 jB|k̃B〉|2S f (ρA/k) =
∑

k

qkS f (ρA/k) (23)

with the inequality saturated for a measurement in the pointer basis {|k̃B〉}, formed by the
eigenstates of ρB = ∑

k qk�̃
B
k . The maximum I f is then

I f (A|B) = S f

( ∑
k

qkρA/k

)
−

∑
k

qkS f (ρA/k). (24)
�

2.4. Pure state plus maximally mixed state

A second case is that of the mixture of a general pure state (12) with the maximally mixed
state I/d,

ρ = w|�〉〈�| + (1 − w)Id/d, |�〉 =
∑

k

√
qk |k̃Ak̃B〉, (25)

where w ∈ [0, 1] and d = dAdB is the Hilbert-space dimension of A + B. The minimum for
any S f is provided again by a measurement in the basis {|k̃B〉} of eigenstates of ρB:

S f (A|B) = S(A|B{�̃k}) =
∑

k

qw
k S f (ρA/�̃k

)

=
∑

k

qw
k

[
f

(
wqk + (1 − w)/d

qw
k

)
+ (dA − 1) f

(
1 − w

dqw
k

)]
, (26)

where qw
k = wqk + 1−w

dB
is the probability of outcome k at B and ρA/�̃k

= [wqk|k̃A〉〈k̃A| + (1 −
w)IA/d]/qw

k the state of A after such outcome.

Proof. for any measurement based on the operators (11) we obtain, using (12) and (13),

ρA/� j = wp j| jA〉〈 jA| + r j(1 − w)IA/d

pw
j

=
∑

k

r jqw
k

pw
j

|〈 jB|k̃B〉2|U j
k ρA/�̃k

U j
k

†
, (27)

where p j = r j
∑

k qk|〈 jB|k̃B〉|2 and pw
j = wp j + r j

1−w
dB

are respectively the probabilities of

outcome j in |�〉 and ρ, and U j
k are unitaries satisfying U j

k |k̃A〉 = | jA〉. Hence, concavity,
invariance of S f under unitary transformations and completeness imply again

S f (A|B{� j}) �
∑

k

qw
k S f (ρA/�̃k

) = S f (A|B{�̃k}). (28)

Equality in (28) for any MB of the form (11) holds for i) w = 0 (ρ maximally mixed), ii)
w = 1 (ρ pure) and iii) |�〉 maximally entangled (qk = 1/dB ∀ k, assuming dA � dB), where
p j = r j/dB ∀ j and all ρA/� j = w| jA〉〈 jA| + 1−w

dA
IA have the same spectrum. �

6
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It can be easily checked that equation (26) is a concave function of both w and the
probability distribution q = {qk}. Since S f (A|B) reaches its maximum S f (IA/dA) = dA f (1/dA)

for w = 0, concavity entails that equation (26) is a decreasing function of w for w ∈ [0, 1]
∀ S f : decreasing mixedness decreases the uncertainty about A. Concavity also leads to the
immediate lower bound S f (A|B) � (1 − w)dA f (1/dA).

Besides, for states |�〉, |� ′〉 characterized by distributions q and q′ in the Schmidt
decomposition, we have S f (q) � S f (q′) ∀ S f iff q ≺ q′ (i.e., q majorized by q′, see
Appendix A). Such condition ensures then that |�〉 is more entangled than |� ′〉 for any
S f , and is the same condition which warrants that |� ′〉 can be obtained from |�〉 by LOCC
[40, 46]. In such a case, concavity of S f (A|B) with respect to q entails that at fixed w ∈ (0, 1),
S f (A|B)|�〉 � S f (A|B)|� ′〉 for any S f , i.e., greater entanglement for any S f entails a larger
conditional entropy S f (A|B) ∀ S f in the mixture (25), in contrast with the pure case w = 1
(where S f (A|B) = 0 for any pure state |�〉).

3. The quadratic case: conditional purity after local measurement

3.1. General properties

We now consider in detail the simplest choice of concave f , i.e., a quadratic function
f (ρ) = α(ρ − ρ2), α > 0. For α = 1 this leads to S f (ρ) = S2(ρ), with

S2(ρ) = 1 − Tr ρ2, (29)

the so-called linear entropy, since it corresponds to the linear approximation − ln ρ ≈ I − ρ

in S(ρ) (ln p = p−1+O(p−1)2 for p → 1). It is the q = 2 case of the Tsallis entropy Sq(ρ)

[44] (see appendix A) and provides a lower bound to the von Neumann entropy for a = e (and
hence a < e), since p(1 − p) � −p ln p ∀ p ∈ [0, 1].

Equation (29) is trivially related with the purity P(ρ) = Tr ρ2, which satisfies P(ρ) � 1,
with P(ρ) = 1 iff ρ is a pure state (ρ2 = ρ). It is also directly related to the squared
Hilbert–Schmidt distance to the maximally mixed state I/d:

||ρ − I/d||2 = Tr ρ2 − 1/d = S2(I/d) − S2(ρ), (30)

where ||O||2 = Tr O†O and S2(I/d) = 1 − 1/d.
Similarly, the associated conditional entropy,

S2(A|B{� j}) = 1 −
∑

j

p jTrρ2
A/� j

, (31)

is trivially related with the average conditional purity P(A|B{� j}) = ∑
j p jTr ρ2

A/� j
, and

determines the average squared distance to the maximally mixed state of A:∑
j

p j||ρA/� j − IA/dA||2 = S2(IA/dA) − S2(A|B{� j}). (32)

The ensuing I2(A|B) represents the average increase of the purity of A due to the local
measurement at B, and can be also interpreted as the average squared distance between the
original and the post-measurement state of A:

I2(A|B{� j}) = S2(A) − S2(A|B{� j}) =
∑

j

p jTrρ2
A/� j

− Trρ2
A (33)

=
∑

j

p j ||ρA − ρA/� j ||2, (34)

7
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where we used equation (2). We may also define, through I2 and S2, the purity gain ratio

R2(A|B{� j}) = 1 + I2(A|B{� j})
1 − S2(A)

=
∑

j p jTrρ2
A/� j

Trρ2
A

, (35)

which satisfies 1 � R2(A|B{� j}) � dA. Such ratio remains unaltered if an ancilla C at A is
added (ρAB → ρC ⊗ ρAB).

If ρ is sufficiently close to the maximally mixed state I/d, equation (30) entails that
all entropies S f (ρ) (with f ′′(p) < 0 ∀ p) become in this limit linear functions of S2(ρ). A
second-order expansion of S f (ρ) around ρ = I/d leads to

S f (ρ) − S f (I/d) ≈ 1

2
f ′′

(
1

d

)
||ρ − I/d||2 = 1

2
| f ′′

(
1

d

)
|[S2(ρ) − S2(I/d)]. (36)

Hence, in the vicinity of maximal mixedness, all entropies S f (ρ) (with f ′′(1/d) < 0),
including of course the von Neumann entropy S(ρ), are determined by S2(ρ). In this limit
ρA/� j is also close to IA/dA ∀ � j and hence,

S f (A|B{� j}) ≈ S f (IA/dA) + 1
2 | f ′′( 1

dA

)|[S2(A|B{� j}) − S2(IA/dA)], (37)

indicating that all conditional entropies S f (A|B{� j}) (with f ′′(1/dA) < 0) also become
functions of the S2 conditional entropy. The measurement minimizing S2(A|B{� j}) becomes
then universal in this limit, i.e., it will also minimize all other S f (A|B{� j}).

We note here that the geometric discord [8, 16] is defined as the minimum squared
Hilbert–Schmidt distance from ρ to a classically correlated state ρc of the form (20), and is
equivalent to the minimum increase of the S2 entropy of the global state due to an unread
projective measurement at B [17]:

D2(A|B) = Min
ρc

||ρ − ρc||2 = Min{� j} S2

( ∑
j

� jρ� j

)
− S2(ρ), (38)

where again � j = IA⊗�B
j . In contrast with S2(A|B), the geometric discord looks for the closest

average global post-measurement state
∑

j � jρ� j. This will lead to significant differences in
the minimizing measurement for certain states, as discussed in section 4.

3.2. Explicit expressions

The obvious advantage of S2(ρ) over other entropies is that its evaluation does not require
the knowledge of the eigenvalues of ρ. Convenient expressions in a system with Hilbert-space
dimension d can be obtained just by considering a complete orthogonal set of Hermitian
operators (I, σ), with σ = (σ1, . . . , σd2−1) satisfying

Tr σi = 0, Tr σiσ j = dδi j. (39)

For a single qubit σ are the Pauli operators. A general state can then be written as

ρ = (I + r · σ)/d, r = Tr ρσ = 〈σ〉, (40)

and the quadratic entropy (29) becomes

S2(ρ) = 1 − (1 + |r|2)/d. (41)

For a pure state ρ2 = ρ, |r|2 = d − 1 and S2(ρ) = 0.
In the case of a bipartite system A + B, we may rewrite equation (40) as

ρ = [I + rA · σA ⊗ IB + IA ⊗ rB · σB + σt
AJ ⊗ σB]/d (42)

where rA = 〈σA〉, rB = 〈σB〉 and J = 〈σA ⊗ σt
B〉 is a (d2

A − 1) × (d2
B − 1) matrix of elements

Ji j = 〈σAi ⊗ σB j〉. The reduced states are ρα = (Iα + rα · σα )/dα , α = A, B.

8
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A measurement MB based on the operators (11) can be characterized by the vectors

k j = TrB(σB | jB〉〈 jB|), (43)

such that �B
j = r j(IB + k j · σB)/dB. These vectors satisfy |k j|2 = dB − 1 and∑

j

r jk j = 0, (44)

since
∑

j �
B
j = IB. The probability of outcome j and the ensuing state ρA/� j are then

p j = r j

dB
(1 + rB · k j), ρA/� j = 1

dA

[
IA + (rA + Jk j) · σA

1 + rB · k j

]
, (45)

which involve just the components of rB and J along k j. Equations (41)–(45) lead then to

S2(A|B{� j}) = 1 − 1

dA

⎡
⎣1 +

∑
j

p j
|rA + Jk j|2

(1 + rB · k j)2

⎤
⎦

= S2(A) − 1

d

∑
j

r j

kt
jC

tCk j

1 + rB · k j
, (46)

where S2(A) = S2(ρA) = 1 − (1 + |rA|2)/dA and kt
jC

tCk j = |Ck j|2, with

C = J − rArt
B = 〈

σA ⊗ σt
B

〉 − 〈σA〉〈σt
B

〉
, (47)

the correlation matrix (or tensor), of elements Ci j = 〈σAi ⊗ σB j〉 − 〈σAi〉〈σB j〉 (C = 0 iff
ρ = ρA ⊗ ρB). The second term in (46) is just the quadratic information gain (i.e., purity
increase) (33):

I2(A|B{� j}) = 1

d

∑
j

r j

kt
jC

tCk j

1 + rB · k j
. (48)

It is then determined by rB and the (d2
B − 1) × (d2

B − 1) positive semidefinite matrix CtC. We
finally note that we may also express equations (42) and (45) in terms of the correlation matrix
C (rather than J) as

ρ = ρA ⊗ ρB + σt
A C ⊗ σB/d, ρA/� j = ρA + σt

ACk j

dA(1 + rB · k j)
, (49)

with ||ρ − ρA ⊗ ρB||2 = Tr [CtC]/d = ||C||2/d.

3.3. The qudit–qubit case

We now show that when B is a single qubit, an analytic expression for the minimum S2

conditional entropy (i.e., for the maximum conditional purity of A) amongst projective local
measurements on B can be obtained for any dimension dA of A (CdA ⊗ C

2 system) and any
initial state ρ. Here, we can take σB as the Pauli operators, and k j become unit vectors. For
a projective spin measurement along direction k (|k| = 1), we have j = 1, 2, with r j = 1,
k1 = −k2 = k, and equation (48) becomes

I2(A|Bk) = 1

dA

ktCtCk
1 − (rB · k)2

= 1

dA

ktCtCk
ktNBk

, (50)

where NB is the 3 × 3 positive semidefinite matrix

NB = I3 − rBrt
B. (51)

9
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The last expression in (50) is a ratio of quadratic forms and is then independent of the length of
k. Its maximum can therefore be obtained diagonalizing the 3 × 3 matrix CtC with the metric
NB: Setting k = N−1/2

B k̃, with k̃t k̃ = 1, we have

ktCtCk
ktNBk

= k̃tC̃tC̃k̃ � λmax, (52)

where C̃ = CN−1/2
B and λmax is the maximum eigenvalue of C̃tC̃, the maximum reached when

k̃ is the associated normalized eigenvector. The eigenvalue equation C̃tC̃k̃ = λk̃ is just the
eigenvalue equation for CtC with metric NB,

CtCk = λNBk, (53)

so that λmax is the largest root of the equation

Det [CtC − λNB] = 0, (54)

with k the associated eigenvector. In other words,
√

λmax is the maximum singular value
of the matrix C with metric NB. The ensuing minimum conditional entropy and maximum
information gain (uncertainty reduction) for projective measurements are then

S2(A|B) = Min
k

S2(A|Bk) = S2(A) − λmax/dA, (55)

I2(A|B) = Max
k

I2(A|Bk) = λmax/dA. (56)

If rB = 0, NB = I3 and λmax is just the maximum eigenvalue of CtC. On the other hand, if
|rB| = 1, ρ is a product state and ktCtCk = 0 vanishes ∀ k.

For instance, the classically correlated state (20) corresponds, choosing the z axis in B such
that �̃B

±k = 1
2 (IB ±σz), to (rB)ν = δνzrB, Jμν = δνzJμz, implying (CtC)νν ′ = δνν ′δνz|J− rBrA|2,

with J the vector of components Jμz. Hence,

ktCtCk
ktNBk

� λmax = |J − rBrA|2
1 − r2

B

, (57)

being verified that the maximum is reached for k along z, i.e., for a spin measurement along rB

(basis of eigenstates of ρB). For a general state however, the minimizing direction may differ
from rB and follow the main correlation in CtC.

If A is also a qubit (dA = 2), it is convenient to use S2(ρ) = 2(1 − Tr ρ2) in previous
equations, i.e. 1

dA
→ 1 in equations (50)–(56), such that S2(ρA) = 1 if ρA is maximally

mixed. Such rescaled entropy is still a lower bound to the a = 2 von Neumann entropy
S(ρ) = −Trρ log2 ρ (see appendix A). In such a case, if ρ is of rank 2, it can be purified by
adding a third qubit C, being then verified that S2(A|B) coincides with the squared concurrence
[47] between A and C, since such quantity reduces for pure two-qubit states to the present
rescaled S2 entropy of any of the subsystems, and coincides with its convex roof extension
E2(A,C) for mixed two qubit states [41].

We remark finally that for a qudit–qubit state, the (minimum) geometric discord (38) is
determined by the largest eigenvalue of a different 3 × 3 matrix [8, 16]:

D2(A|B) = 1

d
(|rB|2 + ||J||2 − λ̃max), (58)

where λ̃max is the largest eigenvalue of M2 = rBrt
B + JtJ. This matrix depends then on J rather

than the correlation C, coinciding with CtC just when rB = 0.

10
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4. Application

4.1. X states

Let us now consider a two-qubit system. Through its singular value decomposition, the now
3 × 3 matrix J can be always brought to the diagonal form Jμν = δμνJμ by appropriately
choosing the local x, y, z axes. If rA and rB are directed along the same principal axes of J,
which we shall denote as z, we obtain an X state [30],

ρ = 1

4

(
I + rA σz ⊗ I2 + rB I2 ⊗ σz +

∑
μ=x,y,z

Jμσμ ⊗ σμ

)
(59)

=

⎛
⎜⎜⎝

p+ 0 0 α−
0 q+ α+ 0
0 α+ q− 0

α− 0 0 p−

⎞
⎟⎟⎠ ,

p± = 1±(rA+rB )+Jz

4
q± = 1±(rA−rB )−Jz

4

α± = Jx±Jy

4

, (60)

where equation (60) is its standard basis representation. This state commutes with the z parity
Pz = σz ⊗ σz. Accordingly, reduced states of arbitrary spin pairs in the thermal state or in any
non-degenerate eigenstate of any spin 1/2 array with XY or XY Z Heisenberg couplings of
arbitrary range in a field along z, are of the present form [31], as the corresponding Hamiltonian
(see equation (71)) commutes with the total z parity.

The ensuing matrices C and NB are simultaneously diagonal,

C =
⎛
⎝Jx 0 0

0 Jy 0
0 0 Jz − rArB

⎞
⎠ , NB =

⎛
⎝1 0 0

0 1 0
0 0 r2

B

⎞
⎠ .

Hence, the minimum conditional entropy S2(A|B) among projective measurements will be
obtained for a measurement along one of the principal axes x, y, z. We then obtain

S2(A|B) = 1 − |rA|2 − I2(A|B), (61)

I2(A|B) = Max
k

ktCtCk
ktNBk

= Max

[
J2

x , J2
y ,

(Jz − rArB)2

1 − r2
B

]
, (62)

for S2(ρ) = 2(1 − Trρ2), implying a z → x or z → y transition in the direction of the
minimizing measurement as J2

x or J2
y increase across λz = (Jz − rArB)2/(1 − r2

B).
Such direction is then determined essentially by the main correlation in CtC. This provides

a conceptual basis for the results of [33] related with the minimizing measurement of the
quantum discord for X states, which also follow the main correlation. This direction can then
differ significantly from that minimizing the geometric discord (38)–(58). For the state (59),
we obtain [16, 17] (equation (58))

D2(A|B) = 1
2

{
r2

B + ||J||2 − Max
[
J2

x , J2
y , J2

z + r2
B

]}
, (63)

entailing a z → x or z → y transition only as J2
x or J2

y increase across J2
z + r2

B. Coincidence
between both minimizing measurements can then be ensured just for rB = 0, i.e., ρB maximally
mixed, where the minimizing k is along the axis with the largest |Jμ| for both S2(A|B) and
D2(A|B).

For a general entropy S f , the conditional entropy is (equation (45)),

S f (A|Bk) =
∑

μ,ν=±1

1 + νrB · k
2

f

[
1

2

(
1 + μ

∣∣∣∣rA + νCk
1 + νrB · k

∣∣∣∣
)]

. (64)
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It is verified that for an X state, measurements along any of the principal axes of J (i.e.,
x, y, z) are always stationary (δS f (A|Bk) = 0 up to first order in δk), i.e., candidates for
minimizing (64), although other directions cannot be discarded (typically in the transitional
region between the z and x or y regimes). On the other hand, for two qubit states with maximally
mixed marginals, which can be written as X states with rA = rB = 0, it is seen from (62) and
(64) that the minimizing measurement is along the axis with the largest |Jμ|, i.e., k along the
largest eigenvalue of JtJ = CtC, for any entropyS f (universal minimum).

We finally mention that the geometric discord D2(A|B) was shown in [48] to be an upper
bound to the square of the negativity N (ρ), a computable entanglement monotone [49], given
for two qubits byN (ρ) = Tr|ρTB |−1, with ρtB the partial transpose, both coinciding for ρ pure.
For X states, we obtain here a similar relation between I2(A|B) and the squared concurrence
C2(ρ), with both also coinciding when ρ is pure. For the state (60), the concurrence [47] is
C(ρ) = 2Max[|α+| − √

p+ p−, |α−| − √
q+q−, 0], implying C(ρ) � 2Max[|α+|, |α−|] and

hence, since |α±| � Max[|Jx|, |Jy|]/2,

C2(ρ) � Max
[
J2

x , J2
y

]
� I2(A|B). (65)

4.2. Mixture of a pure state with the maximally mixed state

As a specific example of (59), we consider the mixture (25) in the two qubit case. By suitable
choosing the local axes, we may always write it as

ρ = w|�〉〈�| + (1 − w)I4/4, |�〉 = √
q|00〉 +

√
1 − q|11〉, (66)

which corresponds to an X state with

rA = rB = w(2q − 1), Jx = −Jy = 2w
√

q(1 − q), Jz = w.

It is then verified that (Jz−rArB )2

1−r2
B

− J2
x = w2(1−w)2(1−2q)2

1−w2(1−2q)2 � 0, implying that S2(A|Bk) is
minimized by a measurement along z (basis of eigenstates of ρB), in agreement with the
universal minimum for this state. It is also seen that for w = 1 (ρ pure), w = 0 (ρ maximally
mixed) or q = 1/2 (|�〉 maximally entangled) the previous difference vanishes, indicating
that all directions k lead to the same result, in agreement with previous considerations. In any
case we obtain, for S2(ρ) = 2(1 − Tr ρ2),

S2(A|B) = (1 − w)(1 + w − 2w2(1 − 2q)2)

1 − w2(1 − 2q)2
, (67)

I2(A|B) = w2(1 − w(1 − 2q)2)2

1 − w2(1 − 2q)2
, (68)

with S2(A) = 1 −w2(1 − 2q)2. It is verified that equation (67) is a strictly concave decreasing
function of w at fixed q ∈ [0, 1], and a strictly concave function of q if w ∈ (0, 1),
reaching its maximum at q = 1/2 (Bell state). Notice that (1 − 2q)2 = 1 − C2(|�〉), with
C(|�〉) = 2

√
q(1 − q) the concurrence [47] of |�〉, so that equation (67) is, for w ∈ (0, 1),

an increasing function of C(|�〉), i.e. of entanglement, as previously ascertained. The bound
(65) is also verified (C(ρ) = Max[w C(|�〉) − (1 − w)/2, 0]).

Equation (68) is also a strictly concave function of q if w ∈ (0, 1], maximum at q = 1/2,
i.e., an increasing function of the concurrence C(|�〉). In contrast, equation (68) is not
necessarily an increasing function of w. Its behavior with w can be non-monotonous if |�〉
is separable or almost separable (q small or close to 1), as shown in figure 1, where results
for the von Neumann based (S(ρ) = −Tr ρ log2 ρ) conditional entropy and information
gain are also depicted. Such behavior is universal, i.e., present for any S f : when |�〉 is

12
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Figure 1. (Top) Results for the quadratic (left) and von Neumann (right) minimum
conditional entropy S f (A|B) (solid lines) and maximum information gain (or uncertainty
reduction) I f (A|B) (dashed lines), after a measurement at B in the mixture (66) for the
maximally entangled (q = 1/2) and separable (q = 0) cases. All Sf (A|B) are concave
decreasing functions of w, vanishing at the pure limit w = 1. (Bottom) Comparison
between quadratic (solid lines) and von Neumann (dashed lines) results for q = 1/2
(left) and q = 0 (right). It is verified that S2(A|B) � S(A|B) ∀ w, q.

separable, noise induces a non-zero value of I f (A|B), since ρ ceases to be a product state
for w ∈ (0, 1). As seen in figure 1, the qualitative behavior of the minimum linear and
von Neumann conditional entropies is entirely similar, and the same holds for the ensuing
maximum I f (A|B). Nonetheless, while S2(A|B) � S(A|B), there is in general no fixed order
relation between I2(A|B) and I(A|B).

4.3. Mixture of aligned states

We now consider the two-qubit mixed state

ρ = 1
2 (|θθ〉〈θθ | + | − θθ〉〈−θ − θ |), (69)

where |θ〉 = exp[−iθσy/2]|0〉 = cos θ
2 |0〉+ sin θ

2 |1〉 is the state with the spin forming an angle
θ with the z axis. This separable state represents, roughly, the reduced state of a spin 1/2 pair
in the exact definite parity ground state of a ferromagnetic XY chain for fields |B| < Bc if
cos θ = B/Bc [31]. Moreover, for not too small chains it is the exact state of the pair in the
immediate vicinity of the factorizing field [31, 50, 51]. Equation (69) is an X state with

rA = rB = cos θ, Jz = cos2 θ, Jx = sin2 θ, Jy = 0.

Hence, there is no correlation along z (Jz = rArB, implying Cz = 0) but there is a finite
correlation along x (Cx = J2

x ). We then obtain the remarkable result that S2(A|Bk) is minimized
for k along x ∀ θ ∈ (0, π/2], leading to

S2(A|B) = 1 − cos2 θ − sin4 θ = 1
4 sin2 2θ , I2(A|B) = sin4 θ. (70)
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Figure 2. Results for the quadratic (solid lines) and von Neumann (dashed lines)
minimum conditional entropy (left) and maximum information gain or uncertainty
reduction (right) in the mixture of aligned states (69). Both entropies are minimized by
a spin measurement along x ∀ θ ∈ (0, π/2].

The minimum S2 conditional entropy is then symmetric around θ = π/4, vanishing for θ = 0
(product state) and π/2 (classically correlated state of the form (20) with ρA/k pure), whereas
the maximum I2(A|B) increases with θ (figure 2), reaching its absolute maximum at θ = π/2.
Hence, spin measurements along z are not minimum for any θ > 0 (although the difference
with (70) is O(θ4) for θ → 0).

In the von Neumann case, the behavior of S(A|B) and I(A|B) is again completely similar
to that of S2(A|B) and I2(A|B), as seen in figure 2. Moreover, the minimizing measurement is
also for k along x ∀θ ∈ (0, π/2] [17, 31], i.e., the same as that of the S2 entropy ∀ θ . The S2

results allow then to easily understand the minimizing measurement of the quantum discord
for this state [31]. In contrast, the geometric discord is minimized for k along x only if θ > θc,
with cos2 θc = 1/3, preferring k along z if θ < θc [17].

4.4. Spin 1/2 pairs in XY chains at strong transverse fields

Let us finally consider a spin 1/2 array with XY couplings in a strong transverse field, described
by a Hamiltonian

H = −B
∑

i

σiz −
∑
i< j

(
Jx

i jσixσ jx + Jy
i jσiyσ jy

)
. (71)

For sufficiently strong fields B � |Jμ
i j | ∀ μ, i, j, the system is weakly coupled and the ground

state is of the form

|�〉 ≈ |0〉 +
∑
i< j

αi j|i j〉, (72)

at the lowest non-trivial order, where |0〉 = |0 . . . 0〉 denotes the state with all spins aligned
along the field (+z), |i j〉 = σi−σ j−|0〉 and αi j ≈ (Jx

i j − Jy
i j)/(2B). The reduced state of a pair

i, j is therefore an X state with, at the lowest non-zero order (we set α ji = αi j),

α− = αi j, p− = |αi j|2, α+ =
∑
k �=i, j

αikᾱk j, q± =
∑
k �=i, j

|αi
jk
|2. (73)

By suitably choosing the local states at sites i, j, we may set α± real and positive. Hence, up
to O(|α|2) we obtain rA,B = 1 − 2(|αi j|2 + q∓) (along z) and

Jx
y
= 2

( ∑
k �=i, j

αikᾱk j ± αi j

)
, Jz − rArB ≈ 4|αi j|2. (74)
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Hence, for αi j �= 0 (interacting pair), Cxx is O(αi j), whereas Czz is O(α2
i j), entailing at the

lowest order a minimizing measurement along x instead of z, as the correlation along z is of
higher order. The same behavior occurs with the minimizing measurement of the von Neumann
conditional entropy and hence the quantum discord in this regime (k along x at strong fields
[31, 52]). In contrast, that minimizing the geometric discord or the information deficit [9, 17]
follows the main component of the state, and is therefore along the field direction z for strong
fields [52].

5. Conclusions

We have analyzed the main features of the conditional entropy associated to general concave
entropic forms in bipartite quantum systems, determined by a measurement in one of the
constituents. Its minimum among all local measurements determines the maximum average
uncertainty reduction (generalized information gain) about A that can be achieved by a
measurement on B, and has the direct meaning of representing the associated entanglement
of formation between A and a purifying third system C. For some important classes of states
as those of sections 2.3 and 2.4, the minimizing measurement is the same for all S f and
can be analytically and identified, allowing a direct general evaluation of E f (A,C). This
universality indicates that for such states there is clearly an unambiguous optimum local
measurement leading to the lowest conditional mixedness at the unmeasured part, irrespective
of the measure used for quantifying such mixedness.

For the general case, a main practical result of our manuscript is the analytic determination
of this minimum for the linear entropy S2 in a general qudit+qubit state with projective
measurements. It can be expressed in terms of the largest eigenvalue of a simple 3 × 3
matrix, which represents the largest singular value of the correlation matrix C with a metric
NB determined by the measured part. This enables us to easily identify the minimizing
measurement, determined by the associated eigenvector, and understand its behavior.
Conditional S2 results have also a direct interpretation in terms of purity and average distances,
and possess the importance of determining the universal behavior of all conditional entropies
and the ensuing minimizing measurement in the vicinity of maximum mixedness.

In the specific examples considered, the minimizing measurements of the S2 and von
Neumann conditional entropies (and hence the quantum discord) were in fact coincident. The
present results explain then the quite distinct response of this minimizing measurement to the
onset of correlations (it follows the main correlation even if arbitrarily weak), in comparison
with those minimizing the geometric discord or the one way information deficit, which follow
instead the main component of the state [52]. Hence, the present formalism not only allows
us to identify universal features and optimize post-measurement purities, but can also help
to evaluate or estimate the quantum discord in more complex situations, as the minimizing
measurements for the linear and von Neumann conditional entropies become coincident in
some states and regimes, and can be expected to be close in typical situations.

The authors acknowledge support of CIC (RR) and CONICET (NG) of Argentina.

Appendix A. Trace form generalized entropies

Given a quantum state ρ with spectral decomposition ρ = ∑
j p j| j〉〈 j|, j = 1, . . . , d (p j � 0,∑

j p j = 1), the ‘entropic’ forms (see for instance [12, 35])

S f (ρ) = Tr f (ρ) =
∑

j

f (p j), (A.1)
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comply, for any strictly concave real function f : [0, 1] → � satisfying f (0) = f (1) = 0, with
all conventional entropy properties except additivity: i) S f (ρ) � 0, with S f (ρ) = 0 iff ρ is pure
(ρ2 = ρ), ii) S f (ρ) is maximum at the maximally mixed state Id/d, with S f (Id/d) = df (1/d)

an increasing function of d, iii) S f (UρU†) = S f (ρ) ∀ unitary U and iv) S f (ρ) is concave
(equation (5)) (if ρ = ∑

α qαρα , f (p j) = f (
∑

α, j′ qα|〈 j| j′α〉|2 pα
j′ ) �

∑
j,′α qα|〈 j| j′α〉|2 f (pα

j′ ),
which leads to (5) after summing over j).

Concavity implies ii) and, moreover, the majorization [12, 53] property [17, 54]

ρ ≺ ρ ′ ⇒ S f (ρ) � S f (ρ
′), (A.2)

where ρ ≺ ρ ′ (ρ more mixed than ρ ′) means
∑i

j=1 p j �
∑i

j=1 p′
j for i = 1, . . . , d − 1, with

p j, p′
j denoting here the eigenvalues of ρ and ρ ′ sorted in decreasing order (and completed

with 0’s if dimensions differ). Equation (A.2) provides the conceptual basis for considering any
such S f a generalized uncertainty measure or entropic form. Furthermore, while the converse
of (A.2) does not necessarily hold if valid for some particular S f (majorization is stronger than
a single entropic inequality), it does hold if valid ∀ S f of the form (A.1): S f (ρ) � S f (ρ

′) ∀ S f

⇒ ρ ≺ ρ ′ [54].
The Tsallis entropy [44] Sq(ρ) = (1 − Tr ρq)/(q − 1), q > 0, corresponds to

f (ρ) = (ρ −ρq)/(q−1) in (A.1). It reduces to the quadratic entropy (29) for q = 2 and to the
von Neumann entropy (with a = e) for q → 1. We may also set Sq(ρ) = (1−Tr ρq)/(1−21−q),
such that Sq(ρ) = 1 for a maximally mixed single qubit state ρ = I2/2, in which case
S2(ρ) = 2(1 − Trρ2) and Sq(ρ) → −Trρ log2 ρ for q → 1. For this scaling it is still verified
that S2(ρ) � S(ρ) for any single qubit state, coinciding just for ρ pure or maximally mixed
(for any single qubit state, Sq(ρ) � S(ρ) for 1 < q < q1 ≈ 4.718 with this scaling).

For two classical random variables A, B described by a joint probability distribution
pi j = p(A = i, B = j), we may define a generalized conditional entropy S f (A|B) as

S f (A|B) =
∑

j

p jS f (A|B = j) =
∑
i, j

p j f (pi j/p j), (A.3)

where p j = p(B = j) = ∑
i pi j. This quantity measures the average uncertainty about

A if B is known. Due to concavity, it satisfies S f (A|B) � S f (A) = ∑
i f (qi) (with

qi = p(A = i) = ∑
j pi j) ∀ S f . The difference

I f (A|B) = S f (A) − S f (A|B),

is then non-negative, vanishing only if pi j/p j = pi ∀ i, j with p j > 0, i.e., only if A and B are
independent. It represents the uncertainty reduction (or generalized ‘information gain’) about
A generated by the knowledge of B.

In the Shannon case f (p) = −p loga p, (A.3) becomes S(A|B) = S(A, B) − S(B), where
S(A, B) = −∑

i, j pi j loga pi j, S(B) = −∑
j p j loga p j, but such relation no longer holds for

a general S f . Hence, while in the (classical) Shannon case I(A|B) = S(A)+S(B)−S(A, B) =
I(B|A) is the mutual information, for a general S f , I f (A|B) will differ in general from I f (B|A).
Generalizations of the Shannon conditional entropy based on the Renyi entropy were recently
discussed in [55] (and quantum versions in [36, 37]), whereas special extensions for the Tsallis
case were considered in [38].

Appendix B. Relation with the entanglement of formation

Let us sketch the proof of the identity (17) [23–26]. Starting from the (AC, B) Schmidt
decomposition of the pure global state,

|�ACB〉 =
n∑

k=1

√
qk |k̃AC〉|k̃B〉, (B.1)

16



J. Phys. A: Math. Theor. 47 (2014) 015302 N Gigena and R Rossignoli

the state of AC after a measurement at B based on the operators (11) with outcome j is the
pure state (equation (13))

| jAC〉 = (r j/p j)
1/2

∑
k

√
qk〈 jB|k̃B〉|k̃AC〉. (B.2)

Hence, ρA/� j is the reduced state ρ
j
A of A in | jAC〉 and S f (A|B{� j}) = ∑

j p jS f (ρ
j
A)

coincides then with the average entanglement of the decomposition ρAC = ∑
j p jρAC/� j ,

where ρAC/� j = | jAC〉〈 jAC|. Conversely, equation (B.1) implies that the states | jAC〉 in any
decomposition ρAC = ∑

j p j| jAC〉〈 jAC| (with p j > 0) should satisfy
√

p j| jAC〉 =
∑

k

Ujk
√

qk|k̃AC〉, (B.3)

where U is an m × n matrix with orthonormal columns (
∑

j U∗
jkUjk′ = δkk′ ) and m � n.

Comparison with equation (B.2) indicates that we may identify such decomposition with that
for a local measurement at B with the operators (11), provided

√
r j| jB〉 =

∑
k

U∗
jk|k̃B〉, (B.4)

such that Ujk = √
r j〈 jB|k̃B〉. The ensuing operators �B

j = r j| jB〉〈 jB| form a valid POVM since∑
j �

B
j = ∑

j,k,k′ U∗
jkUjk′ |k̃B〉〈k̃′

B| = ∑
k |k̃B〉〈k̃B| = IB (assuming n = dB).
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