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Abstract

In this paper we model the neutralization of an acid solution in
which the hydrogen ions are transported according to Cattaneo’s dif-
fusion. The latter is a modification of classical Fickian diffusion in
which the flux adjusts to the gradient with a positive relaxation time.
Accordingly the evolution of the ions concentration is governed by the
hyperbolic telegraph equation instead of the classical heat equation.
We focus on the specific case of a marble slab reacting with a sulphuric
acid solution and we consider a one-dimensional geometry. We show
that the problem is multi-scale in time, with a reaction time scale that
is larger than the diffusive time scale, so that the governing equation
is reduced to the one-dimensional wave equation. The mathematical
problem turns out to be a hyperbolic free boundary problem where the
consumption of the slab is described by a nonlinear differential equa-
tion. Global well posedness is proved and some numerical simulations
are provided.

Keywords: neutralization, reaction kinetics, multi-scale modeling, free
boundary problem, anomalous diffusion
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1 Introduction

When sulphide minerals present in rocks are exposed to air and water, sul-
phuric acid is produced as a consequence of a chemical reaction. The acidic
water flow is known as Acid Rock Drainage (ARD). Though this is a natural
process, it is highly enhanced by mining activities and it is then known as
Acid Mine Drainage (AMD). AMD can cause serious damage in biodiversity
and human health, especially after a mine plant has ended its activity. So
treatment of acid water becomes a challenge in order to avoid long term envi-
ronmental damage. A survey on remediation options for AMD can be found
in [10]. The main techniques are based on chemical reactions neutralizing
the acid water. A typical approach is the so-called limestone neutralization,
which consists in the addition of a calcium carbonate base to the acidic water
in order to reduce the acidity of the solution. In the last few years several
models have been developed to describe the evolution of this sort of neu-
tralizing systems [4–7]. Although these models were proposed taking into
account different aspects of the diffusive-reactive process, all of them are
based on Fick’s law (classical diffusion). When using Fick’s law, it is tacitly
assumed that local disturbances are spread infinitely fast throughout the so-
lution. This is a clear idealization and it is physically unrealistic, giving rise
to the pathological feature of infinitely fast spreading of perturbations in the
diffusion equation. For this reason, Cattaneo and others have proposed to
modify Fick’s law in a way such that the flux may adjust to the gradient
with a small but nonzero relaxation time, see [1].

In this article we study the evolution of a neutralization process for an acid
solution in which transport is driven by Cattaneo’s law (anomalous diffusion).
Following [7], we consider the reaction occurring between a sulphuric acid
solution (H2SO4) and a slab of marble, which is mainly formed by calcium
carbonate (CaCO3):

CaCO3 + 2H+ + SO2−
4 
 Ca2+ + SO2−

4 + H2O + CO2. (1)

The H2SO4 dissolved in the aqueous solution is dissociated in ions SO2−
4

and 2H+, where the concentration of the latter is commonly measured through
the so-called pH. The acid reacts with CaCO3 liberating Ca2+ ions in the
solution. As the reaction takes place, the CaCO3 is consumed and the con-
centration of H+ ions decreases (the pH is hence raised). When the pH
reaches a value around 7 the solution is said to be neutral and the reaction
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ceases. The reaction between H2SO4 and CaCO3 takes place on the con-
tact surface that separates the solid and the solution. From (1) we see that
the stoichiometric ratio in the reaction between H+ ions and CaCO3 is 2:1,
which means that two moles of H+ are neutralized by one mole of CaCO3.
Moreover the reaction is of first order, so that the exponents of the concen-
trations appearing in the rate equation are equal to 1. When other reactants
and/or acid solutions are used, different ratios and different reaction orders
may occur. Here, differently from [7], we do not consider the phenomenon of
“armoring”, that consists in the formation of a thin coat of material on the
reacting surface which partially or completely inhibits the reaction.

In this paper we model a system consisting in a rectangular container
filled with sulphuric acid where a slab of marble has been placed on the
bottom. This slab is assumed to occupy less than the half of the container
height at the beginning. We also assume that the container is large enough,
so that the system can be described in a one dimensional geometry 1 [0, L∗]
where the solid occupies a region [0, s∗], the liquid fills the region [s∗, L∗],
with s∗ evolving with time.

We study the system for the evolution of both the H+ concentration
and the reacting surface s∗. We assume that no acid is added or removed
during the process and we notice that our system is physically consistent
only if and ṡ∗ < 0 (the solid slab can only be consumed). The transport
of H+ in the solution is governed by Cattaneo’s diffusion and the nature
of the mathematical problem is therefore hyperbolic. The system is multi-
scale in time with three characteristic times: i) the characteristic diffusive
time; ii) the relaxation time; iii) the reaction time. Depending on the order
of magnitude of these times different problems may arise. In particular,
following [2] we show that the reaction scale is larger than the diffusion time
scale, so that the consumption of the marble slab is slower than the diffusive
transport of H+ ions. Assuming that the relaxation time is sufficiently large
we prove that the mathematical problem can be simplified to one in which
the governing equation is the one dimensional wave equation. Following [3]
we determine representation formulas for the solution that allow to write
the evolution of the free boundary s∗ as an implicit nonlinear differential
equation. Global existence and uniqueness are proved. Finally numerical
simulations that illustrate the behavior of the solution s∗ and the dependence
on the physical parameters of the problem are provided.

1Throughout the paper the starred quantities denote dimensional quantities.
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2 Derivation of the model

In this Section we derive the general model for the neutralization process
described above. We consider a one-dimensional domain [0, L∗] where [0, s∗]
is the region occupied by the reacting solid (CaCO3), [s∗, L∗] is the region
occupied by the acid solution (2H+ + SO2−

4 ) and s∗ = s∗(t∗) is the free
surface separating them. The H+ ions concentration in the solution will be
denoted with c∗ = c∗(x∗, t∗) ([c∗]=mol/length3).

Remark 2.1. The quantity c∗ provides a measure of the acidity of the solu-
tion. Alternatively one can use the so-called pH expressed as

pH = − log10

(
c∗

1 mol/lt

)
.

The solution is said to be neutral when pH = 7 so that, in terms of c∗, we
have that the solution is neutral when c∗ = 10−7 mol/lt.

During the neutralization process the H+ ions diffuse in the liquid region
[s∗, L∗]. We assume that diffusion is governed by the Cattaneo’s law

J∗ + τ ∗
∂J∗

∂t∗
= −D∗ ∂c

∗

∂x∗
, (2)

where J∗ is the ions flux, τ ∗ > 0 is a relaxation time and D∗ is the diffusivity
coefficient ([D∗]=length2/time), which is assumed to be constant.

Remark 2.2. When τ ∗ → 0+, the process becomes purely diffusive and (2)
reduces to Fick’s law

J∗ = −D∗ ∂c
∗

∂x∗
.

In Cattaneo’s law the flux is allowed to adjust to the gradient of concentration
according to a relaxation time τ ∗. In fact, it can be seen as an approximation
of the constitutive equation

J∗(x∗, t∗ + τ ∗) = −D∗ ∂c
∗

∂x∗
(x∗, t∗). (3)

Moreover the flux is mainly influenced by what has happened close in time to
present. In effect, the flux J∗ can be explicitly written as

J∗(x∗, t∗) = −D∗
∫ t∗

−∞
K∗(t∗ − t̃∗) ∂c

∗

∂x∗
(x∗, t̃∗)dt̃∗, (4)
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where K∗ is the short-tail kernel given by

K∗(t∗) =
1

τ ∗
exp

(
− t
∗

τ ∗

)
,

which rapidly decays to zero. When other types of kernels are considered, the
system may express a different memory behavior, see for example [8], where
long-tail kernels are used in the context of fractional diffusion, or [9] where
more general kernels are considered.

It is easy to show that the continuity equation

∂c∗

∂t∗
= −∂J

∗

∂x∗
, (5)

together with Cattaneo’s law (2), provides the following telegraph equation
for c∗:

∂c∗

∂t∗
+ τ ∗

∂2c∗

∂t∗2
= D∗

∂2c∗

∂x∗2
. (6)

Equation (6) is the governing equation for the evolution of the ions concen-
tration in the solution. Differently from the case of pure Fickian diffusion in
which the governing equation is parabolic, here the nature of the problem is
hyperbolic.

To describe the consumption of the solid part [0, s∗] we consider the rate
equation that governs the chemical reaction occurring on the free boundary
s∗. Following [4, 7] we write

v∗ = −k∗(c∗ − c∗0)+, (7)

where v∗ represents the rate of neutralized H+ moles per unit surface, k∗ is
the reaction rate and c∗0 is the concentration of neutralization 2. The velocity
of the reaction is therefore proportional to the excess of ions on the reacting
surface. The positive part is taken to prevent the reaction from occurring
when the concentration is above the neutralization limit.

Assuming that the “molar” density 3 of CaCO3 is constant we write

d

dt∗

(∫ s∗

0

ρ∗dx∗
)

= v∗,

2The dimensions of the quantities in (7) are: [v∗]=mol/(length2 · time);
[k∗]=length/time; [c∗0]=mol/length3.

3To avoid dimensional inconsistencies we assume that the marble density ρ∗ is the
molar density, i.e. classical density divided by the molecular weigth.
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from which follows that

ρ∗ṡ∗ = −k∗(c∗ − c∗0)+. (8)

This condition on the free boundary s∗ implies that ṡ∗ must be negative while
c∗ > c∗0. This is in agreement with the fact that CaCO3 is consumed when
the H+ concentration is greater than c∗0. Recalling that the stoichiometric
ratio is 2:1, the overall mass balance is given by

2
d

dt∗

(∫ L∗

s∗
c∗dx∗

)
=

d

dt∗

(∫ s∗

0

ρ∗dx∗
)
,

yielding

2

∫ L∗

s∗

∂c∗

∂t∗
dx∗ − 2c∗(s∗, t∗)ṡ∗ = ρ∗ṡ∗.

Exploiting (5) we find

2
[
J∗(s∗, t∗)− J∗(L∗, t∗)

]
= ṡ∗ (ρ∗ + 2c∗(s∗, t∗)) .

Since H+ ions are not added or removed at x∗ = L∗, it is reasonable to impose
the boundary condition J∗(L∗, t∗) = 0 so that

2J∗(s∗, t∗) = ṡ∗ (ρ∗ + 2c∗(s∗, t∗)) . (9)

Differentiating the last expression with respect to time we find

2ṡ∗
∂J∗

∂x∗
(s∗, t∗) + 2

∂J∗

∂t∗
(s∗, t∗) = 2ṡ∗

(
ṡ∗
∂c∗

∂x∗
(s∗, t∗) +

∂c∗

∂t∗
(s∗, t∗)

)
+

+s̈∗ (ρ∗ + 2c∗(s∗, t∗)) .

Hence, recalling (2), (5), we get

−2ṡ∗
∂c∗

∂t∗
(s∗, t∗)− 2

τ ∗

(
D∗

∂c∗

∂x∗
(s∗, t∗) + J∗(s∗, t∗)

)
=

2ṡ∗
(
ṡ∗
∂c∗

∂x∗
(s∗, t∗) +

∂c∗

∂t∗
(s∗, t∗)

)
+ s̈∗ (ρ∗ + 2c∗(s∗, t∗)) .

Finally, taking into account (9) we find

−2D∗
∂c∗

∂x∗
(s∗, t∗) = ṡ∗ (ρ∗ + 2c∗(s∗, t∗)) +
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+ τ ∗
[
s̈∗ (ρ∗ + 2c∗(s∗, t∗)) + 2ṡ∗2

∂c∗

∂x∗
(s∗, t∗) + 4ṡ∗

∂c∗

∂t∗
(s∗, t∗)

]
. (10)

The mathematical formulation of our model is therefore a hyperbolic free
boundary problem consisting of the telegraph equation (6) on [s∗, L∗], and
the conditions (8), (10) to which we must add the initial data

c∗(x∗, 0) = c∗in0
(x∗),

∂c∗

∂t∗
(x∗, 0) = c∗in1

(x∗) s∗0 ≤ x∗ ≤ L∗, (11)

s∗(0) = s∗0, ṡ∗(0) = ṡ∗0, (12)

where 0 < s∗0 ≤ L∗/2, and the zero-flux boundary condition:

∂c∗

∂x∗
(L∗, t∗) = 0 0 < t∗. (13)

Such a problem will be referred to as (P∗c).

3 The non-dimensional formulation

To investigate the multi-scale nature of problem (P∗c) it is convenient to
rewrite it in a non-dimensional form. For this purpose, we introduce the
characteristic times

t∗D =
L∗2

D∗
, t∗R =

L∗

k∗
,

representing the diffusion characteristic time and the reaction characteris-
tic time, respectively. We also introduce the reference concentration c∗A =
max[s∗0,L

∗] c
∗
in0

(x∗) and the non-dimensional parameters

λ =
ρ∗

2c∗A
, δ =

c∗0
c∗A
.

Then we rescale the main variables as follows

c =
c∗

c∗A
, t =

t∗

t∗ref
, x =

x∗

L∗
, s =

s∗

L∗
,

where t∗ref is a reference time to be selected. The non-dimensional version of
problem (P∗c) becomes
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(Pc) :



(
t∗D
t∗ref

)
ct +

(
t∗Dτ

∗

t∗ref
2

)
ctt = cxx s < x < 1, 0 < t

c(x, 0) = cin0(x) s0 < x < 1

ct(x, 0) = cin1(x) s0 < x < 1

cx(1, t) = 0 0 < t

2λṡ = −
(
t∗ref
t∗R

)
(c(s, t)− δ)+ 0 < t

−cx(s, t) =

(
t∗D
t∗ref

)
ṡ (c(s, t) + λ) +

+

(
t∗Dτ

∗

t∗ref
2

)
(s̈ (c(s, t) + λ) + ṡ2cx(s, t) + 2ṡct(s, t)) 0 < t

s(0) = s0

ṡ(0) = ṡ0,
(14)

where

cin0 =
c∗in0

c∗A
, cin1 =

t∗ref
c∗A

c∗in1
, s0 =

s∗0
L∗
, ṡ0 =

t∗ref
L∗

ṡ∗0,

and 0 < s0 ≤ 1/2.
We notice that there are three characteristic times in problem (Pc). One

given by the characteristic time of diffusion t∗D, another given by the charac-
teristic time of the chemical reaction t∗R, and one more given by the relaxation
time τ ∗.

Remark 3.1. When τ ∗ → 0+ equation (14)1 becomes the diffusion equation
and condition (14)6 reduce to that formulated in [7], where the pure diffusive
case was studied.
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When considering CaCO3 in an acid solution H2SO4, typical values are:

ρ∗ = 2.7 · 10−2 mol/lt, c∗0 ∼ 10−7 mol/lt, c∗A = 10−2 mol/lt.

Hence
λ ' 1.3, δ ∼ 10−5.

4 Fast diffusion and slow relaxation

Following [2, 11] we consider the typical values

D∗ = 5 · 10−5 cm2/s, L∗ = 10 cm, k∗ = 10−7 cm/s,

so that
t∗D
t∗R

= 0.02 = O(10−2).

The above means that the diffusion is faster than reaction. Therefore, assum-
ing that relaxation is very slow and choosing the reaction time as reference
time t∗ref = t∗R, we can write

t∗D
t∗R
� 1,

t∗Dτ
∗

t∗R
2 = O(1), (15)

which clearly implies
t∗D � t∗R � τ ∗.

In conclusion we have that the diffusive scale is faster than the reaction scale
which, in turn, is faster than the relaxation scale. When (15) holds, the terms
containing (t∗D/t

∗
R) in (14)1, (14)6 can be safely neglected and the problem
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(Pc) reduces to

(P̃c) :



ctt = α2 cxx s < x < 1, 0 < t

c(x, 0) = cin0(x) s0 < x < 1

ct(x, 0) = cin1(x) s0 < x < 1

cx(1, t) = 0 0 < t

2λṡ = − (c(s, t)− δ)+ 0 < t

−α2 cx(s, t) = s̈ (c(s, t) + λ) + ṡ2cx(s, t) + 2ṡct(s, t) 0 < t

s(0) = s0

ṡ(0) = ṡ0,
(16)

where we have set

α2 =
t∗R

2

t∗Dτ
∗ = O(1).

In this peculiar situation the governing equation is the one-dimensional
wave equation, whose solution can be expressed by means of D’Alembert
formulas.

The remainder of this Section is devoted to proving the existence and
uniqueness of a solution (c, s) to problem (P̃c) according to the following
definition:

Definition 4.1. The pair (c, s) is said to be a classical solution to problem

(P̃c) in the time interval [0, T ] if:

i) c, s are defined on DT and [0, T ] respectively;

ii) c ∈ C2,2(DT ) and s ∈ C2[0, T ];

iii) c, s satisfy (P̃c);

iv) −α < ṡ < 0 (the solid can only be consumed by the reaction);
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where DT is the liquid domain:

DT =
{

(x, t) ∈ R2 : s(t) < x < 1, 0 < t < T
}
.

Remark 4.1. From the Definition 4.1 it follows that equation (16)5 must
hold up to time t = 0, so that

ṡ0 = − 1

2λ
(cin0(s0)− δ)+

is a necessary condition that must be fulfilled by any classical solution.

4.1 Representation formulas

Suppose for a moment that problem (16) has a unique solution (c, s) in the
sense of Definition 4.1 on some time interval [0, T ]. An explicit expression for

c in terms of s and of the data of problem (P̃c) can be determined exploiting
D’Alembert fundamental formula. Following [4] we see that it is convenient

to transform the problem (P̃c) into a Stefan-like problem, in order to make the
free boundary conditions more manageable. Considering the transformation

u(x, t) = λ(x− s(t)) +

∫ x

s

c(η, t)dη, (17)

the problem for the new variable u becomes

(P̃u) :



utt = α2 uxx s < x < 1, 0 < t

u(x, 0) = uin0(x) s0 < x < 1

ut(x, 0) = uin1(x) s0 < x < 1

u(1, t) = µ(t) 0 < t

u(s, t) = 0 0 < t

2λṡ = − (ux(s, t)− λ− δ)+ 0 < t

s(0) = s0,

(18)

11



where uin0 , uin1 , µ are the functions given by

uin0(x) = λ(x− s0) +

∫ x

s0

cin0(η)dη,

uin1(x) = −ṡ0(λ+ cin0(s0)) +

∫ x

s0

cin1(η)dη,

µ(t) = uin1(1)t+ uin0(1),

(19)

and ṡ0 is defined by

ṡ0 = − 1

2λ

(
u′in0

(s0)− λ− δ
)
+
. (20)

Once (P̃u) is solved we may get the solution of (P̃c) through (17). The main

advantage of (P̃u) lies in the free boundary conditions.

Remark 4.2. The function µ(t) can be obtained in the following way. Ob-
serve that uxx = cx = α−2utt everywhere in DT . As a consequence cx(1, t) =
α−2utt(1, t) = 0 and ut(1, t) = const. Imposing the compatibility conditions
on x = 1 we find that ut(1, t) = ut(1, 0) = uin1(1) and, integrating in t, we
finally find

u(1, t) = uin1(1)t+ uin0(1) = µ(t).

Let (u, s) be the classical solution of (P̃u) related to (c, s) according to
(17). In order to use D’Alembert representation formulas for u, we split the
liquid domain DT as (Fig. 1)

D
(I)
T = {(x, t) ∈ DT : s0 + αt < x < 1, 0 < t < T} ,

D
(II)
T = {(x, t) ∈ DT : s(t) < x < s0 + αt, 0 < t < T} .

Recalling that s0 ≤ 1/2, the characteristics curves emerging from (s0, 0) meet
the external boundaries x = 0, x = 1 in

Tl =
s0
α
, Tr =

1− s0
α

,

respectively, with Tl ≤ Tr. Looking at Fig. 1 we notice that it is natural to
seek a solution in the time interval [0, T ] with

0 < T ≤ Tr =
1− s0
α

, (21)
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Figure 1: Schematic representation of the liquid domain DT split into D
(I)
T

and D
(II)
T .

and to consider a suitable extension of data to the interval [−(1−s0), 2−s0].
Thus, we will set

Uj(x) =


uinj

(x) if s0 ≤ x ≤ 1

ũj(x) if 1 < x ≤ 2− s0

ûj(x) if −(1− s0) ≤ x < s0

j = 0, 1,

where ũj, ûj are functions that must be determined. Then D’Alembert for-
mula states that

u(x, t) =
U0(x+ αt) + U0(x− αt)

2
+

1

2α

x+αt∫
x−αt

U1(η)dη. (22)

Representation formula in D
(I)
T

In this first case, data uin0 , uin1 only need to be extended to the right of
x = 1 (Fig. 2). Then only the functions ũj must be determined. We will
define them in a way such that the boundary condition (18)4 holds.

13



On one hand, if x+ αt ≤ 1 formula (22) reduces to

u(x, t) =
uin0(x+ αt) + uin0(x− αt)

2
+

1

2α

x+αt∫
x−αt

uin1(η)dη. (23)

On the other hand, when x+ αt > 1, (22) can be written as

u(x, t) =
ũ0(x+ αt) + uin0(x− αt)

2
+

1

2α

x+αt∫
x−αt

U1(η)dη. (24)

Let (1, t̃) be the point in which the characteristic curve joining the points
(x, t), (x + αt, 0) meets the line x = 1 (Fig. 2). From condition (18)4 and
formula (24), we obtain

µ(t̃) =
ũ0(1 + αt̃) + uin0(1− αt̃)

2
+

1

2α

1+αt̃∫
1−αt̃

U1(η)dη. (25)

Noting that x+ αt = 1 + αt̃, it follows that

t̃ =
x+ αt− 1

α
.

Combining this with (25) we find

ũ0(x+ αt)

2
= µ

(
x+ αt− 1

α

)
− uin0(2− x− αt)

2
− 1

2α

x+αt∫
2−x−αt

U1(η)dη. (26)

Replacing (26) in (22), we obtain

u(x, t) = µ

(
x+ αt− 1

α

)
+
uin0(x− αt)− uin0(2− x− αt)

2
+

1

2α

2−x−αt∫
x−αt

uin1(η)dη.

Therefore, the representation formula for u in D
(I)
T is

u(x, t) = w(x, t) +
u0(x− αt) + u0(x+ αt)

2
+

1

2α

x+αt∫
x−αt

u1(η)dη, (27)
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Figure 2: Characteristics lines for (x, t) ∈ D(I)
T .

where we have set

w(x, t) =

 µ

(
x+ αt− 1

α

)
if x+ αt ≥ 1

0 if x+ αt < 1,
(28)

and

uj(x) =


uinj

(x) if s0 ≤ x ≤ 1

−uinj
(2− x) if 1 < x ≤ 2− s0

j = 0, 1. (29)

Remark 4.3. Notice that, even though the functions w, u0, u1 may be dis-
continuous at x = 1 (this is true unless uinj

(1) = 0), the function u(x, t) is
continuous across the characteristic x+αt = 1. To prove this, it is sufficient
to check from (27) that

lim
x+αt→1+

u(x, t) = lim
x+αt→1−

u(x, t).

Representation formula in D
(II)
T

In this second case, data uin0 , uin1 need to be extended to the right of x = 1
as well as to the left of x = s0 (Fig. 3). Therefore, functions ûj will be also
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involved in D’Alembert formula. Similarly as before, we will define them in
a consistent way with the condition (18)5.

When x+ αt ≤ 1, formula (22) becomes

u(x, t) =
uin0(x+ αt) + û0(x− αt)

2
+

1

2α

x+αt∫
x−αt

U1(η)dη. (30)

Let
(
s(t̂), t̂

)
be the point in which the characteristic line joining (x, t), (x−

αt, 0) meets the free boundary s (Fig. 3). This point is uniquely defined
because |ṡ| < α. Moreover t̂ = t̂(x, t) is the unique solution to the equation

ŝ− αt̂ = x− αt, (31)

where we have set ŝ = s(t̂).
From condition (18)5 and formula (30), we find

uin0(ŝ+ αt̂) + û0(ŝ− αt̂)
2

+
1

2α

ŝ+αt̂∫
ŝ−αt̂

U1(η)dη = 0.

Combining this with (31), we obtain

û0(x− αt)
2

= −uin0(ŝ+ αt̂)

2
− 1

2α

ŝ+αt̂∫
x−αt

U1(η)dη. (32)

Replacing (32) in (30), we find

u(x, t) =
uin0(x+ αt)− uin0(ŝ+ αt̂)

2
+

1

2α

x+αt∫
ŝ+αt̂

uin1(η)dη. (33)

Finally, when x+ αt > 1 formula (22) becomes

u(x, t) =
û0(x− αt) + ũ0(x+ αt)

2
+

1

2α

x+αt∫
x−αt

U1(η)dη. (34)
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Figure 3: Characteristics lines for (x, t) ∈ D(II)
T .

Replacing (26) and (32) in (34) we find

u(x, t) = µ

(
x+ αt− 1

α

)
−uin0(ŝ+ αt̂) + uin0(2− x− αt)

2
+

1

2α

2−x−αt∫
ŝ+αt̂

uin1(η)dη.

(35)

Therefore, u is given in D
(II)
T by the formula

u(x, t) = w(x, t) +
u0(x+ αt)− u0(ŝ+ αt̂)

2
+

1

2α

x+αt∫
ŝ+αt̂

uin1(η)dη, (36)

where w, u0, u1 are the functions defined by (28), (29).

Remark 4.4. Proceeding as in Remark 4.3 it is easy to show that also the
function u defined by (36) is continuous across the characteristic x+αt = 1.

Remark 4.5. We notice that in order to obtain the representation formulas
(27), (36) it was only necessary to extend data uin0 , uin1 as odd functions
with respect to x = 1 (see (29)).
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4.2 Existence and uniqueness of local solution to prob-
lem (P̃c)

Assume for a moment that s ∈ C2[0, T ], −α < ṡ < 0 and let u be the function
given by

u(x, t) =


w(x, t) +

u0(x− αt) + u0(x+ αt)

2
+

1

2α

x+αt∫
x−αt

u1(η)dη in D
(I)
T

w(x, t) +
u0(x+ αt)− u0(ŝ+ αt̂)

2
+

1

2α

x+αt∫
ŝ+αt̂

u1(η)dη in D
(II)
T ,

(37)
where w is defined by (28), u0, u1 are given by (29) and t̂ is the unique
solution to equation (31). A necessary condition on u to be (u, s) a solution

to (P̃u) on DT is u ∈ C2,2
(
DT

)
. To obtain this regularity in D

(I)
T and D

(II)
T

we require

(H1) uin0 ∈ C2[s0, 1], uin1 ∈ C1[s0, 1].

We will also require on data the compatibility conditions

(H2) uin0(s0) = 0, u′′in0
(1) = 0,

which assure the function u is continuous on the corner (s0, 0) (first condi-
tion) and the equation utt = α2uxx is satisfied in the corner (1, 0) (second
condition).

We will look now for conditions that ensure the continuity of u and of its
partial derivatives on the characteristic curve Σ given by

Σ : x− αt = s0, 0 < t < T.

The continuity of u across Σ can be easily proved from (37) by checking that

lim
x−αt→s+0

u(x, t) = lim
x−αt→s−0

u(x, t).

Taking into account that (31) implies

∂t̂

∂t
= −α ∂t̂

∂x
= − α

ṡ(t̂)− α
,

18



that (28), (29) yield

αwx = wt =

 µ
′
(
x+ αt− 1

α

)
= uin1(1) if x+ αt > 1

0 if x+ αt ≤ 1,

u
′

j(x) =

{
u
′
inj

(x) if s0 ≤ x ≤ 1

u
′
inj

(2− x) if 1 < x ≤ 2− s0
j = 0, 1,

and wxx = wtt = 0 since µ is a linear function of its argument, the following
partial derivatives of u can be obtained from (37):

ut =



wt(x, t)−
α

2
(u′0(x− αt)− u′0(x+ αt)) +

1

2
(u1(x+ αt) + u1(x− αt)) in D

(I)
T

wt(x, t) +
α

2

(
u′0(x+ αt) + u′0(ŝ+ αt̂)

(̂̇s+ α̂̇s− α
))

+

+
1

2

(
u1(x+ αt) + u1(ŝ+ αt̂)

(̂̇s+ α̂̇s− α
))

in D
(II)
T

(38)

ux =



wx(x, t) +
1

2
(u′0(x− αt) + u′0(x+ αt)) +

1

2α
(u1(x+ αt)− u1(x− αt)) in D

(I)
T

wx(x, t) +
1

2

(
u′0(x+ αt)− u′0(ŝ+ αt̂)

(̂̇s+ α̂̇s− α
))

+

+
1

2α

(
u1(x+ αt)− u1(ŝ+ αt̂)

(̂̇s+ α̂̇s− α
))

in D
(II)
T

(39)
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utt =



α2

2
(u′′0(x− αt) + u′′0(x+ αt)) +

α

2
(u′1(x+ αt)− u′1(x− αt)) in D

(I)
T

α2

2

u′′0(x+ αt)− u′′0(ŝ+ αt̂)

(̂̇s+ α̂̇s− α
)2

+

2α̂̈su′0(ŝ+ αt̂)̂̇s− α)3

)
+

+
α

2

u′1(x+ αt)− u′1(ŝ+ αt̂)

(̂̇s+ α̂̇s− α
)2

+

2α̂̈su1(ŝ+ αt̂)

(̂̇s− α)3

)
in D

(II)
T

(40)

uxx =



1

2
(u′′0(x− αt) + u′′0(x+ αt)) +

1

2α
(u′1(x+ αt)− u′1(x− αt)) inD

(I)
T

1

2

u′′0(x+ αt)− u′′0(ŝ+ αt̂)

(̂̇s+ α̂̇s− α
)2

+

2α̂̈su′0(ŝ) + αt̂)

(̂̇s− α)3

)
+

+
1

2α

u′1(x+ αt)− u′1(ŝ+ αt̂)

(̂̇s+ α̂̇s− α
)2

+

2α̂̈su1(ŝ+ αt̂)

(̂̇s− α)3

)
in D

(II)
T

(41)
where we have set ̂̇s = ṡ(t̂) and ̂̈s = s̈(t̂).
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Remark 4.6. We observe that the first and second derivatives of u(x, t) are
continuous across the characteristic x+ αt = 1.

From (38)-(39) we find that ut and ux are continuous across Σ if and only if

(A) ṡ0u
′
in0

(s0) + uin1(s0) = 0.

Similarly, from (40), (41) we find that the continuity of utt and uxx across Σ
is accomplished if and only if

(B) (ṡ0−α)
[
(ṡ20 + α2)u′′in0

(s0) + 2ṡ0u
′
in1

(s0)
]
−s̈0

[
αu′in0

(s0) + uin1(s0)
]

= 0,

where s̈0 = s̈(0).
Thus, if (H1), (H2), (A), (B) hold, s ∈ C2[0, T ] with −α < ṡ < 0, and u

is defined by (37) then (u, s) satisfies the first five conditions of (P̃u) on the
time interval [0, T ]. In the following we will focus on the last two conditions

of problem (P̃u).
Evaluating (39) in (s, t) and noting that t̂(s, t) = t, we find

ux(s, t) =
α (u0)

′ (s+ αt) + u1(s+ αt)

α− ṡ
. (42)

Since −α < ṡ < 0 implies s0 ≤ s + αt ≤ 1, the functions u′0, u1 in (42)
are equal to u′in0

, uin1 . The free boundary s must hence solve the Cauchy
problem

(Ps) :


−ṡ =

(
g(s+ αt)

α− ṡ
− β

)
+

0 < t < T

s(0) = s0,

(43)

where we have set

β =
λ+ δ

2λ
, 2λg(x) = αu′in0

(x) + uin1(x) s0 ≤ x ≤ 1.

Then, condition −α < ṡ < 0 is equivalent to

0 <
g(s+ αt)

α− ṡ
− β < α i.e. β <

g(s+ αt)

α− ṡ
< α + β.

Therefore we require

β < inf
[0,T ]

{
g(s+ αt)

α− ṡ

}
≤ sup

[0,T ]

{
g(s+ αt)

α− ṡ

}
< α + β,
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yielding

β <
inf [s0,1] g(x)

2α
≤

sup[s0,1] g(x)

α
< α + β. (44)

Then we get the following condition

(H3) 2αβ < inf [s0,1] g(x), sup[s0,1] g(x) < αβ + α2,

which is consistent only if

(H4) α > β.

In conclusion, if (H3), (H4) are satisfied then −α < ṡ < 0 and equation (43)1
can be rewritten as

ṡ2 − (α + β)ṡ− [g(s+ αt)− αβ] = 0. (45)

It is easy to see that equation (45) is an algebraic second order equation in
ṡ with two distinct real roots, with only one of them negative given by

ṡ =

(
α + β

2

)
−

√(
α + β

2

)2

+
[
g(s+ αt)− αβ

]
. (46)

On one hand, recalling (A) and (43) 4,
−ṡ0 =

(
1

2λ

αu′in0
+ uin1

α− ṡ0
− β

)

ṡ0 = −uin1

u′in0

.

(47)

On eliminating ṡ0 from (47) we find

(H5) uin1 = u′in0

(
u′in0

2λ
− β

)
,

which provides the condition that guarantees the continuity of the first deriva-
tives of u across Σ.

4To avoid a too heavy notation here uin0 , uin1 and their derivatives represent the value
of these functions evaluated in s0.
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On the other hand, from (A) we see that uin1 = −ṡ0u′in0
. Replacing this

in (B) we find

(ṡ0 − α)
[
(ṡ20 + α2)u′′in0

+ 2ṡ0u
′
in1

]
= s̈0u

′
in0

(α− ṡ0), (48)

which simplifies to

−
[
(ṡ20 + α2)u′′in0

+ 2ṡ0u
′
in1

]
= s̈0u

′
in0
.

Replacing (47)2 in the above, after some algebra, we find

s̈0 = − 1

(u′in0
)3

[
u′′in0(u

2
in1

+ u
′2

in0
α2)− 2uin1u

′
in1
u′in0

]
(49)

Now let us go back to equation (46). Differentiating with respect to time we
get

s̈ = − g
′
(s+ αt)(ṡ+ α)√

(α + β)2 + 4
[
g(s+ αt)− αβ

] ,
or equivalently

s̈ =
g
′
(s+ αt)(ṡ+ α)

2ṡ− (α + β)
.

Therefore, recalling (47)2 and the definition of g, we find

s̈0 =
g
′
(s0)(ṡ0 + α)

2ṡ0 − (α + β)
=

(αu
′′
in0

+ u′in1
)(uin1 − αu′in0

)

2λ(2uin1 + (α + β)u′in0
)

. (50)

Eliminating s̈0 between (49) and (50) we find

(H6)
2uin1u

′
in1
u′in0
− u′′in0(u

2
in1

+ u
′2
in0
α2)

(u′in0
)3

=
(αu

′′
in0

+ u′in1
)(uin1 − αu′in0

)

2λ(2uin1 + (α + β)u′in0
)

,

which provides the condition that guarantees the continuity of the second
derivatives of u across Σ.

We finally observe that if s satisfies (46) then conditions (H1), (H3) imply
s ∈ C2[0, T ]. Therefore, we can establish the following characterization result

for any solution to problem (P̃u):
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Lemma 4.1. If T satisfies (21) and (H1)-(H6) hold, s is a solution to the
initial value problem (43), and u is defined by (37) then (u, s) is a classical

solution to problem (P̃u) in the time interval [0, T ]. Moreover, s ∈ C2[0, T ],
−α < ṡ < 0 and ṡ(0) = ṡ0 with ṡ0 defined by (20).

Classical results on ordinary differential equations together with condi-
tions (H1), (H3) assure that problem (Ps) has a unique solution s in the
interval [0, T ]. Then Lemma 4.1 assures the existence of local solutions to

(P̃u). Finally, since the characterization of u and s established by Lemma

4.1 only involves data in problem (P̃u), uniqueness of solution to (Ps) implies

uniqueness of the local solution to (P̃u) in the time interval [0, T ]. Thus, we
have the following

Theorem 4.1. If T satisfies (21) and (H1)-(H6) hold, then problem (P̃c) has
a unique local solution (c, s) in the time interval [0, T ]. Moreover, c is given
by (17) with u defined by (37), and s is the unique solution to the Cauchy
problem (Ps).

4.3 Continuation of the solution: existence and unique-
ness in the large

Let us set

T0 =
1− s(0)0

α
, s

(0)
0 = s0, s(0)(t) = s(t),

where s is the free boundary in the time interval [0, T0]. Since s0 > 0, there
are two possible situations:

(a1) s
(0)
0 (t) = 0 for some time t < T0,

(a2) s
(0)
0 (t) > 0 for all times t ∈ [0, T0].

If (a1) holds the solid part is completely consumed in a finite time Tfin < T0.
From time Tfin on, our model is no longer a free boundary problem and the
evolution of u is described by the wave equation in the strip [0, 1]. If (a2)
holds, then the solution can be extended to the interval [T0, T1] with

T1 = T0 +
1− s(1)0

α
, s

(1)
0 = s(0)(T0) < s

(0)
0 .

24



The formal expression for u is obtained again through the D’Alembert for-
mula extending the initial data in the same odd fashion for x > 2 − s0 (see
Remark 4.5). The equation for s thus remains the same for t > T0. We
denote the free boundary in the time interval [T0, T1] by s(1)(t). Again we
distinguish between the case in which s(1)(t) = 0 for some t ∈ (T0, T1] and
the case in which s(1)(t) > 0 for all t ∈ (T0, T1]. Proceeding in this way we
can build the sequence

0 < Tj+1 = Tj +
1− s(j+1)

0

α
, s

(j+1)
0 < s

(j)
0 ,

which of course makes sense if s(j)(t) > 0 for all j (otherwise the solid part
is totally consumed in a finite time Tfin < T0). We have that

lim
j→+∞

Tj = +∞.

Indeed,

lim
j→+∞

Tj = lim
j→+∞

(
T0 +

j∑
k=0

(Tk+1 − Tk)

)
= T0 +

∞∑
k=0

1− s(k)0

α
,

with
∞∑
k=0

1− s(k)0

α
= +∞ since lim

j→∞

1− s(k)0

α
≥ 1− s0

α
> 0.

Therefore our model predicts one of the following situations:

(i) the marble is never completely consumed, being the evolution of its
surface described by s and the concentration of H+ ions described by
c, with (c, s) the unique global solution to problem (P̃c),

(ii) the marble is completely consumed in a finite time Tfin > 0, being the
system described by:

(a) the unique solution (c, s) to problem (P̃c) in the time interval
[0, Tfin],

(b) the solution c of an initial-boundary value problem for the wave

equation (P̃c)1 in the strip [0, 1] and the time interval (Tfin,+∞)
(s ≡ 0 from Tfin on).

We notice that in the second case (ii), only the first option (a) is physically
relevant.
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5 Simulations

In this section we simulate the behavior of the free boundary by solving
numerically problem (Ps). We begin by a simple case in which the solution
can be determined analytically.

5.1 The simple case g = const

Suppose

uin0 = A(x− s0), uin1 = A

(
A

2λ
− β

)
,

with A a positive constant. In this case g is constant and hence the free
boundary x = s(t) is a line. It is easy to show that conditions (H1), (H2) are
automatically fulfilled. Taking the values

A = 4, λ = 1, α = 3, δ = 10−5, s0 = 0.25,

we find that also conditions (H3)-(H6) hold and the free boundary is

s(t) = s0 + ṡ0t,

with

ṡ0 = − 1

2λ
(A− λ− δ)+ .

The plot of the free boundary x = s(t) and of the characteristic curve
x + αt = s0 are shown in Fig. 4. In this case the solid part of the domain
vanishes in a finite time given by

Tfin = −s0
ṡ0
≈ 0.166 <

(1− s0)
α

= 0.25.

5.2 The case of a non constant g

Assume that

uin0 = A(x− s0)(1− x)3, uin1 = B(1− x)3/2,

so that

u
′

in0
= −A(1− x)2(4x− 3s0 − 1), u

′′

in0
= 6A(1− x)(2x− s0 − 1).
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Figure 4: Free boundary x = s(t) for g = const.

Notice that hypothesis (H1), (H2) are satisfied. In this case (H4), (H5) are
not fulfilled so that the function u is continuous up to the second deriva-
tives everywhere except on the characteristic Σ where the derivatives of u
experience a jump discontinuity.

Taking the values

A = 1, B = 3, λ = 1, α = 0.5, δ = 10−5, s0 = 0.4,

and solving the problem (Ps) we get the solution of Fig. 5. We notice that
this solution satisfies −α < ṡ < 0.

In this case we observe that ṡ = 0 for t > 1.08, which means that the
reaction ceases at time t = 1.08 and that the initial data are such that the
solid slab is not completely worn away by the acid solution.

If we increase the value of A (which corresponds to increase the initial
concentration of H+ ions), the “asymptotic value” of s - i.e. the thickness
of the slab when ṡ vanishes - becomes smaller, as shown in Fig. 6. This is
physically consistent since a more acid solution is expected to erode a larger
part of the slab.
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Figure 5: Free boundary x = s(t) for non constant g.
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Figure 6: Free boundary x = s(t) for non constant g and A = 1, 2, 3, 4, 5.
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6 Conclusion

In this paper we present a mathematical model for the diffusive-reactive pro-
cess between calcium carbonate (CaCO3) and an aqueous solution containing
sulphuric acid (H2SO4). We model the case of a marble slab immersed in an
acid solution with the reaction taking place on the contact surface between
the slab and the liquid. The system is described by the evolution of both the
H+ ions concentration in the liquid and the free boundary s where the reac-
tion occurs. We assume the H+ ions diffuse according to Cattaneo’s law and
formulate the mathematical problem in a one dimensional geometry writing
the molar mass balance, the reaction kinetics and the net flux of H+ ions
on the reacting surface. The problem turns out to be a hyperbolic moving
boundary problem for the telegraph equation in which the free boundary
represents the thickness of the slab that is consumed because of the reaction.
Using typical values taken from the literature, we show that the diffusive
time scale is smaller than the reaction time scale, so that the problem can
be reduced to a free boundary problem for the wave equation. We also write
representation formulas for the H+ ions concentration and show that the
evolution of the free boundary is given by a nonlinear differential equation
involving the initial data of the problem. Under appropriate hypotheses on
the data we prove existence and uniqueness in the large and we determine
conditions that guarantee the regularity of the solution. Finally we perform
some numerical simulations to illustrate the behavior of the free boundary.
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