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’ INTRODUCTION

A generally accepted remedy for overcoming the lack of experi-
mental data in complex chemical phenomena is the analysis based
on quantitative structure�property/activity relationships (QSPR/
QSAR).1 Hence, there exists a permanently renewed interest
focused on the development of such kinds of predictive
techniques.2�6 The essential role of QSPR/QSAR is to suggest
mathematical models capable of estimating and predicting
relevant properties or activities of interest, especially when those
cannot be experimentally determined for some reason. These
studies rely on the basic assumption that the structure of a
compound determines entirely its properties, which can there-
fore be translated into so-called molecular descriptors.7 These
parameters are calculated through mathematical formulas ob-
tained from several theories, such as chemical graph theory,
information theory, quantum mechanics, etc.8,9

There are thousands of descriptors available in the literature,7

and one has to decide how to select those that characterize the
property/activity under consideration in the most efficient way.
Thus the mathematical problem of selecting a subset d of d
descriptors from a much larger set D of D . d ones arises.

The search for the optimal set of descriptors is normally
monitored by the minimization or maximization of a chosen
statistical parameter; for instance, searching for the model that
makes the standard deviation (S) as small as possible. In other

words, the global minimum of S(d) is sought, where d is a point
in a space ofD!/[d!(D� d)!]. As mentioned sinceD is very large,
a full search (FS) of the optimal variables is impractical because it
requires D!/[d!(D � d)!] linear regressions.

Some time ago we proposed the replacement method (RM)10,11

and later the enhanced replacement method (ERM)12 that produce
linear regression QSPR/QSAR models, presenting no relevant
difference with FS (for small-sized descriptor data sets where FS
can be calculated), using much less computational work.12 These
alternative techniques approach the minimum of S by judiciously
taking into account the relative errors of the coefficients of the least-
squaresmodel given by a set of ddescriptorsd= {X1,X2, ...,Xd}. The
ERM gives models with better estimative and predictive ability than
the forward stepwise regression procedure13 and the more elabo-
rated genetic algorithms14 (GA).15

The RM is a rapidly convergent iterative algorithm that
produces linear regression models with small S in remarkably
little computer time.16�18 However, in some cases, the RM can
get trapped in a local minimum of S. Although such local minima
provide acceptable models, as shown in all earlier applications
of the RM,16�18 there was still room for improvement, and the
ERM was developed.
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ABSTRACT: The selection of an optimal set of molecular descrip-
tors from a much greater pool of such regression variables is a crucial
step in the development of QSAR and QSPRmodels. The aim of this
work is to further improve this important selection process. For this
reason three different alternatives for the initial steps of our recently
developed enhanced replacement method (ERM) and replacement
method (RM) are proposed. These approaches had previously
proven to yield near optimal results with a much smaller number
of linear regressions than the full search. The algorithms were tested
on four different experimental data sets, formed by collections of 116,
200, 78, and 100 experimental records from different compounds and
1268, 1338, 1187, and 1306 molecular descriptors, respectively. The
comparisons showed that one of the new alternatives further
improves the ERM, which has shown to be superior to genetic algorithms for the selection of an optimal set of molecular
descriptors from amuch greater pool. The new proposed alternative also improves the simpler and the lower computational demand
algorithm RM.
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The ERM follows the same RM philosophy but exhibits less
propensity for remaining in local minima and at the same time is
less dependent on the initial set of descriptors. It has a resem-
blance with the simulated annealing (SA), which is an adaptation
of the Metropolis�Hastings algorithm, a Monte Carlo method19

that generates sample states of a thermodynamic system. The
name and the inspiration come from annealing in metallurgy, a
technique involving heating and controlled cooling of a material
to increase the size of its crystals and reduce their defects. The
heat causes the atoms to become unstuck from their initial
positions (a local minimum of the internal energy) and wander
randomly through states of higher energy; the slow cooling gives
them more chances of finding configurations with lower internal
energy than the initial one.20

ERM and RM have been compared to GA in several practical
applications21�23 and recently in a work that makes a more
extensive and reliable comparison.15 The results showed that
ERM gives better results than GA and additionally is much
simpler to implement. On the other hand the work showed
that GA was slightly superior to RM, however simplicity and
lower computational demand of RM still makes it an attractive
methodology.

The QSAR/QSPR models obtained using ERM and RM can
be analyzed, and the dependence of the activity or property on
the descriptors can be visualized. This is because these meth-
odologies do not require any descriptor transformation into
different variables that lack physical meaning. In contrast partial
least-squares (PLS) regression is a technique that combines
features from and generalizes principal component analysis
(PCA) and multiple linear regressions. In order to predict a set of
dependent variables from a set of independent variables, this
technique extracts from the descriptors a set of orthogonal factors
called latent variables which have the best predictive power.24

The first step in RM and ERM does not use the same scheme
as the rest of the algorithm; the current strategy was determined
in the practical use of the algorithms as the best alternative.
However there are other alternatives that we have recently
developed. The main target of this work is to present these
different alternatives and test them to determine if they provide a
significant improvement to the algorithms.

’METHODS

Algorithms. The following subsections briefly describe the
theory of the present state of RM and ERM. All the algorithms
were programmed in the computer system Matlab 5.0.25 Tests
were done using d = 7 for a high computational demanding
search with a reasonable number of descriptors for a potential
model in common QSPR/QSAR studies.
Comparisons of the algorithms were done performing 100

numerical tests for each of the 4 data sets (100 different random

initial sets for RM/ERM and 600 additional random sets for
RMfsm/ERMfsm/RMafs to get the same computational effort).
The results were compared in terms of the number of times that
the proposed alternative gave a smaller S than the previous
algorithm and are presented in Tables 2, 4, and 6. Additionally
the average S and regression coefficient (R) of the 100 models
found with the algorithms were contrasted in Tables 3, 5, and 7,
along with the cross-validation leave one out (loo)26 S and R. In
order to determine that the difference in the mean values of S for
the different algorithms presented a statistical significance, a
student’s t-test27 was performed. The results were offered in terms
of the probability that the results have come about through mere
random variability; lower than 0.05 probability values indicate
statistical significance.
RM. An optimal subset dm = {Xm1, Xm2, ..., Xmd} of d , D is

chosen, from a large set D = {X1, X2, ..., XD} of D descriptors
provided by some available commercial program, with minimum
standard deviation S:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðN � d� 1Þ ∑

N

i¼ 1
resi2

s
ð1Þ

where N is the number of molecules in the training set, and resi
the residual for molecule i (difference between the experimental
and predicted property). The fact that S(dn) is a distribution on a
discrete space ofD!/d!(D� d)! disordered points (dn) should be
noticed. The FS that consists of calculating S(dn) on all those
points always allows to arrive at the global minimum but as
mentioned is computationally prohibitive ifD is sufficiently large.
For example, using for d = 7 andD = 140 or higher will take more
than 1.8� 1011 regressions, which translates to more than 1 year
to complete only 1 calculation (using an AMD Athlon 64 2800+
processor) (refer to Table 1 for other examples). The RM briefly
consists of the following steps:
• An initial set of descriptors dk is selected fromD at random,

one of the descriptors is replaced, denoted asXki, with all the
remaining D � d descriptors, one by one, and the set with
the smallest value of S is kept.Whatwas done up to this point is
defined as a ‘step’.

• From this resulting set, the descriptor with the greatest
standard deviation in its coefficient is chosen (the one
changed previously is not considered) and substituted with
all the remaining D � d descriptors, one by one. This
procedure is repeated until the set remains unmodified. In
each of these cycles the descriptors replaced in previous
steps are not taken into account. Thus, the candidate dm

(i)

that comes from the so-constructed path i is obtained. The
‘paths’ are consequently defined as all possible steps to start
the algorithm from the initial set of descriptors.

• It should be noticed that if the replacement of the descriptor
with the largest error by those in the pool does not decrease
the value of S, then that descriptor is not changed.

Table 1. Number of Necessary Linear Regressions and Calculation Time To Carry Out a Full Search with D = 1187 and N = 78a

d 1 2 3 4 5 6 7

reg. number 1187 703891 2.8 � 108 8.2 � 1010 1.9 � 1013 3.8 � 1015 6.5 � 1017

minutes 0.003 1.95 7.7 � 102 2.3 � 105 5.4 � 107 1.1 � 1010 1.8 � 1012

hours 5.5 � 10�5 3.2 � 10�2 12.8 3791.6 9.0 � 105 1.8 � 108 3.0 � 1010

days 2.3 � 10�6 1.4 � 10�3 5.3 � 10�1 158.0 3.7 � 104 7.4 � 106 1.2 � 109

years 6.2 � 10�9 3.7 � 10�6 1.5 � 10�3 4.3 � 10�1 1.0 � 102 2.0 � 104 3.4 � 106

aUsing an AMD Athlon 64 2800+ processor.
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• The above process is carried out for all the possible paths
i = 1, 2, ..., d, and the point dm with the smallest standard
deviation: mini S(dm

(i)

) is kept.
ERM. The ERM is a three step combination of two algorithms:

first the RM already described above, then a modified RM (MRM),
and finally a RM is used again. MRM follows the same strategy as
RM except that in each step the descriptor with the largest error is
substituted even if that substitution is not accompanied by a smaller
value of S (the next smallest value of S is chosen). The main
difference in MRM is that it adds some sort of noise that prevents
the selected model to stay in a local minimum of S.12

’NEW ALTERNATIVES

RM and ERM First Step Modification (RMfsm and ERMfsm).
In both original algorithms the first step was taken without taking
into account the relative standard deviation (rsd) of the coefficient
of the descriptor in the model, instead all possible d paths were
followed one at a time. This is because in the practical use of the
algorithms, it was noticed that best results not always depended on
the initial rsd of the path.10�12,17,18,21�23,28�31 However there are
different alternatives that may give better results.
In the new alternatives named RMfsm and ERMfsm, if only

the path with higher rsd is chosen, then the computational cost is
reduced by d times, but at the same time, the results will be
poorer than selecting the best ones form all possible paths. In
order to obtain algorithms that have the same computational cost
and at the same time use only the initial descriptor, substitution
with higher rsd is necessary to add d� 1 starting sets of descriptors.
RM Arbitrary First Step (RMafs). When using the first step

modification, the improvement of the results may possibly come
from the fact that several different starting sets are used instead of
only one and not from the use of the path with higher rsd. For that
reason a second alternative was proposed that is identical to the
previous one with the only difference that the initial descriptor
substitution is randomly chosen. This alternative was called RMafs.
RM and ERM with a Starting Set of High S. One may think

that using a starting set of descriptors that present a very low S
may be beneficial in further lowering it down. Nevertheless this
may favor the algorithm to get trapped close to that starting point
in a local minimum S. For that reason an option is to start the
algorithms in a point with very high S far away from any such local
minimum, hence having more chances to arrive to the global

minimum. In order to do so, the point with high S was found
using two options:
• Using an RM that maximizes S
• Using a forward stepwise regression (FSR) maximizing S

’MATERIALS

Data Sets. Four different experimental data sets previously
analyzed were used to test and contrast the performance of RM,
ERM, and the new alternatives.
A fluorophilicity data set (FLUOR), consisting of 116 organic

compounds characterized by 1268 theoretical descriptors, was
used. The fluorophilicity of a each compound was quantified
through the associated partition coefficient (P) between fluorous
(CF3C6F11) and organic (CH3C6H5) layers:

ln P ¼ ln
cðCF3C6F11Þ
cðCH3C6H5Þ

� �
T ¼ 298 K ð1:2Þ

The tendency of an organic substance to dissolve in fluorous
media has continuously gained importance after the disclosure of
the fluorous biphase catalysis, as biphasic reactions take advan-
tage of the fact that organic and fluorous phases are typically
immiscible at room temperature but may homogenize at elevated
temperatures.17

A growth inhibition (GI) data set, with growth inhibition
values to the ciliated protozoan Tetrahymena pyriformis by 200
mechanistically diverse phenolic compounds and 1338 structural
descriptors. The aqueous toxicities are expressed as pIGC50 =
log(IGC50

�1), with IGC50 expressing the concentration [mmol 3L
�1]

producing a 50% growth inhibition on T. pyriformis under a static
regime.29

AGABA receptor data set (GABA) contains 78 inhibition data
for flavone derivatives and 1187 molecular descriptors. The data
set consists of the logarithm of the experimental binding affinity
constants (log10 Ki [μM]) of flavonoid ligands for the benzodia-
zepine site of the GABA(A) receptor complex in washed crude
synaptosomal membranes from a rat cerebral cortex.30

And finally a data set that consists of 100 log10 ED50 mice
antiepileptic experimental activity values for enaminones with
1306 descriptors. The activity ED50 represents the dose of the
chemical compound for which 50% of the individuals reach the
desired effect obtained by the ‘maximal electroshock seizure’
(MES) experimental method.32

Figure 1. Standard deviation vs number of steps for the ERM.
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In all cases, the structures of the compounds were preopti-
mized with the molecular mechanics force field (MM+)33

procedure included in Hyperchem version 6.03,34 and the
resulting geometries were further refined by means of the semi
empirical method parametric method 3 (PM3)35 using the
Polak�Ribiere algorithm and a gradient norm limit of 0.01
kcal/Å. The molecular descriptors were calculated using the
software Dragon 3.0,36 including parameters of all types, such as
constitutional, topological, geometrical, quantum mechanical, etc.

’RESULTS AND DISCUSSION

With the purpose of providing a graphical visualization of the
behavior of our two algorithms, Figures 1 and 2 show S as a function
of the number of steps for both ERM and RM, respectively, and for
the optimization of a seven-parameter model using the MES data
set.32 Figure 1 reveals that ERM has three sections: A first section
where RM is performed, a second section that simulates a higher
temperature or ‘a higher noise’ than the RM, although maintain-
ing the overall decreasing tendency of the S function, and finally a
third section where a second RM is used to further decrease S.
This apparent thermal agitation makes the ERM less likely to get
trapped in a local minimum.12 The behavior of the new alter-
natives is similar to the one shown in Figures 1 and 2.

In order to compare the performance of RM against the
alternative of using d initial sets following only the path with
higher rsd (RMfsm), several numerical tests were carried out.
The initial sets were chosen arbitrarily, with the precaution that
the initial set used in RM is one of the d sets used in RMfsm. The
comparisons were done for 100 different cases; 100 different
initial sets for RM and an additional 600 sets for RMfsm were
necessary in order to have the same computational cost.

Results were summarized in Tables 2 and 3, where it can be
seen that RMfsm presented better results in all data sets for the
same computational effort (number of initial sets on RMfsm = 7)
with a statistically significant difference respect to RM, hence
making it a preferable algorithm over RM. In addition, results
using six, five and four initial sets in RMfsm were added to the
tables. It can be appreciated that using six initial sets in RMfsm
results are still better for all sets, nevertheless in some cases, the
difference was not statistically significant. When using five and
four initial sets in RMfsm, the results were in some cases better
and some worse than RM, nevertheless in the cases that RM
presented better results, the difference was not statistically
significant. Hence the results of RMfsm with four and five initial

sets have no statistical difference and less computational cost
(4/7 and 5/7 times smaller, respectively) than RM, making it a
more efficient algorithm.

As mentioned, the enhancement in the performance of
RMfsm could be a consequence of the increment of the number
of initial sets that explore the solution space from different points
and not only for using the path with higher rsd. Aiming to
elucidate this, RMfsm was tested versus a similar algorithm that
uses d initial sets, the first step is chosen randomly instead of the
one with higher rsd (RMafs). The same 700 initial sets were use
to get 100 different cases; the results are presented in Tables 4
and Table 5. It can be seen that even though RMfsm presented
better results in most cases, indicating that it is preferable to
chose the path with higher rsd over a random alternative, the
difference was not verymarked and had no statistical significance.
This indicated that part of the improvement of RMfsm is because
a higher number of initial sets are used, which is equivalent to

Figure 2. Standard deviation vs number of steps for the RM.

Table 2. Number of Cases That S Is Lower Comparing
RMfsm vs RM for 100 Cases Using the Four Data Setsa

data set

results MES GI Fluor GABA total

No. of Initial Sets on RMfs = 7

RMfsm 52 57 58 58 225

RM 39 30 36 30 135

equal 9 13 6 12 40

No. of Initial Sets on RMfs = 6

RMfsm 49 53 52 56 210

RM 40 34 40 33 147

equal 11 13 8 11 43

No. of Initial Sets on RMfs = 5

RMfsm 41 49 44 49 183

RM 48 38 46 39 171

equal 11 13 10 12 46

No. of Initial Sets on RMfs = 4

RMfsm 33 43 38 41 155

RM 55 43 52 48 198

equal 12 14 10 11 47
aBold face numbers indicate better results.
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exploring the solution space in different sections. Since, even
without a statistical significance, RMfsm presented better results
than RMafs, it is recommended to use RMfsm over RMafs.

In the case of the ERM, the new alternative that uses d initial
sets (ERMfsm) in principle could result in a lower improvement,
since ERM has a lower dependence on the initial set of
descriptors. Numerical tests were carried in a similar approach,
100 cases for ERM and 600 additional cases for ERMfsm using all
four the data sets and d = 7, the results were presented in Tables 6
and 7. In the tables, the results using six, five, and four initial sets
for ERMfsm are also shown. It can be appreciated that ERMfsm
presented better results than ERM for the case of equal compu-
tational effort (seven initial sets on ERMfsm), with a statistically
significant difference with respect to ERM. This implicates that
ERMfsm is an algorithm that is even a more efficient than ERM
presetting significant additional improvements. Results were also

better for the lower computational cost cases using six and five initial
sets on ERMfsm; nevertheless in some cases, the difference was not
statistically significant. Only when the number of initial sets was
lowered to four ERM offered better results in some of the data sets,
but the difference was not significant in any of the statistical tests.
Hence ERMfsmwith four initial presented results with no statistical
difference and less computational cost (4/7 times smaller) than
ERM, making it a more efficient algorithm.

The last proposed alternative is a different approach that aims
to find an optimal starting set with S as high as possible in order to
try to avoid local Sminimum. In this case, three initial alternatives
on ERM were compared: The first alternative uses three random
initial sets of descriptors, the second uses an initial set of
maximum S found by RM, and the third one uses an initial set
of maximum S found by FSR. The results for the four previously

Table 4. Number of Cases That the S Is Lower Comparing
RMfsm vs RMafs for 100 Cases Using the Four Data Setsa

data set

results MES GI Fluor GABA total

RMfsm 239 237 246 246 968

RMafs 220 218 250 226 914

equal 240 244 203 227 914
aBold face numbers indicate better results.

Table 5. Average Standard Deviation (S), Correlation
Coefficient (R) of the Calibration, and Leave One Out (loo)
Cross Validation Using RMfsm and RMafs for 100 Cases
Using the Four Data Setsa

data set algorithm S R Sloo Rloo S t-test pr.

MES
RMfsm 0.3064 0.7397 0.3290 0.6938 0.4284

RMafs 0.3062 0.7403 0.3298 0.6917

GI
RMfsm 0.4537 0.8422 0.4758 0.8251 0.1030

RMafs 0.4554 0.8409 0.4775 0.8237

Fluor
RMfsm 0.4992 0.9802 0.5429 0.9765 0.2214

RMafs 0.5015 0.9801 0.5504 0.9759

GABA
RMfsm 0.4399 0.9133 0.43990 0.8911 0.3102

RMafs 0.4413 0.9128 0.8907 0.8907
aT-test probability that the difference between the means of S values
using RMfsm with respect to RMafs are not statistically significant. Bold
face numbers indicate better results.

Table 6. Number of Cases That the S Is Lower Comparing
ERMfs vs ERM for 100 Cases Using the Four Data Setsa

data set

results MES GI Fluor GABA total

No. of Initial Sets on ERMfs = 7

ERMfsm 53 56 51 47 207

ERM 33 25 27 30 115

equal 14 19 22 23 78

No. of Initial Sets on ERMfs = 6

ERMfsm 50 50 46 45 191

ERM 35 32 34 34 135

equal 15 18 20 21 74

No. of Initial Sets on ERMfs = 5

ERMfsm 44 46 42 40 172

ERM 40 37 37 39 153

equal 16 17 21 21 75

No. of Initial Sets on ERMfs = 4

ERMfsm 40 38 34 37 149

ERM 43 43 42 47 175

equal 17 19 24 16 76
aBold face numbers indicate better results.

Table 3. Average Standard Deviation (S), Correlation
Coefficient (R) of the Calibration, and Leave One Out (loo)
Cross Validation Using RMfsm and RM for 100 cases of the
Four Data Setsa

data

set algorithm

initial

sets S R Sloo Rloo S t-test pr.

MES
RMfsm

7 0.3031 0.7464 0.3255 0.7014 0.0106

6 0.3035 0.7456 0.3264 0.6995 0.0518

5 0.3045 0.7436 0.3275 0.6971 0.4963

4 0.3053 0.7420 0.3280 0.6958 0.1247

RM 7 0.3045 0.7436 0.3271 0.6978

GI

RMfsm

7 0.4493 0.8456 0.4710 0.8290 0.0004

6 0.4500 0.8451 0.4721 0.0027 0.0027

5 0.4509 0.8443 0.4734 0.8271 0.0342

4 0.4522 0.8434 0.4748 0.8260 0.2345

RM 7 0.4530 0.8427 0.4755 0.8254

Fluor
RMfsm

7 0.4870 0.9812 0.5293 0.9777 0.0354

6 0.4888 0.9811 0.5277 0.9779 0.1178

5 0.4927 0.9808 0.5336 0.9774 0.4289

4 0.4951 0.9806 0.5351 0.9772 0.1622

RM 7 0.4922 0.9808 0.5409 0.9766

GABA
RMfsm

7 0.4265 0.9188 0.4757 0.8982 0.0036

6 0.4276 0.9184 0.4769 0.8977 0.0102

5 0.4324 0.9164 0.4823 0.8952 0.2985

4 0.4360 0.9149 0.4861 0.8934 0.2282

RM 7 0.4339 0.9158 0.4854 0.8938
aT-test probability that the difference between the means of S values
using RMfsm with respect to RM are not statistically significant. Bold
face numbers indicate better results except for the case of S t-test pr.,
which indicates statistical significance.
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mentioned databases are presented in Table 8. The results indicate
that the best results were found using random initial sets of
descriptors. In this case, there were three different initial sets used,
indicating that the use of several sets gives better results than the
more sophisticated alternatives that maximize S as a starting point.
This is in line with the previouslymentioned results. Comparing the
results obtained using RM and FSR tomaximize S indicates that the
use of RM is preferable, probably because RM finds a higher starting
point and hence further away from any possible localminimumof S.

’CONCLUSIONS

In this paper we presented three different improving alter-
natives in the first step of the previously developed RM and ERM.

The best alternative for both cases turned out to be the using of a
set of d different initial sets of descriptors and using as a first step
replacement of the descriptor with a higher relative standard
deviation. This new alternative (ERMfsm) makes ERM an even
superior algorithm; ERM already had shown to give better results
than the more elaborated genetic algorithms (GA). The RM
alternative (RMfsm) improves the RM, which has proven to
be slightly inferior to ERM, nevertheless its simplicity and
lower computational demand of RM still make it an attractive
methodology.

In both cases the new alternatives (ERMfsm and RMfsm) are
more efficient, since they either give models better statistical
values for the same computational work or show statistically
similar results using a lower computational demand with respect
to the older algorithms.

’APENDIX A

In order to illustrate the presented alternatives we will apply
them to the fluorophilicity data set (FLUOR), which consists of
116 organic compounds characterized by 1268 theoretical de-
scriptors. We will show the first steps in obtaining an optimal
model with d = 7 topological descriptors out of the pool of D =
1268, using ERM or RM.

We arbitrarily choose the initial set d = {X1, X2, X3, X4, X5, X6,
X7}, which yields S(0) = 0.771 and has relative errors for the
regression coefficients {90.12, 38.95, 59.59, 20.36, 194.94, 84.91,
50.2}, respectively, to the previous list. Normally we would start
RM or ERM by taking the first path and hence replacing the first
descriptor X1 by the rest of the available descriptors and by
keeping the one which gives a lowest S. Of all of the 1261 (D� d)
variables, the substitution that minimizes S is (X1,X1068), yielding
S(1) = 0.689 and relative errors for the regression coefficients
{18.58, 41.89, 67.67, 15.74, 66.44, 796.66, 35.89}. We now
replace the variable with the greatest relative error X6 with all the
1261descriptors (X1068 is now out of the descriptor pool, and X1
is in it) and find that the substitution (X6, X40) yields the smallest
standard deviation S(2) = 0.634. This process continues until the
optimal set is found for path 1 and repeated in this case 7 times
starting with all the rest of available paths.

In the presented alternatives the first path will be 5 since X5 is
the descriptor with higher relative error. Once the optimal set is
found, no other path is used, instead 6 more initial arbitrary sets
are used in the same mode.

’ASSOCIATED CONTENT

bS Supporting Information. The descriptorsmatrixes of the
used data sets along with their property vector and descriptor
name string are available. This material is available free of charge
via the Internet at http://pubs.acs.org.
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Table 8. Standard Deviation (S) Found Using ERM with
Different Starting Alternativesa

initial set of descriptors

database random S max. (RM) S max. (FSR)

MES 0.2896 0.2933 0.2950

GI 0.4367 0.4421 0.4421

GABA 0.3961 0.3929 0.3929

FLUOR 0.4328 0.4328 0.4831

aBold face numbers indicate better results.

Table 7. Average Standard Deviation (S), Correlation
Coefficient (R) of the Calibration, and Leave One Out (loo)
Cross Validation Using ERMfsm and ERM for 100 Cases
Using the Four Data Setsa

data

set algorithm

initial

sets S R Sloo Rloo S t-test pr.

MES
ERMfsm

7 0.2942 0.7633 0.3182 0.7174 0.0470

6 0.2946 0.7626 0.3187 0.7163 0.0825

5 0.2950 0.7618 0.3189 0.7160 0.1358

4 0.2955 0.7610 0.3192 0.7153 0.2240

ERM 7 0.2965 0.7576 0.3202 0.7107

GI
ERMfsm

7 0.4408 0.8520 0.4620 0.8361 0.0001

6 0.4410 0.8518 0.4623 0.8359 0.0007

5 0.4413 0.8516 0.4626 0.8356 0.0061

4 0.4420 0.8511 0.4633 0.8351 0.1991

ERM 7 0.4424 0.8508 0.4635 0.8349

Fluor
ERMfsm

7 0.4411 0.9846 0.4714 0.9824 0.0001

6 0.4424 0.9845 0.4735 0.9823 0.0013

5 0.4439 0.9844 0.4752 0.9821 0.0178

4 0.4481 0.9841 0.4865 0.9811 0.4253

ERM 7 0.4477 0.9841 0.4799 0.9818

GABA
ERMfsm

7 0.3979 0.9299 0.4451 0.9116 0.0030

6 0.3989 0.9295 0.4461 0.0414 0.0414

5 0.4006 0.9288 0.4486 0.9101 0.3534

4 0.4020 0.9283 0.4502 0.9094 0.2616

ERM 7 0.4011 0.9286 0.4487 0.9100
aT-test probability that the difference between the means of S values
using ERMfsm with respect to ERM are not statistically significant. Bold
face numbers indicate better results except for the case of S t-test pr.,
which indicates statistical significance.
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