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Bioremediation is a promising technology for the treatment of polluted areas due to its minor cost; 
moreover, indigenous fungi had not been already applied to detoxify contaminated habitats. The kinetic of 
atrazine degradation by Gliocladium roseum, Mucor alternans and Pycnidiophora dispersa were assessed in 
soluble and soil sorbed herbicide with different organic matter content. Their half-saturation constants, Km, 

expressed the affinity for the substrate, being 12.5, 3.8 and 2.7 µµµµg/ml for G. roseum, M. alternans and P. 
dispersa. Moreover, Vmax, uptake rate/ biomass, assumed by the asymptotes of each fungal curves were 

43.5-41.0, 37.5-35.0 and 26.5-24.5 µµµµg Atz/min
-1

. mg for G. roseum, M. alternans and P. dispersa, respectivelly. 
The 65-75% was in soluble phase, that was preferentially degraded by fungi. Our results showed that the 
atrazine transformation were consistent with those in pure cultures, suggesting that the parameters derived 
from in-vitro studies may be useful to predict the herbicide detoxification in polluted sediments. Fungal 
kinetic allowed us to predict the atrazine degradation in natural contaminated habitats and was in relation to 
the herbicide levels especially in soil solutions. 
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Introduction 
 
The use of wild fungi for the bioreclamation of polluted 
soils had become the focus of considerable attention 
due to their high detoxification potential of a great 
variety of toxicants and the considerable cost savings, 
compared with other technologies (Coccia et al., 2009; 
Romero et al., 2010; Sannino et al., 2010). Incineration 
or burial methods had became insecure for landfills and 
highly expensive when contaminants are large; 
mechanical and chemical techniques have limited 
effectiveness and are also expensive. Bioremediation is 
the promising technology for the treatment of 
contaminated sites since it is cost-effective and would 
lead to complete mineralization (Singh, 2006; Das and 
Chandran, 2011). 
The fungal abilities to degrade diverse agricultural 
pollutants had been documented in white-rot fungi 
(Simões, 2003; Khiyami et al., 2006; Pereira et al., 
2013b; Tortella et al., 2013); moreover, yeasts had 
been also mentionated as organic toxicants degraders, 
like Pichia spp. (Abigail et al., 2013), Trichosporon spp. 
(Huang et al., 2012) and Saccharomyces cerevisiae 
(Marius et al., 2013; Gaytán et al., 2013).  
Among filamentous fungi, the kinetic degradation of 
other pesticides had been confirmed in Aspergillus 
niger (Marinho et al., 2011; Pereira et al., 2013a), 
cladosporium-like hyphomycetes (Seifert and Hughes,  

 
2007; Wang et al., 2012), Penicillium spp., Rhizopus  
stolonifer and mycelia sterilia (Martins et al., 2013; 
Ortiz-Hernández et al., 2013) and species were more 
frequently isolated in polluted soils and developed a 
significant higher biomass also in adverse habitats 
(Romero et al., 2001; Romero et al.; 2005).  
At sites where the appropriate indigenous species are 
present, remediation may consist in optimizing the 
habitat conditions and environmental factors to 
enhance the survival and proliferation of the wild 
degrading species (Valentín et al., 2007; Megharaj et 
al., 2011). 
To increase the pesticides transformation is essential 
for restoring soils, but different factors affected the 
success or failure of the bioremediation strategy, such 
as pH, texture, aeration, nutrients and moisture content. 
Although these parameters can be optimized to 
enhance the survival and proliferation of any particular 
biodegrader, successful biodetoxification was still a 
hard task (Mishra et al, 2001; Baborova et al., 2006). 
Therefore, the purpose of this study were to isolate 
filamentous fungi able to degrade the herbicide atrazine 
(Atz), to evaluate the transformation rates of wild 
species with different half-saturation constants, and to 
assess the effect of diverse organic matter content.  
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Material and methods 
 
Isolation and identification of atrazine degrading 
fungi. Filamentous soil fungi were isolated from 5 
different sites of agricultural polluted soils, near La  

 
 
 
 
Plata, Argentina. Soil characteristics (Table 1) such 
texture, pH, C-organic  (%), N-organic (%), P-organic 
(%) and PAH mg. kg soil

-1
 were determined according 

to Soil Survey Investigations (SSI, 2009). 

 
Table 1: Physical and chemical properties of the 5 agricultural soil samples used to isolate the degrading fungi (x ± 
SD)(Soil Survey Investigations, SSI, 2009). 

 
soil samples    1   2  3        4        5 
sand:clay:lime (%)    69:18:13       72:17:11            67:15:10        75:19:15         80:20:14    
 pH           6.8      6.5        6.9      6.9               6.4 
C-organic (%)           7.8±0.4      7.0±0.2       6.8±0.5     7.5±0.4    7.3±0.6 
N-organic (%)           0.38±0.01      0.50±0.02       0.48±0.02       0.58±0.01    0.60±0.03 
P-organic (%)         0.09±0.008    0.10±0.006        0.12±0.005     0.08±0.004       0.11±0.004 
mg PAH kg soil

-1
      97.5 ±2.5      120.0±7.0       148.5±5.5       133.0±8.5        150.5±9.3 

 
 
The degrading fungi were isolated by spread plate 
technique on a mineral medium (MM, (Romero et al., 
2002) with 100 ppm Atz as sole carbon source and 75 
ml.l

-1
 antibiotic solution (5.0 g streptomycin, 2.5 g 

chloramphenical, 1.0 l distilled water) to avoid bacterial 
growth (American Public Health Association, 1992). 
The samples and two control-sets, MM-sterile and 
MM-without Atz plates, by duplicate, were incubated at 
27

o
C, in dark, for 30 days. The same MM-Atz medium 

was employed to enumerate all the filamentous fungi, 
and the assays were realized with three degrading 
fungi. 
Different culture media were used to induction 
sporulation of fungal isolates to identify the sporulating 
strains; the species were identified by according to 
morphological characters of colonies culture 
morphologies, spores conidia  charachers as well as 
ascospores (Romero et. al., 2005), and by upper and 
down agar-plates color. Penicillium spp. were 
cultivated in special media at 25ºC, non sporulating 
strains were grouped as mycelia sterilia.  
Fungal dry biomass were estimated gravimetrically by 
centrifugation 10 ml of each culture suspension at 
8000 rpm for 10 min; then the supernatant was 
discarded and the pellet dried at 90ºC for 24 h and 
weighed.   
 
Degradation assays. Batch cultures with 500 ml Atz-
medium were inoculated with 5.0 mg mycelia 
suspension of the species, and periodically 
subsampled to assess the insecticide uptake kinetics. 
Fungal dry weight were prepared by homogenizing the 
cultures, centrifuged at 15000 x g for 15 min, dried at 
60ºC till constant weight. Sterile aliquots of two soil 
types, with different organic matter content,  1.6 and 
14.0% (Metting, 1995), were adjusted to field capacity 

with MM amended with 0, 1, 10 or 100 µg Atz/g soil; 
then, 500 mg Atz-solid medium were inoculated with 
mycelial extracts and incubated at 28ºC for 48h on a 
rotary shaker at 120 rpm.  

Concentrations of soluble Atz were determined by 
analyzing samples of pore water pressed from soils, 
and levels of sorbed insecticide were assessed by 
ethanol solvent extraction and analyzed by HPLC 
(Romero et al., 2005). Extraction efficiencies were 
89% and 75% for low and high-organic matter soils 
and the data were used to adjust the analytical results.  
 
Data analysis: the relative frequency of the fungal 
growth in Atz-plate medium was calculated as the 
number of species from each soil sample divided by 
the total number of sediment samples (30), and were 
classified as very frequent (>20%), frequent (5-20%) or 
infrequent (<5%, Tan and Leong (1989). The Atz-

percent in soil solution was calculated by: [(µg Atz/ml 

pure water) x (ml of water per gram of wet soil/µg Atz 
per gram of wet soil)] x 100. All values were the 
average of 2 assays for each fungi culture corrected by 
control flasks (sterile soils without inoculants). 
 
Results  
 
All the filamentous fungi that growth in the Atz-agar 
plates with the herbicide as sole C source were 
enumerated, but the degradation assays were realized 
with degrading fungi selected on the basis of their 
prevailing growth on subsequent plating in Atz 
presence, with significantly uptake activity and 
frequent in the polluted soil samples. Aspergillus 
fumigatus (A.f.), Aspergillus niger (A.n.), Cladosporium 
cladosporioides (C.c.), Cladosporium herbarum (C.h.), 
Fusarium oxysporum (F.o.), Gliocladium roseum (G.r.), 
Mucor alternans (M.a.), Penicillium chrysogenum 
(P.c.), Penicillium thomii (P.t.), Penicillium verrucosum 
(P.v.), Pycnidiophora dispersa (P.d.), Trichoderma 
harzianum (T.h.) and mycelia sterilia (I) and (II) grew in 
Atz-agar plates. C. herbarum, F. oxysporum and 
mycelia sterilia (I) were infrequent and all the others 
frequents species (Fig. 1). 
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  Figure 1: Relative frequency (%) of the Atz-degrading fungali species  
(Aspergillus fumigatus (A.f.), Aspergillus niger (A.n.), Cladosporium cladosporioides (C.c.), Cladosporium herbarum 
(C.h.), Fusarium oxysporum (F.o.), Gliocladium roseum (G.r.), Mucor alternans (M.a.), Penicillium chrysogenum (P.c.), 
Penicillium thomii (P.t.), Penicillium verrucosum (P.v.), Pycnidiophora dispersa (P.d.), Trichoderma harzianum (T.h.) 
and mycelia sterilia (I) and (II)) 
 
Gliocladium roseum (G.r.), Mucor alternans (M.a.) and 
Pycnidiophora dispersa (P.d.) were showed a 
significant growth with Atz as C source, and selected 
for the kinetics evaluation of the herbicide. The 
hyperbolic model was in accordance with the first-orden 
uptake kinetic, being the relationship that better fitted to 
the filamentous fungi cultures in Atz presence. Their 
half-saturation constants, Km, expressed the affinity of 

the fungi for the substrate uptake, being the Km values 

12.5 µg/ml for G. roseum, 3.8 µg/ml for M. alternans 

and 2.7 µg/ml for P. dispersa (Fig. 2). Km, the intercept 
value (ug/ml) of the hyperbolic curves when Y = Y0, 
were calculated from the X-eje or Atz-level (ug/ml) 
when Y = 0. 

 
 Maximum uptake rate (Vmax) 

 ug Atz/min.mg  50                                                                                   .     

 

       40                                                                                          V max G.r 

                                                                                                               V max M.a. 

       30                                                                                   

                                                                                                                     

                 20                                                                                         V max P.d. 

                                                

    Km P.d.  2.7 ug/ml      10                Km G.r.  12.5 ug/ml 

                                              Km M.a. 3.8 ug/ml                    

                    0  0             20            40           60             80        ug / ml 

                                   Atz concentrations 

Figure 2: Kinetic curve obtained with the fungi cultures at different Atz levels 
(Gliocladium roseum (G.r.), Mucor alternans (M.a.) and Pycnidiophora dispersa (P.d.)) 

 

The low-substrate-concentration-adapted species had 
been thought of having small Michaelis constants; 
moreover, to understand oligotrophic strategy of fungal 
response to substrates in low-environmental-levels, like 
most of the pollutants, the specific affinity of the strains 
to each toxicant was important. The reciprocal 
relationship between affinity and Michaelis constant 
and the traditional idea that good oligotrophs showed 
small Km were supported and expressed in the plot of 

logarithmic form of Km and specific affinity, a
o

A. So, to 
understand the fungal adaptation to low-level of 
pollutants and oligotrophy the relationship Vmax = a

o
A   

Km (equation 1) were applied, where a
o
A was the 

specific affinity of each fungi species for the xenobiotic, 
and Vmax the maximum uptake rate of the contaminant 
by the fungi. This equation was converted to logarithmic 
form, and our data and available results from the 
literature were computed and plotted (Fig. 3). 
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Figure 3: Plot of log a

o
A = log Vmax - log Km (equation 2). Shown data for 3-methylcatechol (point 1), asparagine (point 2), 

fructose (point 3), methylphenol (point 4), p-chlorophenol (point 5), glucose (point 6), glycerol-3-phosphate (point 8) and toluene 
(point 9) from reference (Button, 1985); point 7, 10 and 11 from this paper. 
 
 
The Atz metabolic rates were assessed by Vmax, 
maximum uptake (ug/min. mg), that were the 
asymptotes of the equation (1) for each fungal curves. 

The obtained rates were 43.5-41.0 µg Atz/min
-1

 mg for 

G. roseum, 37.5-35.0 µg Atz/min
-1

.mg for M. alternans 

and  24.5-26.5 µg Atz/min
-1

. mg for P. dispersa.  
The relationship of the Atz-uptake with sampled sites 
properties, like texture, pH, C-organic, N-organic, P-
organic and aromatic hydrocarbon concentratrions as 
index of organic pollutants, were not significant (P > 
0.05). By other hand, Atz transformation significantly 
related to the Atz-sorbed to the soil particles and to the 
levels that remained in solution. 
The Atz degradation rates in low organic matter soil, 

1.6%, at field capacity with either G. roseum, M. 
alternans or P. dispersa were monitored, being 25-35%  
of Atz- sorbed to soil particles at the herbicide levels of 

10 and 80 µg Atz/g soil, respectively, being the 
remainder herbicide in soil solution, 75-65%.  
Different rates for soluble and sorbed herbicide were 
observed. G. roseum degradation rates were 100-fold 
and 60-fold higher than the M. alternans and P. 
dispersa ones, being the pore-water Atz metabolized at 
the first 20, 33 and 48 h, respectively (Fig. 4). 

Partitioning between soluble and sorbed phases at 1 µg 
Atz/g soil was 0.4 to 0.6, respectively, and pore-water 
Atz were degraded quickly and to a greater extent by 
G. roseum than by the others fungi.  
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Figure 4: Atz degradation (Atz percentage, 100 ug Atz / g soil) during the assays [(a) G. roseum, (b) M. alternans, (c) P. 
dispersa)], at field capacity in low organic matter sediments. 

 
In high-organic matter soil, 14%, and field capacity 

amended with 100 µg Atz/g soil, the fraction sorbed to 
particles was 75% and the pore water concentrations 

was ca. 30µg/ml. Soluble and sorbed Atz were 
simultaneously metabolized in G. roseum presence; 
70h after inoculation, pore water-Atz was below the 
detection limit while 30% of the sorbed herbicide was 
still not uptaken. In the M. alternans and P. dispersa 
assays the 43 and 50% of the sorbed Atz remainded 
not degraded, and pore-water herbicide decreased to 
the detection limit just at 120 and 136 h incubation time.  
There was negligible Atz degradation in low-organic-
matter soil during the incubation without inoculum, 
control flasks, although the indigenous fungi was in the 
order of 0.8 mg (dry weight)/g soil; nevertheless, in 
high-organic matter soil with autochthonous fungi 
biomass ca. 1.2 mg/g, a slightly transformation was 
observed. Although, the ability of indigenous soil strains 
to transform in-situ a wide variety of xenobiotics had 
been documented, in this case a limit capacity was 
obtained; thus, providing that introduced species with 
higher degradation abilities need to be assessed. 
Results were significantly different in G. roseum than in 
M. alternans and P. dispersa experiments, with a quick 

10-fold loss in Atz levels within the first 2 days followed 
by a lower decreased rate.  
Even when metabolically and physiologically competent 
fungi were available, either indigenous or added, 
detoxification dependented on acceptable rates and 
extents of the biodegradation. The activities were 
function of the microbial constants in conjunction with 
toxicant bioavailability, according to the Michaelis-
Menten model; thus, the half saturation constant (Km) 
and the chemical availability defined the degradation 
rates.  
 
Discussion 
 
The Km obtained in this study with fungi were similar 
and as effective as those observed with Atz-degrading 
bacteria taking into account that bacteria was the first 
and best microorganisms used in bioremediation 
technologies (Garcia-Valcarcel et al., 1998; Grimm et 
al., 2004). Similar adaptation to herbicides was found in 
the yeast Saccharomyces cerevisiae, but mediated by 
genes (Simões,  2003; Gaytán et al., 2013) and some 
filamentous fungi, like Cladosporium spp., Rhizopus 
spp. and Penicillium spp. (Morgana et al., 2012).  
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Therefore, soil fungi, yeasts and filamentous species 
were as efficient as bacteria to remove toxicants from 
polluted habitats (Soares et al., 2011; Jecu et al., 
2013). Furthermore, the soil properties, such us 
percentages of sand, silt, clay, cation exchange 
capacities, organic carbon and nitrogen contents 
affected the bioavailability of the organic components 
presented in soils (Radosevich et al., 1997; Jenks et 
al.,1998). In our case, high organic matter increased 
the herbicide sorbed to the soil particles, that was the 
Atz fraction with minor fungal degradation activity, in 
accordance with other researches (Park et al., 2003; 
Megharaj et al., 2011).  
In conclusion, these data indicated that fungal kinetics 
were a function of the herbicide concentrations 
especially in soil solutions. Whereas the Km values of 
the species were not comparable, the V values, uptake 
rate per biomass, were rather similar. The results 
showed that the fungal degradation in soil solution were 
consistent with those in pure cultures, suggesting that 
the kinetic constants derived from culture studies may 
be useful to predict the pollutant transformation in soils. 
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