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Abstract

This paper presents the optimal control policy of an industrial low-density polyethylene (LDPE) plant. Based on a dynamic
model of the whole plant, optimal feed profiles are determined to minimize the transient states generated during the switching
between different steady states. The industrial process under study produces LDPE by high-pressure polymerization of ethylene
in a tubular reactor using oxygen and organic peroxides as initiators. The plant produces polyethylene of different grades that
require continuous changes from one steady state to another, in order to switch among the different final products. These changes
generate disturbances that keep the product out of specifications during the transient states, with a consequent economic loss. The
plant model consists of two parts; the first one corresponds to the tubular reactor. Here, the partial differential equations
corresponding to the mass and energy dynamic balances are discretized along the distance coordinate by using finite differences.
The resulting ordinary differential equations include the energy balance and individual mass balances for oxygen, peroxides,
ethylene, butane, free radicals and polymer. Although, methane is also present in the plant, in the reactor model it is considered
as a nonreacting impurity along with the other impurities coming from the rest of the process. The second part of the model
corresponds to the rest of the plant. Here we considered four components: ethylene, butane, methane and impurities. An
interesting aspect of this process is the presence of many time delays that are incorporated in the optimization model. The
resulting differential algebraic equation (DAE) plant model includes over five hundred equations. The dynamic optimization
problem is solved using a simultaneous nonlinear programming (NLP) approach. The continuous state and control variables are
discretized, by applying orthogonal collocation on finite elements. The resulting NLP is solved with a reduced space Interior Point
Algorithm, which is applied directly to the NLP. In addition, a new mesh refinement strategy is applied to this model to confirm
that no further improvement can be found in the optimal control profiles. The paper studies two cases of switching among
different polymer grades, determining the optimal profiles of butane fed to the plant, in order to minimize the time to reach the
steady state operation corresponding to the desired new product quality. The results are also compared with simpler model where
reactor was considered as a black-box with the conversion level taken as constant data for each polymer grade. As a result, the
dynamic model we developed and the solution methodology used is a flexible and practical tool to help process engineers for
taking decisions during the plant operation. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The production of low-density polyethylene (LDPE)
is a typical process where unsteady states are part of the
normal operation of the plant. To obtain LDPE of

different grades, in addition to the normal disturbances
of any process, programmed variations are originated
when operators change product specifications, by
switching between different steady states. During the
transient periods the plant produces off specification
products with a consequent economic loss. This loss
could be decreased if the plant operators would use
profiles for the manipulated variables that are obtained
through an optimization procedure. Different optimiza-
tion objectives could be used in order to find these
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optimal trajectories, where a common performance
criterion is the difference between the current profile
and the new desired steady state. In order to deal
with this type of problem in a systematic way, it is
necessary to develop and optimize an adequate dy-
namic model for the process with the right objective
function.

In this work, we develop a dynamic model for the
entire plant, based on a reformulation of a nonlinear
model for the plant (Schbib, Tonelli, Brignole, & Ro-
magnoli, 1992), and a dynamic version of a rigorous
steady-state reactor model developed by Brandolin,
Lacunza, Ugrin, and Capiati, 1996. The whole model
is posed as a dynamic optimization problem to obtain
optimal profiles for manipulated variables. The dy-
namic optimization problem is transformed into a
Nonlinear Programming Problem (NLP) by applying
collocation on finite elements, and the resulting NLP
problem is solved with a novel, recently developed
interior point strategy, applied in the reduced space.

The paper is organized as follows. In the next sec-
tion, we present a brief description of the LDPE pro-
cess and a detailed explanation of the process models.
Section 3 describes the solution procedure, while re-
sults are presented in Section 4. Conclusions and fu-
ture directions are described in Section 5.

2. LDPE process description and model

2.1. Process description

The industrial process under study produces LDPE
by high-pressure polymerization of ethylene in a tubu-
lar reactor, using gaseous oxygen and organic perox-
ides as initiators. The plant considered has a nominal
capacity of 90,000 tons per year. Fig. 1 shows the
plant flowsheet and typical operating conditions. The
fresh ethylene feed is mixed with a purified low-pres-
sure recycle stream, oxygen and a chain-transfer agent
(butane), and then compressed till about 250 bars in a
multi-stage primary compressor. This stream is mixed
with the high-pressure recycle, further compressed in a
hypercompressor up to the reaction pressure of
around 2000 bars, and continuously fed to a jacketed
tubular reactor, where the ethylene is partially poly-
merized, producing polyethylene of different grades.
Two additional feeds of organic peroxide are allo-
cated at two different axial positions, producing two
reaction zones with sharp temperature and conversion
increases.

The ethylene–polymer mixture from the reactor
output is expanded through a special letdown valve
and fed to a series of high– low pressure separators
where the polymer is obtained. The ethylene is cooled
and dewaxed prior to being recycled. The polymer is
obtained from the low-pressure separator and fed into

an extruder to be pelleted, cooled and finally sent to
storage.

During normal operation, the plant requires contin-
uous changes from one steady state to another in
order to switch among different final products. This
can be accomplished by changing the butane feed
flow rate and/or the purge flow rate from the precom-
pressor. These changes generate disturbances that
keep the product out of specification during the tran-
sient states.

2.2. Plant model

The plant model includes four components: ethyl-
ene ( j=1), butane ( j=2), methane ( j=3) and impu-
rities ( j=4). This last component groups several
components present in minor quantities.

During the usual plant operation the equipment
temperature and pressure are strictly controlled.
Therefore, their variations are not significant. For this
reason, the momentum and energy balances were not
taken into account in the overall plant model. Based
on the realistic assumption that the dynamics of the
total mass balances is much faster than that of the
component mass balances, constant equipment
holdups are considered. This model was also verified
in dynamic plant tests (Schbib et al., 1992).

Each process unit of the flowsheet was represented
as a continuous stirred tank (CST). Nonsteady state
mass balances for three components are developed
while the fourth component is obtained by difference.
Eq. (1) shows the corresponding balance for the jth
component:

d(V�w j )
dt

=Fw i
j−Fw j j=1 ,…, 3 (1)

where F, mass flowrate (kg/h); V, equipment volume
(m3); t, time (s); �, gas density (kg/m3); w i

j, inlet
weight component of jth component; w j, outlet
weight component of jth component.

Another aspect of this process is the presence of
several time delays. In preliminary work (Cervantes,
Tonelli, Bandoni, & Biegler, 1998), a first order Padé
approximation in the space of state variables was
used to model the delays, and incorporated in the
plant model. In this work, a different and tighter
method is applied for the time delay prediction.

Here time delays are directly incorporated into the
plant model by considering each one as a tube of
length L where a plug flow is assumed. The resulting
component material balances for these tubes are as
follows:

�w j

�t
+

F
�A

�w j

�z
=0 (2)
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�w j

�z
�
L

=0; w j(z, 0)=w0
j,

where A is transversal area (m2); z, axial length (m).
These partial differential equations are discretized

using a backward difference equation in z, with N=10
intervals.

In order to avoid a prohibitively large number of
difference equations, a dynamic analysis of the process
behavior was performed and the many delays present in
the whole plant were lumped into only six time delays.
The global dynamic plant behavior was retained by an
appropriate selection of the location for the six time
delays.

2.3. Reactor model

The dynamic model for the reactor was built on the
basis of a rigorous mathematical model for the steady-
state high-pressure polymerization of ethylene in indus-
trial tubular reactors, previously developed by
Brandolin et al. (1996). The rigorous model considers
multiple monomer feeds and multiple injections of ini-
tiators and chain transfer agents at different locations
through the axial length, along with realistic jacket flux
configurations. The model is based on the following
basic hypothesis: a plug flow reaction mixture forming
a single supercritical phase and variation of all physical
and transport properties along the axial distance. En-

Fig. 1. LDPE process flowsheet.
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ergy and momentum balances were implemented to
obtain the corresponding equations for temperature
and pressure at the reaction side. Pulsed flow operation
was also included in the model.

Correlations obtained with experimental data were
used to determine global heat transfer coefficients ac-
cording to Lacunza, Ugrin, Capiati, and Brandolin,
(1998). Rigorous mass balances were implemented for
ethylene monomer, initiators, telogens, inerts, and mo-
ments of the chain-length distributions of radicals and
polymer. The energy and momentum balances that
account for variations of jacket temperatures and pres-
sures were also included. Some of the kinetic constants
were taken from the literature data while the others
were used as adjustable parameters to fit experimental
data. The whole reaction mechanism and the set of
differential–algebraic equations evolved from the mass,
momentum and energy balances are described in Bran-
dolin et al. (1996). This model has been validated with
experimental data as well, both in steady state and
through dynamic pulse testing. The model consists of
the following items as a function of axial distance:
monomer conversion, reaction and jacket temperatures,
reaction and jacket pressures, mass fraction of: oxygen,
peroxide initiators, monomer, radicals and polymer,
along with the first three moments for the combined
length and branching distributions of radicals and poly-
mer; thermodynamic and transport properties of the
reaction mixture; average molecular weights and molec-
ular weight distribution (MWD); short and long chain
branching indexes.

For this work, several simplifying assumptions were
proposed to convert the former steady-state model to a
dynamic model suitable for optimization purposes. In
the context of the dynamic optimization of the whole
plant, the main quantities to be provided by the model
were monomer conversion, temperature, component
compositions and number average molecular weight
(Mn). This last quantity represents the average mass of
monomer incorporated to each mole of polymer
product.

At this step, the main objectives were to keep the size
of the optimization problem small and to ensure that
the same steady-state condition is obtained in the dy-
namic model.

The reactions that only affect molecular properties
other than Mn were not considered at this stage of the
work because they do not affect the grade change
optimization. The final selected kinetic mechanism was:
Peroxide indication

Il���
kdl

2 R(0); l=1, 2

Oxygen initiation

O2+M ���
ko

2 R(0)

Propagation

R(x)+M ���
kp

R(x+1)

Termination by combination

R(x)+R(y) ���
ktc

P(x+y)

Thermal degradation

R(x+1) ���
ktdt

P(x)+R(0)

Chain transfer to butane (S)

R(x)+S ���
ktrs

P(x)+R(0)

where Il, jth initiator; k, kinetic constants; M, ethylene;
P(x), polymer molecules which contain ‘x ’ monomer
units; R(x), radical molecules which contain ‘x ’
monomer units.

The Arrhenius law was used to describe the depen-
dence of kinetic constants with temperature and pres-
sure. The values of preexponential factors and
activation energies may be found elsewhere (Brandolin
et al., 1996; Asteasuain, Pereda, Lacunza, Ugrin, &
Brandolin, 2000).

Four additional chemical species are considered only
in the reactor model. The oxygen ( j=5) and peroxide
initiators ( j=7) are injected to the reactor and con-
sumed totally there. Radicals ( j=8) are generated and
consumed only in the reactor. Besides, polymer ( j=6)
mass fraction only appears in reactor balances.

The reactor was divided in six jacket sections, ac-
cording to their thermal levels. The first section is used
to preheat the reaction mixture up to the temperature
where oxygen initiates the reaction. In the second sec-
tion, radicals generated by oxygen propagate. Two
different peroxide initiators are injected at the begin-
ning of the third and fifth sections generating two
reaction zones respectively. The fourth and sixth sec-
tions are used for cooling the reacting mixture. Each of
these sections is modeled as a plug flow reactor. To
reduce the number of algebraic variables we used uni-
form global heat transfer coefficients, specific heat,
density, jacket temperature, and jacket pressure at each
section. No balances for the jacket side were necessary.
To simplify pressure calculations on the reaction side
we used information from the rigorous model to pro-
pose a linear variation of pressure along the reactor.

Further simplifications were necessary in the case of
peroxide and radicals balances, in order to obtain con-
sistency between stationary predictions of the dynamic
model and its corresponding steady state model. The
assumption of quasi-stationary state was applied for
both radicals and peroxides, so the time derivatives
disappear from the respective balance equations. Never-
theless, a time variation is observed in the resulting
concentrations due to temperature dependence of ki-
netic constants.

Finally, the following dynamic equations are applied
for each one of the jacket sections (k=1, 6) in which
the reactor was divided:
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Temperature equation

�T(z, t)
�t

�
k

=
1

�(k)Cp(k)
�

−�(k)�(k)Cp(k)
�T(z, t)

�z
�
k

(3)

+ (−kp(z, t)w8(z, t)�(k)w1(z, t)
�(k)
Mmon

(−�H)

−4U(k)(T(z, t)−Tj(k))/(Di)}.

Ethylene (w1) balance

�w1(z, t)
�t

�
k

= −�(k)
�w1(z, t)

�z
�
k

−kp(z, t)w8(z, t)�(k)w1(z, t)

−k0(z, t)w5(z, t)1.1�(k)1.1

Mox
1.1 w1(z, t) . (4)

Butane (w2) balance

�w2(z, t)
�t

�
k

= −�(k)
�w2(z, t)

�z
�
k

−ktrs(z, t)w8(z, t)�(k)w2(z, t). (5)

Oxygen (w5) balance

�w5(z, t)
�t

�
k

= −�(k)
�w5(z, t)

�z
�
k

−k0(z, t)w5(z, t)1.1 �(k)0.1

Mox
0.1 w1(z, t)

�(k)
Mmon

. (6)

Global polymer (w6) balance

�w6(z, t)
�t

�
k

= −�(k)
�w6(z, t)

�z
�
k

−0.5ktc(z, t)w8(z, t)2�(k)

−ktrs(z, t)w2(z, t)
�(k)
Mbut

w8(z, t)

+ktdt(z, t)w8(z, t). (7)

Peroxide (w7) balances

0= −�(k)
�w7,l(z, t)

�z
�
k

−kdl(z, t)w7,l(z, t) l=1, 2.

(8)

Radical (w8) balances

0= −�(k)
�w8(z, t)

�z
�
k

+ �
2

l=1

2kdl(z, t)w7,l(z, t)/Min,l

−k0(z, t)w5(z, t)1.1 �(k)1.1

Mox
1.1 w1(z, t)/Mmon

+ktc(z, t)w8(z, t)2�(k) (9)

where Cp, specific heat (J/mol K); Di, internal diameter
(m); Mbut, butane molecular weight; Min,l, ‘jth’ initiator
molecular weight; Mmon, monomer molecular weight;
Mox, oxygen molecular weight; T, temperature (K); Tj,

jacket fluid temperature (K); U, global heat transfer
coefficient (J/m2 s K); �, axial velocity (m/s); �H, heat
of polymerization (J/mol).

The initial and boundary conditions may be ex-
pressed as:
Initial conditions

t=0
w j(z, 0)=w0

j(z)
T(z, 0)=T0(z).

(10)

Boundary conditions

z=0
w j(0, t)=wz=0

j

T(0, t)=Tz=0

(11)

where j=1, 2, 5–8.
The dimensional variables were converted to a

proper dimensionless form. In general the concentra-
tions and temperature were divided by a factor about
the same order of magnitude of the corresponding
variable. This approach worked well for all the vari-
ables except for oxygen. This problem was solved by
taking the logarithm of the dimensionless oxygen
concentration.

To incorporate this model to the optimization frame-
work, the space coordinate z was discretized using
backward finite differences. This spatial discretization
was not uniform; shorter intervals were taken after
initiator injections since the rate of change of the
variables increases significantly.

The resulting ordinary differential equations were
coupled with the rest of plant equations and solved by
orthogonal collocation on finite elements as described
in the following sections.

3. Dynamic optimization problem

In this type of plant, a common practice to infer the
final product quality is to measure the composition of
butane in the low-pressure recycle stream. Therefore, as
a performance criterion for the dynamic optimization
problem, we selected the deviation of this variable
respect to the desired set point.

In order to account for the minimum switching time
between two steady states, the time weighted integral
error function was selected as the objective function. As
the manipulated variable, the butane feed and the purge
stream profiles are used.

min
� tf

0

(xbu−xbu
set)2dt (12)

s.t. DAE Model (1−11)

z(t=0)=z0

z l�z�zu
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y l�y�yu

u l�u�uu

where z is the vector of differential variables, y is the
vector of algebraic variables and u is the control vari-
able which represents the butane feed to the plant.
Adding a new differential variable to the problem we
can write it in Mayer form, where the objective func-
tion becomes:

min znew(tf) (13)

and the following two constraints have been added in
Eq. (12)

z� new= (xbu−xbu
set)2

znew(0)=0

The continuous state and control variables are dis-
cretized, by applying orthogonal collocation on finite
elements and the resulting NLP is solved with a decom-
posed barrier (or interior point) algorithm. In the re-
mainder of this section we briefly present the basic
characteristics of the discretization approach and the
barrier algorithm.

3.1. Discretization

The continuous dynamic optimization problem is
discretized by applying collocation of finite elements.
We use a monomial basis representation for the differ-
ential profiles.

z(t)=zi−1+ (t− ti−1) �
ncol

q=1

�q
�t− ti−1

hi

� dz
dti,q

(14)

where zi−1 is the value of the differential variable at the
beginning of element i, hi= (ti− ti−1) is the length of
element i, dz/dti,q is the value of its first derivative in
element i at the collocation point q, and �q is a
polynomial of order ncol.

The control and algebraic variables are approximated
by:

y(t)= �
ncol

q=1

�q
�t− ti−1

hi

�
yi,q (15)

u(t)= �
ncol

q=1

�q
�t− ti−1

hi

�
ui,q (16)

where yi,q and ui,q represent the values of the algebraic
and control variables, respectively, in element i at collo-
cation point q. Here, �q is a Lagrange polynomial of
order ncol. The differential variables are required to be
continuous throughout the time horizon, while the con-
trol and algebraic variables are allowed to have discon-
tinuities at the boundaries of the elements. Fixing the
number and the length of the elements, and the number
of collocation points the substitution of Eqs. (14)– (16)
into Eq. (12) leads to the following NLP.

min f(x) (17)

s.t. c(x)=0 (18)

x l�x�xu

where x is the vector of discretized variables

x=
�

zi

dzi,q

dt
yi,q ui,q

nT

(19)

3.2. Barrier method

The NLP problem, Eqs. (17)– (19) is solved using a
reduced space barrier method (Cervantes, Waechter,
Tutuncu & Biegler, 2000). This method has proved to
be very efficient for solving DAE optimization prob-
lems, especially when the dimension of the state vari-
ables is much larger than that of the control variables.
The method also adds robustness to the solution proce-
dure by performing local factorizations. This allows us
to preserve and exploit the structure of the problem and
to detect ill-conditioning due to unstable modes in the
DAE system.

Without loss of generality and in order to simplify
the presentation of the algorithm the NLP problem
Eqs. (17) and (18) can be written as:

min f(x) (20)

s.t c(x)=0 (21)

x�0.

This approach replaces the bound constraints with a
logarithmic barrier term, which is added to the objec-
tive function. The problem can be written as:

min ��(x)= f(x)−� �
n

i=1

ln(xi ) (22)

s.t c(x)=0. (23)

where ��0 is a barrier parameter. The degree of
influence of the barrier is determined by the size of �.
Thus, x*(�) converges to a local solution x* of the
original problem Eqs. (20) and (21) as � goes to zero.
Consequently, a strategy for solving the original NLP is
to solve a sequence of barrier problems for decreasing
barrier parameters �. Since the exact solution x*(�) is
not of interest for large �, the corresponding barrier
problem is solved only to a relaxed accuracy �, and the
approximate solution is then used as a starting point
for the next barrier problem.

To solve Eqs. (22) and (23) with a fixed value of �,
we follow a primal–dual approach that generates
search directions for primal variables x�0 as well as
for dual variables ��0, which correspond to the La-
grange multipliers of the bound constraints in Eq. (21).
The corresponding KKT system is:

�f(x)+A(x) �−�=0 (24)
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XVe−�e=0

c(x)=0

where A(x)=�c(x), � are the Lagrange multipliers of
the equality constraints in Eq. (23), e denotes a vector
of ones of appropriate dimension, and the diagonal
matrices X and V are defined by X=diag{x} and
V=diag {�}. Note that Eq. (24) is modified in the
sense that the corresponding equations in the ‘tradi-
tional’ KKT conditions are multiplied by X.

If we solve this system of nonlinear equations with
Newton’s method, at an iterate (xk, �k, �k), the corre-
sponding search direction would be obtained by
solving:

�
�
�
�
�

Hk Ak −I
Ak

T 0 0
Vk 0 Xk

�
�
�
�
�

�
�
�
�
�

dk
x

dk
�

dk
�

�
�
�
�
�

= −

�
�
�
�
�

�f(xk)+Ak�k−�k

c(xk)
XkVke−�e

�
�
�
�
�

where Hk denotes the Hessian of the Lagrangian func-
tion for Eqs. (17) and (18). Reducing this linear system
yields:

�Hk+�k Ak

Ak
T 0

n� dk
x

�k+dk
�

n
= −

����(xk)
ck

n
and

dk
� =�Xk

−1e−�k−�k dk
x (25)

where �k=Xk
−1 Vk.

Obtaining dk
x from Eq. (25) is equivalent to solving

the quadratic problem

Min ���
Tdx+1

2d
xT(Hk+�k)dx

s.t. c(xk)+Ak
Tdx=0 (26)

as long as (Hk+�k) is positive definite in the null space
of Ak

T. The similarity of this QP to the one used in
rSQP in our earlier studies, in particular with reduced
space Quasi-Newton updates, allows us to solve each
barrier problem with a reduced space approach, where
the overall step is partitioned into a range and null
space component. For this, the variables are partitioned
into m dependent and (n–m) independent variables.
With this partition AT takes the form AT= [C N] where
C is a nonsingular m×m matrix and N is an m× (n–
m) matrix. The search direction dx at each iteration k
can be written as:

dk=RkdR+QkdQ (27)

where the matrix Q satisfies Ak
TQk=0 and. Qk and Rk

are chosen as

Qk=
�−C(xk)−1N(xk)

I
n

and Rk=
�I

0
n

(28)

The range space direction, dR, is obtained from

dR= −Ck
−1ck (29)

and the null space direction, dQ, is obtained by solving
the following QP subproblem:

min
dQ�Rn−m

�
Qk

T���(xk)+Qk
T�k RkdR

�T

dQ

+1
2dQ

T�Qk
T�Hk+�k

�
Qk
�

dQ (30)

The solution of this QP, which is unconstrained, can
be obtained directly as:

dQ= −
�

Qk
T�Hk+�k

�
Qk
�−1

�
Qk

T���(xk)+Qk
T�kRkdR

�
(31)

where the term Qk
THkQk, is approximated with a Quasi-

Newton method. After the step dk
x is computed, an

Armijo line search is performed using a special-pur-
pose, primal–dual l1 penalty function. Details of this
algorithm along with an extensive performance evalua-
tion are given in Cervantes et al. (2000).

3.3. Mesh refinement for optimal control

To improve on the accuracy of the optimal state and
control problems, we also apply a mesh refinement
strategy to this problem. Mesh refinement is governed
primarily by accuracy and the optimal location of the
control variable breakpoints. By introducing the ele-
ment lengths, hi, as variables and aggregating the vari-
able bounds as inequality constraints, the nonlinear
programming problem in Eqs. (17)– (19) can easily be
extended to mesh refinement for optimal control. Here
we consider element lengths as decision variables, error
constraints can be imposed in each finite element and a
larger nonlinear problem is solved. The error con-
straints guarantee the accuracy of the discretization
while variable elements lengths locate the optimal
breakpoints of the control variables. The main
difficulties of this approach are that the resulting NLP
problem is more nonlinear than with fixed elements,
and the error constraints induce inconsistencies in the
linearization if the problem is poorly initialized. To
overcome this difficulty, Tanartkit and Biegler (1997)
proposed a bi-level strategy in which the solution of an
outer problem determines the element lengths. Then,
the solution of an inner problem (fixed mesh) deter-
mines the control and state variables. With this ap-
proach, the solution of a highly nonlinear problem is
avoided. However, the outer problem is nonsmooth
because the active constraints sets in the inner problem
can change from one mesh to another. In Biegler,
Cervantes, and Waechter (2001), we develop a new



A.M. Cer�antes et al. / Computers and Chemical Engineering 26 (2002) 227–237234

Fig. 2. Mesh refinement algorithm.

z� =F(z, y, u)

G(z, y, u)=0 (32)

we can define adjoint variables �(t) and 	(t), and write
the Hamiltonian function as:

H(t)=�(t)T F(t)+	(t)T G(t). (33)

This function can be evaluated at each collocation
point and adjoint variables are related to the KKT
multipliers at the solution of the NLP Eqs. (22) and
(23).

According to our experience, a good initial mesh
selection with a sufficient number of elements usually
satisfies these two criteria. If not, additional elements
are inserted at locations where these criteria are most
violated and the algorithm in Fig. 2 is repeated. De-
tailed derivation and presentation of the algorithm, the
error and Hamiltonian criteria and applications to opti-
mal control problems can be found in Biegler et al.
(2001).

4. Results

The above plant model together with the time delays
and the detailed reactor model, leads to a system with
532 differential-algebraic equations. To capture the dy-
namics of the reactor model adequately, three colloca-
tion points were required and up to 40 finite elements
were needed in the discretization process. The resulting
problem was solved using our interior point algorithm
running on a DEC AlphaStation 500 workstation.

In this work we analyze two different product grade
transitions (cases 1 and 2), to show the capabilities of
the developed large-scale optimization model. Case 1
corresponds to a decrease while case 2 corresponds to
an increase in molecular weight. In all cases, we started
from the same initial steady state condition (see Table
1), corresponding to a conversion of 28.5%.

For case 1, 35 finite elements and three collocation
points were required in the discretization process, lead-
ing to a nonlinear program with 73,425 variables. Here
154 iterations and 4366.2 CPUs were required by the
interior point algorithm to achieve convergence.

Fig. 3 presents the optimal profile of the fresh butane
flow that minimizes the transition time from the initial
to a final steady state, which is characterized by a
polymer of lower molecular weight. The other operat-
ing process conditions remained unchanged. It is ob-
served from the figure that the optimal profile for the
butane flow is almost a piecewise constant function,
consisting of taking the initial steady state flow to its
upper bound, keeping it there for 0.8 h and then
lowering it to its final steady state value. This manipu-
lation produces a linear increase in the concentration of
butane in the low-pressure recycle and leads to an

Table 1
Steady state conditions

Ethylene flow rate 12334 kg/h
Butane flow rate 12 kg/h
Purge flow rate 355 kg/h
Butane composition 0.0205
Low-pressure recycle

approach that overcomes problems with nonsmooth-
ness by embedding the mesh refinement within the
interior point algorithm, as seen in Fig. 2.

The main concept for mesh refinement algorithm is
to detect active constraints during the solution proce-
dure and obtain a solution where the active set does not
change within any finite element. As shown in Biegler et
al. (2001) an active constraint set that remains constant
in each of the finite elements is necessary to determine
an (arbitrarily) accurate optimal control profile. As seen
in Fig. 2, we solve the barrier problem Eqs. (22) and
(23) for a given � to given tolerance �, proportional to
�. At these intermediate solutions, we check each ele-
ment for changes in active constraints within an ele-
ment. If there are changes in active sets between two
consecutive elements, we free the element length, hi,
between them as a new variable in the barrier problem.
We then decrease � and � �� according to the barrier
method algorithm in Cervantes et al. (2000) and repeat
the process until the method converges.

Upon convergence, we then check two additional
criteria to determine if a sufficient number of elements
is used. First, approximation error constraints for the
state profiles need to be imposed and satisfied.

Second, from optimal control theory, the Hamilto-
nian function should remain constant for the whole
time horizon. Here, for the DAE system:
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increment of butane concentration in the reactor that
favors chain transfer reactions. These reactions are
responsible for the decrease in average molecular
weight. As can be seen in Fig. 3, the model predicts

much faster reactor dynamics than that of the global
plant, as is usually the case in actual plants.

In case 2, we seek a transition to increase the molec-
ular weight. A number of 40 finite elements and three
collocation points were required, leading to a nonlinear
program with 83,845 variables. The interior point al-
gorithm required 126 iterations and 3728.4 CPUs for
convergence.

Fig. 3 shows that the optimum butane flow profile
that leads to an increase in molecular weight must start
at a low value for more than 2.5 h and then increases to
its final steady state value. This manipulation produces
a linear decrease in butane concentration in the low-
pressure recycle. Butane composition also decreases in
the reactor making the chain transfer reaction less
significant; the product molecular weight increases
accordingly.

The time delay effects on the process variable profiles
are evident for both cases from Figs. 3 and 4.

For both cases, a large part of the computation times
are taken up not by the NLP algorithm but in the
calculation of the derivative information for the reactor
and plant models. For this study, the Jacobian matrices
were obtained by finite difference perturbations. More
efficient strategies for obtaining exact derivatives will be
considered in future work.

The optimal control policies presented above lead to
a significant savings in transition times. The transition
time in the actual plant is about 5 h and the corre-
sponding process dynamics were also in excellent agree-
ment with the overall plant model Eqs. (1) and (2) (see
Schbib et al., 1992). Using the optimal profiles pre-
sented here we were able to reduce this transition time
to no more than 2.8 h. Applied at each grade transition,
this translates to a reduction of at least 23 tons of
off-spec product using the plant model.

4.1. Optimal control with simplified model

We also compare the results of case 1 with a sim-
plified reactor model where the reactor was treated as a
black box with the conversion fixed at a value obtained
from plant data. It is interesting to note that the
optimal control policies with the incorporation of the
reactor model are very close to those with a fixed
conversion reactor model, as shown below in Fig. 5.
With the simplified reactor, the model has 156 differen-
tial equations and 64 algebraic equations; it was dis-
cretized with three collocation points on 15 finite
elements, resulting in an NLP with 12,396 variables and
12,366 equality constraints. The NLP algorithm obtains
an optimal solution in 81 iterations and 418.1 CPUs.

As seen in Fig. 5, the profiles are similar to the ones
presented in Fig. 3 with the more rigorous model. This
is due to the fact that the time constant of the reactor
is much faster than that of the overall process. As a

Fig. 3. Optimal control and state profiles: case 1.

Fig. 4. Optimal control and state profiles: case 2.



A.M. Cer�antes et al. / Computers and Chemical Engineering 26 (2002) 227–237236

Fig. 5. Optimal control profiles: using the simplified model for case 1.

4.2. Adjustment of finite elements

Finally, we apply the mesh refinement approach in
Section 3 to the low density polyethylene results of case
2, which corresponds to an increase in molecular
weight. For this case 40 finite elements and three collo-
cation points were used, leading to a nonlinear program
with 83,845 variables. To find an optimal placement of
finite elements, the modified interior point algorithm
with mesh refinement required 174 iterations and
5,407.1 CPUs. Fig. 6 shows the control profiles for this
case. Compared to Fig. 4, we see that the finite ele-
ments are now placed to ensure a sharp transition in
the control policy.

As mentioned in Section 3, autonomous dynamic
optimal control problems require that the Hamiltonian
function be constant over time. This function is calcu-
lated as part of the mesh refinement and the effect can
be seen in Fig. 7, where profiles from Fig. 4 (fixed
mesh) and Fig. 6 (with mesh refinement) are compared.
In the latter case the optimal control profile is quite
accurate, as time fluctuations in the Hamiltonian are
less than 10−6. Thus, no additional improvement of
these control profiles can be achieved through further
refinement of the mesh or addition of finite elements.

5. Conclusions

Optimal control policies are derived for grade transi-
tion problems for a large-scale LDPE plant model.
Using orthogonal collocation on finite elements to rep-
resent the DAE model and a novel interior point
method for solving the resulting nonlinear program, we
obtain the solution of problems with over 80,000 vari-
ables. Moreover, the resulting solutions lead to a reduc-
tion in the transition time (and of off-spec LDPE
product) of over 44%. In addition, a mesh refinement
strategy has been implemented that leads to a constant
Hamiltonian profile for the dynamic optimization.
These results show that further improvements in the
control profiles cannot be achieved with additional
finite elements or mesh refinement. Future work will
deal with more efficient model formulations, accurate
gradient calculations from the model and large-scale
extensions to this plant.
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Fig. 6. Optimal control profiles after mesh refinement for case 2.

Fig. 7. Comparison of Hamiltonians for mesh refinement in case 2.
(closed dots—fixed mesh; open squares—with mesh refinement).

result, detailed reactor dynamics play a much smaller
role in the optimization than those of the process. On
the other hand, the detailed reactor model is able to
predict appropriately the actual steady state reactor
behavior for a wider range of operating conditions,
especially with respect to the steady state. Conse-
quently, it improves the model predictive capabilities
for key plant variables such as conversion, temperature
profiles and molecular weights.
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