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This work introduces a numerical methodology for the computation of the effective thermal conductivity
(ETC) of random micro-heterogeneous materials using representative volume elements and the Fast Mul-
tipole Boundary Element Method (FMBEM). The methodology is applied to solve two-dimensional foam-
like materials consisting of random distributions of circular isolated holes. The computed ETC values are
successfully used to predict the temperature fields of two materials with functionally graded ETCs.
Numerical and analytical results are experimentally validated. The proposed methodology is flexible
and versatile, as it is capable to account for both, the geometrical and topological details of the material
microstructure.
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1. Introduction

Effective thermal conductivity (ETC) of micro-heterogeneous
materials has been an active research field for over a century.
The importance of micro-heterogeneous materials like granular
metals and ceramics [1], fibrous composites [2], or polymeric
open-cell foams [3] lies in their applications in high performance
insulations [4,5], packed beds, heterogeneous catalysts [6], com-
posite materials and powder metallurgy [7]. The size, shape, phys-
ical properties and spatial distribution of the micro-structural
constituents largely determine the macroscopic, overall behavior
of these multi-phase materials. From the point of view of materials
design, it would be highly attractive to tailor the material micro-
structure in order to obtain the desired set of macroscopic proper-
ties. One remarkable example of this concept can be found in the
so-called functionally graded materials (FGM), where particular
spatial variations of local material properties can be used to gener-
ate materials with a set of unique properties. The local composition
of the microstructure in a composite material can be varied to ob-
tain certain change in the local material property. For example,
thin layer FGM electric/thermal ceramic systems are almost a com-
mercial reality today [4]. The FGM concept could also be used in
the production of thermoplastic polymeric foams for thermal insu-
lation. Foams can be assimilated to a micro-heterogeneous mate-
rial consisting of a thermoplastic polymer matrix that contains
small cells filled with gas that may constitute an important fraction
ll rights reserved.
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of the total volume [8]. The spatial distribution of the gas cells
modifies the heat conduction properties along the material.

Several models for the computation of the ETC of micro-hetero-
geneous materials have been proposed in the literature. A recent
review on this subject is due to Wang and Pan [9] who made a
comprehensive and critical review of the most important existing
models. The authors classified those models in two main groups,
theoretical and numerical, the former are further subdivided in
two-phase and multiphase models. The two-phase models are of
interest for this work. Following Wang and Pan, two-phase models
are classified into basic, combined and network models. The basic
models are based on physical principles which have a closed form
solution (either exact or approximate). Some examples are the Par-
allel, Series, the two forms of the Maxwell–Eucken model and the
Effective Medium Theory (EMT) [10]. These models are theoreti-
cally based and they depend only on the volume fraction and ther-
mal conductivity of the micro-structural constituents; on the other
hand they represent idealized microstructures that can only be
found in very specific cases [10–13]. Series and Parallel models as-
sume that the physical arrangement of the components is either
perpendicular or parallel to the heat flux. Alternatively, the Max-
well–Eucken model assumes a two-component dilute dispersion
of spherical particles, that is, the distance between the particles
is large enough to avoid distorting the local temperature field of
each other (non-interacting). Overall, the Maxwell–Eucken model
is unable to make predictions for high concentrations of particles
where the local temperature distortions affect those of the
neighboring inclusions. Two forms of the Maxwell–Eucken (M–E)
model arise depending on the relative values of thermal conductiv-
ity of the continuous and the dispersed phases. The M–E 1 form is
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Nomenclature

A area (mm2)
Bi Biot number
C characteristic length (m)
e emittance
f void fraction
h heat transfer coefficient (W m�2 C�1)
k thermal conductivity (W m�1 C�1)
K effective thermal conductivity (W m�1 C�1)
L side length (mm)
m number of discrete f values in the FGM models
n number of zones in the FGM models
N number of degrees of freedom of the FMBEM model
Q heat flux (W m�2)
r hole radius (mm)
T temperature (�C)
x x-coordinate (mm)

y y-coordinate (mm)

Greek symbols
a K/k0 effective thermal conductivity relative to the ma-

trix material

Subscripts
0 matrix material
1, 2 boundary condition identifier
disp dispersed phase
envr environment
i discrete value identifier
r radiation transfer
surf surface
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adopted if the conductivity of the matrix, k0, is greater than the
conductivity of the dispersed phase, kdisp, and the M–E 2 form
comes up if k0 < kdisp. Conversely, the EMT model assumes a com-
pletely random distribution of the components, with neither phase
being continuous or dispersed. Besides, the effect of local distor-
tions to the temperature distribution is averaged such that the
temperature over the material is uniform. In this way, the conduc-
tivity assigned is an effective value. Combined models consist of the
weighted mean of basic models using empirical parameters
[8,10,14,15]. Thus, if experimental data is available these models
provide accurate results, but they are actually non-predictive. Such
models require extensive experimental data to estimate parame-
ters that may have no physical significance. Finally, the network
models are similar to the combined models in the sense they com-
bine basic models, but they use much more complex arrangements
connecting series or parallel elements to render the microstructure
of a heterogeneous material. They are only employed for certain
complex materials, such as soil or filled polymers [9].

The limitations of the above-mentioned models have driven ef-
forts toward computational approaches (numerical methods in
Wang and Pan classification [9]) that progressively incorporate
physically-meaningful higher-level description of the micro-scale.
The work load is then shifted to high performance computational
methods such as BEM [16], FEM [17] and Lattice Boltzmann [18].
The structural details of every phase, as shape and size distribu-
tions, can be described in detail, and only the thermal conductivity
of the phases must be determined separately. Thus, heterogeneous
materials with any structural topology and thermal properties can
be simulated.

The computational modeling of the material microstructure to-
gether with homogenization techniques are widely used to predict
the macroscopic behavior of heterogeneous materials [17,19].
Most of the homogenization approaches make an assumption on
global periodicity of the microstructure details, suggesting that
the whole macroscopic specimen consists of spatially repeated unit
cells [19]. A somewhat more realistic approach for the homogeni-
zation of randomly distributed phases, is to use statistically repre-
sentative volume elements (RVE). In order to make the computed
results reliable, the RVE sample must be selected small enough
to be considered as a material point with respect to the size of
the domain under analysis, but large enough to be a statistically
representative sample of the microstructure. Thus, a RVE usually
contains a large number of heterogeneities, and therefore the com-
putations could be expensive. However, the computational effort is
small when compared to that of the direct calculation for the com-
plete problem domain [17].

The aim of this work is to develop a numerical approach for the
prediction of the thermal conductivity of functionally graded mi-
cro-heterogeneous materials. To this end, a methodology based
on the numerical modeling of RVE using the Boundary Element
Method (BEM) is introduced. The Boundary Element Method
(BEM) is widely used to solve many engineering problems due to
its simplicity in the mesh generation, restricted only to the bound-
aries, and accuracy as it calculates the derivative of the potential in
exact form [16]. To further improve the performance of the BEM,
the Fast Multipole Boundary Element Method is used in this work
to reduce the computational cost in terms of both, operations and
memory requirements with respect to direct BEM formulations
[21].

With the purpose of testing the predictive capabilities of the
proposed methodology, two foam-like functionally graded materi-
als are analyzed. The FGM consist of circular holes distributed in a
high-thermal-conductivity aluminum continuous phase and air for
the holes. Numerical predictions are compared to experimental
results obtained from carefully controlled experiments.
2. Theoretical models for effective thermal conductivity

We briefly review in this section the most relevant theoretical
models (combined and network type) for effective thermal conduc-
tivity, which will be used later in this paper to compare and discuss
the numerical results. As mentioned before, Wang and Pan [9] and
Churchill [22] have done extensive reviews of theoretical and
numerical models. The well-known model due to Krischer [15]
(considered a combined model) accounts for differences in structure
using an empirical weighting factor for the Series and Parallel
structures. The value of the weighting parameter must be deter-
mined experimentally and cannot be assessed mechanistically
from information about the physical structure. Hence, since it is
difficult to make a reasonable estimate of the Krischer parameter
based on intuition, the use of this model as a prediction tool is very
limited. A recent work by Jagjiwanram [14] introduced a network-
type one-parameter model to predict the ETC for highly porous
two-phase systems, where particles of irregular shape have been
assumed to be distributed randomly in the continuum. Predictions
were compared with experimental results for aluminum–air com-
posites. The temperature was averaged within each phase, and
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thus the material structure was assimilated to an array of
equivalent thermal resistors. The resistors took the form of parallel
slabs inclined at a given angle h which was the parameter to be
adjusted. Wang et al. [10] claimed that models which had an
intrinsically anisotropic material assumption not always fit isotro-
pic media, and vice versa. Recently Carson [23] revisited over 10
effective conductivity models based on components’ conductivities
for porous food structures. He concluded that in order to be suit-
able for a wide range of different structures, the ETC models need
an extra parameter to account for the contact between dispersed
inclusions. At the same time, Carson discouraged the use of
Krischer’s model (considered as a ‘‘flexible’’ model) for isotropic
materials structures, and suggested the utilization of the
Maxwell–Eucken model because it assumes isotropic physical
structure. Finally, Carson proposed an algorithm in the format of
a flowchart to predict the ETC using five different models. The
process for the selection of the appropriate models is based on pre-
vious knowledge of the material structure, such as isotropy, known
or unknown empirical parameters, type of porosity, etc.

The model due to Liang and Qu [7] has been specifically devel-
oped to deal with the ETC in gas-solid composite materials at high
temperature. In this model, the concept of a local equivalent ther-
mal conductivity is defined and used to calculate the effective ther-
mal conductivity of the bulk material without using empirical
parameters. Heat transport is considered in two mechanisms, con-
duction in solid and gas and thermal radiation inside the cavity. A
strong assumption is made on the material structure where the
porous material has a periodic structure considering the cavities
as cylinders or spheres. After a homogenization analysis, an analyt-
ical solution for the model is derived which predicts the ETC in
terms of the radius of the cylindrical or spherical inclusions, the
porosity of the material and the thermal conductivity of the
phases.

3. Numerical modeling

3.1. The Fast Multipole Boundary Element Method

The Boundary Element Method (BEM) can be considered as an
efficient mesh reduction method in which the spatial dimension
Q =0

y

x

BEM element

BEM node

Fig. 1. FMBEM model of a representative volume elem
is reduced by one. In this way, the data preparation is simplified
because the mesh generation is restricted to the model boundary
only. Besides, the accuracy of the method is superior to other
numerical techniques [20]. The accuracy is due to the use of
Green’s functions as the weighting function in its formulation,
what allows the calculation of the derivative of the potential in ex-
act form. The computational cost of the standard BEM implemen-
tation can be reduced by using the Fast Multipole Boundary
Element Method (FMBEM). The FMBEM reduces the computational
cost of the direct BEM, from an order of O(N3) (where N is the num-
ber of degrees of freedom of the system) to a quasi-linear. This
reduction is achieved by using multilevel clustering of the bound-
ary elements into cells, multipole series expansion for the evalua-
tion of the fundamental solutions in the far field and an efficient
iterative solver. Additionally, the multipole algorithm leads to a
matrix-free calculation scheme that result in a reduction in mem-
ory requirements.

The high computational effort involved in this work motivates
the utilization of the FMBEM to conduct the two-dimensional
steady-state heat conduction analysis. The implementation follows
that proposed by Liu and Nishimura [21]. The model boundary is
discretized using constant elements (see Fig. 1). The integrals in-
volved in the assembly of the system of equations are evaluated
analytically. The system of equations is solved using a precondi-
tioned GMRES algorithm from the slatec public library available
at netlib (http://www.netlib.org/). Computations were carried out
using a Debian-based GNU/Linux diskless cluster consisting of
eight Intel Pentium 4 CPUs with 2 GB of RAM each. A detailed
description of the implementation can be found in previous works
by the authors [24,25].

A systematic study of the accuracy and performance of the
FBEM can be found in Ref. [25]. In that work, convergence and
tune-up studies were conducted for models with the same topol-
ogy to that used in this work. It was found that best results in
terms of both, accuracy and performance of the FMBEM can be en-
sured when using 12 expansion terms and, depending on the prob-
lem size, from 60 to 300 elements per cell. The tolerance for the
GMRES convergence was set 10�7. For this parameter setting, the
overall relative error of the FBEM was estimated 4 � 10�4% with re-
spect to direct BEM.
Q =0

T  = T2

T  = T1

L

L

ent with a void area fraction f = 0.3 and 344 holes.
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Fig. 2. Effective thermal conductivity, a = K/k0, as a function of the number of holes
for a set of given void area fractions, f. Error bars indicate the dispersion of the
results computed using 20 different random distributions of the holes.
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Fig. 3. Normalized effective thermal conductivity, a = K/k0, as a function of the void
area fraction, f.
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3.2. Determination of the size for the representative volume element

The material microstructure is assumed to be of the hole-
matrix type in two dimensions, which may be seen as a two-
dimensional idealization of, for instance, a foam microstructure
with the gas cells represented by isolated holes. The matrix
material is assumed isotropic. As it has been discussed in Sec-
tion 1, the theoretical models are limited to work with dilute
concentration of non-interacting inclusions. In this work, the
interaction between particles is achieved by means of numerical
modeling. Thus, the FMBEM is used to solve the Laplace equa-
tion for the isotropic steady-state heat conduction problem.
The functionally graded effect is the consequence of the model
topology, this is, the spatial distribution of the holes. The holes
are always circular and randomly distributed. Typical micro-
structure geometry is illustrated in Fig. 1.

A representative volume element (RVE) is determined first in
order to study the macroscopic response of the above described
material. The RVE is the smallest sample of material which exhibits
an invariant macroscopic response [26]. This means that the sam-
ple must be big enough to hold a representative number of heter-
ogeneities. In order to size the RVE, a series of FMBEM analysis
were performed over sets of samples with void area fractions, f,
in the range 0 6 f 6 0.5. Boundary conditions for the samples were
specified in order to induce a global one-dimensional heat flux q in
the y-direction (see Fig. 1). The normalized ETC of the micro heter-
ogeneous material, a = K/k0, (where K is the ETC of the micro het-
erogeneous material and k0 is the thermal conductivity of the
matrix) was computed as the ratio between the heat flux through
a specimen containing holes and the heat flux through a geometri-
cally similar specimen without the holes, both for a given temper-
ature difference between the two top and bottom sides of the
specimen (see Fig. 1). The heat flux through the specimen was
computed by integrating the normal derivative of temperature
over the top and bottom sides of the specimens. An average of both
calculated heat fluxes was used to estimate the ETC because these
values are not exactly the same (as theoretically expected) due to
numerical errors. Typically, heat flux values differed in less than
the 0.2% between the two sides. The following number of holes
per sample sequence was used to study the dependence of the
effective responses on the sample size: 10, 30, 60, 100, 150, 200
and 300. The radius of the holes was set always equal to one and
the size of the specimen sized in order to get the area fractions
f = 0.1, 0.3, 0.45 and 0.5 for each holes count. In order to get statis-
tically representative results, every computation was performed 20
times using models with a different random distribution of the
holes. Each hole was discretized with 36 constant BEM elements.
The same element size used in the discretization of the holes
was used for the external boundary. The resulting model discreti-
zations ranged from 504 to 13,024 elements. The solution of a
model like the one illustrated in Fig. 1 on a laptop with a Pentium4
@ 3 GHz processor and 1 GB of RAM using the direct (or classical)
BEM formulation took around 53 s, whereas the Fast Multipole for-
mulation needed only 13 s. This speed difference justified the use
of FMBEM for solving the 4 � 7 � 20 = 560 models employed for
the determination of the RVE size.

The mean and the standard deviation of the ETC results were
calculated for each set of samples. The results are illustrated in
Fig. 2. It can be seen that the dispersion of the data diminishes as
the number of holes per sample increases. Also, an increase in
the data dispersion with the void fraction is observed at low num-
ber of holes per sample. Nevertheless, this dispersion is reduced as
the number of holes increases. Justified by the somewhat ad hoc
fact that for two successive enlargements of the number of holes
the responses differed from one another, on average, by less than
0.5%, the 200-hole samples were selected as RVE for further tests.
3.3. Computation of effective properties as a function of the void-
fraction

A series of 200-hole RVEs were used to compute the ETC as a
function of the void fraction, a(f). The void area fraction range
0 6 f 6 fmax was explored by solving the RVE models with FMBEM.
The maximum void area fraction was set fmax = 0.50, as this is the
maximum value attainable using the sequential addition process
[27] for circular randomly-distributed holes separated by a mini-
mum distance of 0.005r.

Computed results are depicted in Fig. 3. The dispersion of the
results (indicated using error bars which are hidden behind the
symbols) is lower than 0.5% in every case. There are also plot
in Fig. 3 the ETC results calculated using several analytical
structural-based models: the classical Series and the Parallel mod-
els, the two forms of the Maxwell–Eucken model (see Section 1)
and the Effective Medium Theory model (EMT). As expected, the
homogenized FMBEM solution lays within the range limited by
the Series and the Parallel (also known as the Wiener bounds). It
is also observed that the computed solution lies within the range
determined by the more restrictive Maxwell–Eucken models.

According to Carson et al. [28] the EMT model represents the
limiting case for which the heat transfer pathway changes from
through the matrix (the region over the EMT line and below the
M–E 1 line in Fig. 3) to through the inclusions (the region below
the EMT line and above the M–E 2 line). Hence, the region between
the Maxwell–Eucken bounds may be divided into two regions with
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different heat transfer mechanisms. The homogenized FMBEM re-
sults lay above the EMT model and below the M–E 1 model; this
is, in the zone reserved to the heat transfer mechanism through
the matrix. It is worth to note that while the FMBEM solution is
in good agreement with the M–E 1 model for low void area frac-
tions (say f < 0.10), the difference between the two solutions aug-
ments with the increment of f. This is attributed to the
interaction effects between the dispersions. The Maxwell–Eucken
1 accounts for non-interacting dispersions [10], and so, the agree-
ment of its predictions with the computed results is good for low
void area fractions where the dispersions are apart from each
other. Conversely, the augment of the void fraction increases the
interaction effects as the dispersions are close to each other. Under
these circumstances, the predicting capability of the M–E 1
deteriorates.

The FMBEM point data can be fit with a polynomial of degree 2,
from which we obtained

aðf Þ ¼ 1:0514f 2 � 1:9553f þ 1 ð1Þ

with a correlation coefficient R2 = 0.9997. This result will be used la-
ter in this work.

4. Experiment design and setup

This section is devoted to describe the experimental set up de-
vised to validate the capability of the proposed numerical method
to predict the ETC of functionally graded materials.

Two macroscopic functionally graded heat-conducting materi-
als were constructed by machining circular holes in a highly-
conductive 1100 AA-Grade aluminum plate. This design is
intended to approach the theoretical case of a highly-conductive
two-dimensional continuous matrix with non-conductive inclu-
sions. The spatial distribution of the holes resulted from an opti-
mization problem solved in a previous work [24]. The Material A
(see Fig. 4a) is intended to have a two-step piece-wise ETC,
while the Material B (see Fig. 5a) is intended to result in a
smooth ETC variation.

For the design of the materials the domain of the plate was di-
vided into n = 8 zones (bands parallel to x axis depicted in Figs. 4b
and 5b) with the piecewise linear interpolation for the void area
fraction, f(y), in terms of m = n + 1 = 9 prescribed discrete values,
fi. The position of the holes were generated using the rejection
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Fig. 4. (a) Distribution of the holes for the Material A, (b) void fraction distribution
as a function of the position.

Fig. 6. Detail of the perforations in the plate.
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Fig. 7. Photograph of the experimental setup.
method [29] with the piece-wise linear interpolation of f as distri-
bution function. The shape of the plates was a square of size
L � L = 150 � 150 mm with thickness 8 mm. The diameters of the
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cylindrical holes were 5 mm. Holes were made using a computer
controlled milling machine (see Fig. 6).

Fig. 7 illustrates the experimental setup. The actual boundary
conditions used for the experiments are the same to those shown
in Fig. 1. Temperatures labeled as ‘‘T = T2’’ and ‘‘T = T1’’ were im-
posed by means of a large-capacity heat source and a heat sink.
The heat source was powered by a 400 W electric resistance, while
the sink consisted in a water cooling system and an electric resis-
tance used to control its temperature. The temperature of both the
source and the sink were monitored using J-type thermocouples
located at a minimum distance from the contact zone with the
plate. The specimens were suspended horizontally on a frame to
reduce natural air convection. A 1/200 thick layer of alumina wool
was placed beneath the bottom face and along the sides of the
specimens in order to minimize convection and radiation heat
losses. In order to obtain precise images with a thermographic
camera, the top face of the plate was painted matte black to max-
imize and homogenize its infrared emittance. This set-up mini-
mizes the 3d effects, making the experiment compatible with the
2d analytical and numerical models [30].

An important topic to consider is the heat transport mechanism
along the specimen via the radiation across the holes. In this sense
Liang and Qu [7] concluded that for a low temperature case, radi-
ation is not important when the porosity is below 78% and the cav-
ity diameter is less than 5 mm. Based in the previous information,
the radiation inside the material is not taken into account and con-
ductivity is considered as the only heat transport mechanism. Any-
way, the holes in the specimen were plugged using alumina wool
caps.

Temperature maps of the plates were measured via thermal
images taken with an infrared thermographic imaging camera
(Fluke Ti-30). Photographs were taken once the experiment
reached the thermal steady state. The resolution of the thermal
images was 120 pixels � 160 pixels, with a single temperature va-
lue assigned to each pixel. It is worth noting that the temperature
values at the position of the holes did not represent true tempera-
ture data because the emittance of the alumina wool is very differ-
ent to that of the matte black painted aluminum surface. Thus, the
data of the thermal images were processed to delete the tempera-
ture values corresponding to the positions of holes. Different sets
of temperatures T1 and T2 were used for each specimen. For the
Material A, temperatures were T1 = 40 �C and T2 = 200 �C, while
for the Material B, T1 = 35 �C and T2 = 125 �C.
Fig. 8. Left: infrared thermographic camera taking a thermal image for the Material B. Ri
(red) and the heat sink (blue). (For interpretation of the references to color in this figur
5. Results and discussion

Fig. 8 shows typical data obtained with the infrared camera for
the Material B. As expected, the maximum temperature gradient
develops in the y-direction. In order to verify the one dimensional
nature of the problem, the variation of the temperature field in the
x-direction was explored. To this end, the temperature distribution
along two horizontal paths at the positions y = 64 mm and 75 mm
(slash lines in Fig. 8) are plot in Fig. 9. It can be seen that the tem-
perature variation in the x-direction is about 3% over distances that
cover about 15 times the holes diameter. Similarly, small variations
in local temperature (about 6%) along the x axis can be observed
over distances in the order of 2–3 holes diameters. Analogous re-
sults were obtained for analyses conducted for other positions.
The previous observations allow concluding that the heat loss
along the lateral faces of the specimen is negligible, and so, the
data can be assimilated to those resulting for heat conduction
along the y-direction only.

The temperature distributions for both materials were com-
puted by means of FMBEM models shown in Figs. 4 and 5. Simula-
tions were carried out using the same discretization strategy
described in Section 3.1 for the analyses of the RVE. The results
for the Material A and the Material B are plotted in Figs. 10 and
11 respectively as a function of the y-coordinate. Error bars for
the FMBEM results indicate the dispersion of the temperatures in
the x-direction. Also plotted in Figs. 10 and 11 are the experimental
results, with their dispersions indicated by the gray-filled areas.
The analytical solution in the figures (continuous lines) corre-
sponds to that computed using the one-dimensional Laplace
equation,

@

@y
k0aðf ðyÞÞ

@T
@y

� �
¼ 0 ð2Þ

where a(f(y)) is the ETC given by expression (1) specialized for the
void area fraction, f(y), depicted in Figs. 4b and 5b, and
k0 = 210 W m�1 K�1 is the thermal conductivity of the aluminum.
The boundary conditions were set the same as in the FMBEM
simulation.

There is an excellent agreement between the FMBEM and the
analytical solution in the whole y-coordinate range. With the only
exception of the central section of the Material A (this is the posi-
tion with the most abrupt variation in the temperature field) the
ght: thermal image showing the temperature map of the specimen, the heat source
e legend, the reader is referred to the web version of this article.)
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analytical solution is within the dispersion of the FMBEM results.
This accordance between the analytical and the experimental re-
sults shows the effectiveness of the expression (1) for the design
of a functionally graded ETC by means of a local variation of the
void area fraction.

The matching between experimental and calculated tempera-
tures is fairly good, with deviations less than 5% for the Material
A, and less than 3% for the Material B. These discrepancies between
experimental, and the FMBEM and analytical results can be attrib-
uted to the heat losses on the top surface plate due radiation and
convection. To ponder these effects, Eq. (2) was extended in order
to include additional terms which account for the convection and
radiation heat losses. This is

k0aðf ðyÞÞA0
dT
dy
� hAðyÞðTsurf � TenvrÞ � hrAðyÞðTsurf � TenvrÞ ¼ 0 ð3Þ

where h is the convection heat transfer coefficient and A(y) is the
effective surface area for the heat convection and radiation. The
convection coefficient was considered constant along the specimen
and set h = 4.35 W K�1 m�2 following the estimation formula for the
design of cooling air fins h = 0.38(DT)0.25, where [h] = BTU ft�2�F�1

h�1, and [DT] = F [31]. The radiation transfer coefficient was calcu-
lated using hr ¼ erðTsurf þ TevnrÞðT2

surf þ T2
envrÞ where e is the emit-

tance, r is the Stefan–Boltzmann constant, Tsurf stands for the
temperature on the specimen surface and Tenvr is the environment
temperature, which was set Tevnr = 15 �C. The value of the emittance
was set e = 0.95 following Ref. [32].

Eq. (3) was solved for both materials using a one-dimensional
implicit finite differences iterative scheme with the plate length
discretized using 100 elements. The effective area for the heat con-
vection and radiation, A(y), was computed for each element using
A(y) = A0(1 � f(y)), where A0 is the transverse area of the aluminum
plate A0 = 150 � 8 mm = 1200 mm2 and f(y) the area fraction given
in Figs. 4b and 5b.

The results for the analytical analysis with heat loss are plotted
together with the other results in Figs. 10 and 11. It can be seen
that for the Material A the results from Eq. (3) are in very good
agreement with the experimental temperature values along the
complete specimen; i.e. the temperature results are found to be al-
most inside the dispersion (grayed region) of the experimental
data. For Material B, the temperature result for the analysis with
heat loss lays within the dispersion of the experimental data. It is
worth to remark that the analytical results with heat loss values
of the convection heat transfer coefficient and the emittance in
the radiation term were taken from the literature, i.e. no experi-
mental data was fitted to determine these coefficients. This conclu-
sion was verified using the finite difference result of Eq. (3), finding
that the heat loss was 0.51% of the conduction heat transfer for
Material A and 0.38% for Material B.

Finally, the Biot number [33] was estimated in order to quantify
the overall heat loses due to convection and radiation. To this end,
a modified version of the Biot was proposed, Bi = C(h + hr)/k0,
where h and hr account for the convection and radiation heat
transfer coefficients (see Eq. (3)) respectively and C is the
characteristic length, which is usually defined as the volume of
the body divided by the surface area of the body. The average
values for the radiation transfer coefficients, hr, were computed
using the results of the previous calculations (see Eq. (3)). These
were hr = 9.42 W K�1 m�2 for Material A and hr = 7.04 W K�1 m�2

for Material B. The resulting values for the Biot numbers were
Bi = 2.1 � 10�4 for Material A and Bi = 1.7 � 10�4 for Material B.
These values of the Biot number are very low (much smaller
than 1) for both materials, confirming that heat conduction along
the plates predominates over the heat lose over the specimen
surfaces.
6. Conclusions

It has been introduced in this work a numerical methodology
for the computation of the effective (homogenized) thermal con-
ductivity (ETC) of random micro heterogeneous materials using
representative volume elements (RVE) and the Fast Multipole
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Boundary Element Method (FMBEM). The methodology consists in
the analysis of successive larger samples of the material micro-
structure in order to size the RVE, together with a statistical anal-
ysis to account for the dispersion of the results due to the random
nature of the microstructure.

The methodology was applied to solve a two-dimensional
foam-like microstructure consisting of a random distribution of
circular isolated holes. The void area fraction of the material was
considered within the range 0 6 f 6 0.5. The computed ETC results
were found to be in good agreement with the Maxwell–Eucken 1
model for low void area fractions (say f < 0.10) where the interac-
tion effects between the holes are negligible. On the other hand,
the predicting capability of the M–E 1 deteriorated (it overesti-
mated the ETC) for high void area fractions where the interaction
effects are more relevant.

The computed ETC values were used to analytically predict the
temperature fields along two materials with functionally graded
thermal conductivities (this is, materials with spatial variations
of their void area fractions). In both cases the agreement between
the analytical and numerical results (the later computed using a
FMBEM model of the complete microstructure) were found very
good. At the same time, the numerical and analytical results were
in good agreement with the temperature fields measured with a
thermographic camera in carefully controlled experiments. The ef-
fects of convection and radiation heat losses on the experiment re-
sults were estimated by means of an analytical one-dimensional
model.

It can be concluded that the proposed numerical methodology
is effective for the computation of the ETC of random micro heter-
ogeneous materials. Being a numerical approach, it is capable to
account for both, the geometrical and topological details of the
material microstructure, thus, it can deal with inclusions of arbi-
trary shape. The efficient implementation using the FMBEM allows
for the solution of a large number of models in a reduced time. The
versatility and robustness of the methodology makes it suitable to
work in combination with optimization algorithms in the design of
materials with tailored conductivity properties.
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